Surface Defect Detection of Nanjing City Wall Based on UAV Oblique Photogrammetry and TLS
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area: Nanjing City Wall (from Jiefangmen to Xuanwumen)
2.2. UAV Oblique Photogrammetry Surveying
2.3. TLS Surveying
2.4. Total Station Surveying
2.5. Data Processing
3. Results and Discussion
3.1. City Wall Surface Defect Detection Based on UAV Oblique Photogrammetry
3.2. City Wall Surface Defect Detection Based on TLS
3.2.1. Determination of K Value
3.2.2. Defect Information Extraction
3.3. Accuracy Assessment
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, D. Material Management in Planning and Construction of Ancient Buildings. Open House Int. 2019, 44, 60–63. [Google Scholar] [CrossRef]
- Zhang, Z. Research on 3D Digital Model Design of the Sparrow Brace in Qingcheng Ancient Town. In Proceedings of the 2021 2nd International Conference on Intelligent Design (ICID), Xi’an, China, 19 October 2021; pp. 278–281. [Google Scholar] [CrossRef]
- Yinglong, H.; Yingbiao, C.; Zhifeng, W. Unmanned Aerial Vehicle and Ground Remote Sensing Applied in 3D Reconstruction of Historical Building Groups in Ancient Villages. In Proceedings of the 2018 Fifth International Workshop on Earth Observation and Remote Sensing Applications (EORSA), Xi’an, China, 18–20 June 2018; pp. 1–5. [Google Scholar]
- El-naggar, A.M. Determination of optimum segmentation parameter values for extracting building from remote sensing images. Alex. Eng. J. 2018, 57, 3089–3097. [Google Scholar] [CrossRef]
- Shao, Z.; Tang, P.; Wang, Z.; Saleem, N.; Yam, S.; Sommai, C. BRRNet: A Fully Convolutional Neural Network for Automatic Building Extraction from High-Resolution Remote Sensing Images. Remote Sens. 2020, 12, 1050. [Google Scholar] [CrossRef] [Green Version]
- McNamara, D.; Mell, W. Towards the use of Remote Sensing for Identification of Building Damage, Destruction, and Defensive Actions at Wildland-Urban Interface Fires. Fire Technol. 2021, 58, 641–672. [Google Scholar] [CrossRef]
- Jo, Y.H.; Hong, S. Three-Dimensional Digital Documentation of Cultural Heritage Site Based on the Convergence of Terrestrial Laser Scanning and Unmanned Aerial Vehicle Photogrammetry. ISPRS Int. J. Geo-Inf. 2019, 8, 53. [Google Scholar] [CrossRef] [Green Version]
- Chatzistamatis, S.; Kalaitzis, P.; Chaidas, K.; Chatzitheodorou, C.; Papadopoulou, E.E.; Tataris, G.; Soulakellis, N. Fusion of TLS and UAV photogrammetry data for post-earthquake 3d modeling of a cultural heritage church. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-3/W4, 143–150. [Google Scholar] [CrossRef] [Green Version]
- Müge, A.; Efdal, K.; Yilmaz, H.M. 3d Modeling of Cultural Heritages with UAV and TLS Systems: A Case Study on the Somuncu Baba Mosque. Artgrid-J. Archit. Eng. Fine Arts 2020, 2, 1–12. [Google Scholar]
- Balaguer-Puig, M.; Molada-Tebar, A.; Marqués-Mateu, A.; Lerma, J.L. Characterisation of intensity values on terrestrial laser scanning for recording enhancement. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, XLII-2/W5, 49–55. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Wen, X.; Wang, X.; Li, X.; Li, Z. A Model Study of Building Seismic Damage Information Extraction and Analysis on Ground-Based LiDAR Data. Adv. Civ. Eng. 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Salama, K.K.; Ali, M.F.; El-Shiekh, S. Reconstruction of monastery Saint Jeremiah computer-aided design model. Sci. Cult. 2017, 3, 11–14. [Google Scholar]
- Hu, Q.; Wang, S.; Fu, C.; Ai, M.; Yu, D.; Wang, W. Fine surveying and 3D modeling approach for wooden ancient architecture via multiple laser scanner integration. Remote Sens. 2016, 8, 270. [Google Scholar] [CrossRef] [Green Version]
- Tsiafaki, D.; Michailidou, N. Benefits and Problems Through the Application Of 3D Technologies In Archaeology: Recording, Visualisation, Representation and Reconstruction. Sci. Cult. 2015, 1, 37–45. [Google Scholar] [CrossRef]
- Nowak, R.; Orłowicz, R.; Rutkowski, R. Use of TLS (LiDAR) for Building Diagnostics with the Example of a Historic Building in Karlino. Buildings 2020, 10, 24. [Google Scholar] [CrossRef] [Green Version]
- Oniga, V.E.; Breaban, A.I.; Alexe, E.I.; Văsii, C. Indoor mapping of a complex cultural heritage scene using tls and hmls laser scanning. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2021, XLIII-B2-2, 605–612. [Google Scholar] [CrossRef]
- Ebolese, D.; Lo Brutto, M.; Dardanelli, G. 3D Reconstruction of the roman domus in the archaeological site of lylibaeum (marsala, italy). Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-2/W15, 437–442. [Google Scholar] [CrossRef] [Green Version]
- Alkadri, M.F.; Alam, S.; Santosa, H.; Yudono, A.; Beselly, S.M. Investigating Surface Fractures and Materials Behavior of Cultural Heritage Buildings Based on the Attribute Information of Point Clouds Stored in the TLS Dataset. Remote Sens. 2022, 14, 410. [Google Scholar] [CrossRef]
- Sánchez-Aparicio, L.J.; Del Pozo, S.; Ramos, L.F.; Arce, A.; Fernandes, F.M. Heritage site preservation with combined radiometric and geometric analysis of TLS data. Autom. Constr. 2018, 85, 24–39. [Google Scholar] [CrossRef]
- Lercari, N. Monitoring earthen archaeological heritage using multi-temporal terrestrial laser scanning and surface change detection. J. Cult. Herit. 2019, 39, 152–165. [Google Scholar] [CrossRef] [Green Version]
- Mugnai, F.; Lombardi, L.; Tucci, G.; Nocentini, M.; Gigli, G.; Fanti, R. Geomatics in bridge structural health monitoring, inte-grating terrestrial laser scanning techniques and geotechnical inspections on a high value cultural heritage. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, 42, 895–900. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Cheng, X. Damage detection for historical architectures based on TLS intensity data. ISPRS-Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII-3, 915–921. [Google Scholar] [CrossRef] [Green Version]
- Suchocki, C. Comparison of Time-of-Flight and Phase-Shift TLS Intensity Data for the Diagnostics Measurements of Buildings. Materials 2020, 13, 353. [Google Scholar] [CrossRef] [Green Version]
- Dayal, K.R.; Tiwari, P.S.; Sara, R.; Pande, H.; Kumar, A.S.; Agrawal, S.; Srivastav, S. Diagnostic utilisation of ground based imaging and non-imaging sensors for digital documentation of heritage sites. Digit. Appl. Archaeol. Cult. Heritage 2019, 15, e00117. [Google Scholar] [CrossRef]
- Tucci, G.; Bartoli, G.; Betti, M.; Bonora, V.; Korumaz, M.; Korumaz, A.G. Advanced Procedure for Documenting and Assessment of Cultural Heritage: From Laser Scanning to Finite Element, IOP Conference Series: Materials Science and Engineering, 2018; IOP Publishing: Bristol, UK, 2018. [Google Scholar]
- Roselli, I.; Tatì, A.; Fioriti, V.; Bellagamba, I.; Mongelli, M.; Romano, R.; De Canio, G.; Barbera, M.; Cianetti, M.M. Integrated approach to structural diagnosis by non-destructive techniques: The case of the Temple of Minerva Medica. Acta IMEKO 2018, 7, 13–19. [Google Scholar] [CrossRef]
- Federman, A.; Shrestha, S.; Quintero, M.S.; Mezzino, D.; Gregg, J.; Kretz, S.; Ouimet, C. Unmanned Aerial Vehicles (UAV) Photogrammetry in the Conservation of Historic Places: Carleton Immersive Media Studio Case Studies. Drones 2018, 2, 18. [Google Scholar] [CrossRef] [Green Version]
- Wang, C.; Xu, X.; Yu, L.; Li, H.; Yap, J.B.H. Grid algorithm for large-scale topographic oblique photogrammetry precision enhancement in vegetation coverage areas. Earth Sci. Inform. 2021, 14, 931–953. [Google Scholar] [CrossRef]
- Snavely, N. Scene Reconstruction and Visualization from Internet Photo Collections: A Survey. IPSJ Trans. Comput. Vis. Appl. 2011, 3, 44–66. [Google Scholar] [CrossRef] [Green Version]
- Gao, N.; Zhao, J.; Song, D.; Chu, J.; Cao, K.; Zha, X.; Du, X. High-precision and light-small oblique photogrammetry uav landscape restoration monitoring. In Proceedings of the 2018 Ninth International Conference on Intelligent Control and Information Processing (ICICIP), Wanzhou, China, 9–11 November 2018; pp. 301–304. [Google Scholar]
- Wang, J.; Wang, L.; Jia, M.; He, Z.; Bi, L. Construction and optimization method of the open-pit mine DEM based on the oblique photogrammetry generated DSM. Measurement 2019, 152, 107322. [Google Scholar] [CrossRef]
- Gerke, M.; Kerle, N. Automatic Structural Seismic Damage Assessment with Airborne Oblique Pictometry© Imagery. Photogramm. Eng. Remote Sens. 2011, 77, 885–898. [Google Scholar] [CrossRef]
- Li, D.; Lin, H.; He, Q.; Li, J. Digital restoration and visualization of Nanfeng ancient city-focusing on cultural mining. J. Physics: Conf. Ser. 2021, 012045. [Google Scholar] [CrossRef]
- Nikolakopoulos, K.G.; Soura, K.; Koukouvelas, I.K.; Argyropoulos, N.G. UAV vs. classical aerial photogrammetry for archaeological studies. J. Archaeol. Sci: Rep. 2017, 14, 758–773. [Google Scholar] [CrossRef]
- Bolognesi, M.; Furini, A.; Russo, V.; Pellegrinelli, A.; Russo, P. Testing the low-cost RPAS potential in 3D cultural heritage reconstruction. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-5/W4, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Chen, S.; Yang, H.; Wang, S.; Hu, Q. Surveying and digital restoration of towering architectural heritage in harsh environments: A case study of the millennium ancient watchtower in Tibet. Sustainability 2018, 10, 3138. [Google Scholar] [CrossRef] [Green Version]
- Aicardi, I.; Chiabrando, F.; Grasso, N.; Lingua, A.M.; Noardo, F.; Spanò, A. Uav photogrammetry with oblique images: First analysis on data acquisition and processing. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, 41, 835–842. [Google Scholar] [CrossRef] [Green Version]
- Vetrivel, A.; Gerke, M.; Kerle, N.; Vosselman, G. Identification of damage in buildings based on gaps in 3D point clouds from very high resolution oblique airborne images. ISPRS J. Photogramm. Remote Sens. 2015, 105, 61–78. [Google Scholar] [CrossRef]
- Martínez-Carricondo, P.; Carvajal-Ramírez, F.; Yero-Paneque, L.; Agüera-Vega, F. Combination of nadiral and oblique UAV photogrammetry and HBIM for the virtual reconstruction of cultural heritage. Case study of Cortijo del Fraile in Níjar, Almería (Spain). Build. Res. Inf. 2019, 48, 140–159. [Google Scholar] [CrossRef]
- Ulvi, A. Documentation, Three-Dimensional (3D) Modelling and visualization of cultural heritage by using Unmanned Aerial Vehicle (UAV) photogrammetry and terrestrial laser scanners. Int. J. Remote Sens. 2021, 42, 1994–2021. [Google Scholar] [CrossRef]
- Carvajal-Ramírez, F.; Navarro-Ortega, A.D.; Agüera-Vega, F.; Martínez-Carricondo, P.; Mancini, F. Virtual reconstruction of damaged archaeological sites based on Unmanned Aerial Vehicle Photogrammetry and 3D modelling. Study case of a southeastern Iberia production area in the Bronze Age. Measurement 2019, 136, 225–236. [Google Scholar] [CrossRef]
- Manajitprasert, S.; Tripathi, N.K.; Arunplod, S. Three-dimensional (3D) modeling of cultural heritage site using UAV imagery: A case study of the pagodas in Wat Maha That, Thailand. Appl. Sci. 2019, 9, 3640. [Google Scholar] [CrossRef] [Green Version]
- Mongelli, M.; De Canio, G.; Roselli, I.; Malena, M.; Nacuzi, A.; de Felice, G. 3D Photogrammetric reconstruction by drone scanning for FE analysis and crack pattern mapping of the “Bridge of the Towers”, Spoleto. Key Eng. Mater. 2017, 747, 423–430. [Google Scholar] [CrossRef]
- Araoka, W.; Hokoi, S.; Ogura, D.; Iba, C.; Li, Y.; Hu, S. Deterioration and Preservation of City Wall in Nanjing. Energy Procedia 2017, 132, 945–950. [Google Scholar] [CrossRef]
- Lenda, G.; Siwiec, J.; Kudrys, J. Multi-Variant TLS and SfM Photogrammetric Measurements Affected by Different Factors for Determining the Surface Shape of a Thin-Walled Dome. Sensors 2020, 20, 7095. [Google Scholar] [CrossRef] [PubMed]
- Wen, C.; Wang, W. The Research on Integrated Production of Large Scale 3D Products Based on Mass Multi-angular Images. J. Phys. Conf. Ser. 2020, 1624, 052010. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef] [Green Version]
- Gross, H.; Thoennessen, U. Extraction of lines from laser point clouds, Symposium of ISPRS Commission III: Photogrammetric Computer Vision PCV06. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2006, 36, 86–91. [Google Scholar]
Camera Parameters | |
---|---|
Image sensor | 1 inch CMOS; 20 million effective pixels |
Lens | FOV 84° 8.8 mm/24 mm (35 mm format equivalent) f/2.8–f/11 with autofocus (focus distance 1 m–infinity) |
ISO range | 100–3200 (auto) 100–12,800 (manual) |
Mechanical shutter speed | 8–1/2000 s |
Electronic shutter speed | 8–1/8000 s |
Photo size | 3:2 aspect ratio: 5472 × 3648 4:3 aspect ratio: 4864 × 3648 16:9 aspect ratio: 5472 × 3078 |
Image format | JPEG; DNG (RAW); JPEG + DNG |
Name | X (m) | Y (m) | H (m) |
---|---|---|---|
KZD1 | 385,841.700 | 3,549,621.522 | 20.060 |
KZD2 | 385,908.479 | 3,549,632.503 | 18.698 |
KZD3 | 385,597.541 | 3,549,975.841 | 12.437 |
KZD4 | 385,584.285 | 3,549,947.849 | 20.656 |
KZD5 | 385,119.681 | 3,550,061.545 | 11.895 |
KZD6 | 385,098.888 | 3,550,053.672 | 22.799 |
KZD7 | 384,990.770 | 3,550,572.047 | 13.436 |
KZD8 | 385,073.266 | 3,550,513.305 | 12.498 |
Value of K | Calculation Speed | Differentiation between Bricks | Defect Identification |
---|---|---|---|
4 | Fast | Poor | Poor |
6 | Relatively fast | Relatively poor | Relatively poor |
8 | Relatively slow | Relatively good | Relatively good |
10 | Slow | Good | Good |
Errors | Maximum Difference (cm) | Minimum Difference (cm) | RMSE (cm) | |
---|---|---|---|---|
Models | ||||
UAV Model | 2.9 | 0.5 | 0.73 | |
TLS Model | 1.7 | 0.3 | 0.34 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, J.; Shi, Y.; Wang, H.; Wen, Y.; Du, Y. Surface Defect Detection of Nanjing City Wall Based on UAV Oblique Photogrammetry and TLS. Remote Sens. 2023, 15, 2089. https://doi.org/10.3390/rs15082089
Wu J, Shi Y, Wang H, Wen Y, Du Y. Surface Defect Detection of Nanjing City Wall Based on UAV Oblique Photogrammetry and TLS. Remote Sensing. 2023; 15(8):2089. https://doi.org/10.3390/rs15082089
Chicago/Turabian StyleWu, Jiayi, Yufeng Shi, Helong Wang, Yajuan Wen, and Yiwei Du. 2023. "Surface Defect Detection of Nanjing City Wall Based on UAV Oblique Photogrammetry and TLS" Remote Sensing 15, no. 8: 2089. https://doi.org/10.3390/rs15082089
APA StyleWu, J., Shi, Y., Wang, H., Wen, Y., & Du, Y. (2023). Surface Defect Detection of Nanjing City Wall Based on UAV Oblique Photogrammetry and TLS. Remote Sensing, 15(8), 2089. https://doi.org/10.3390/rs15082089