Intercomparison of NO3 under Humid Conditions with Open-Path and Extractive IBBCEAS in an Atmospheric Reaction Chamber
Abstract
:1. Introduction
2. Materials and Methods
2.1. Open-Path IBBCEAS
2.1.1. Instrument Setup
2.1.2. Measurement Principle
2.1.3. The Mirror Reflectivity (R(λ))
2.2. Extractive IBBCEAS
- NO2-IBBCEAS
- NO3-IBBCEAS
2.3. The Reaction Chamber (SAES-ARC)
2.4. The Effective Cross Section Correction Method
- The high resolution can be calculated by using the H2O mixing ratio , the high-resolution cross section , the interpolated mirror reflectivity , together with the effective cavity length L:
- The instrument resolution was convolved from the high resolution with the instrument function.
- The instrument resolution cross section can be calculated at the set temperature, pressure, and mixing ratio:
3. Results and Discussion
3.1. The Performance of OP-IBBCEAS
3.2. Intercomparison of NO2 and NO3
3.3. Effect of Humidity on the Spectral Analysis
3.3.1. The Cross Section of H2O
3.3.2. The Influence of H2O Cross Section
3.4. The Application of Kalman Filtering
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wayne, R.P.; Barnes, I.; Biggs, P.; Burrows, J.P.; Canosa-Mas, C.E.; Hjorth, J.; Le Bras, G.; Moortgat, G.K.; Perner, D.; Poulet, G.; et al. The nitrate radical: Physics, chemistry, and the atmosphere. Atmos. Environ. Part A Gen. Top. 1991, 25, 1–203. [Google Scholar] [CrossRef]
- Brown, S.S.; Stutz, J. Nighttime radical observations and chemistry. Chem. Soc. Rev. 2012, 41, 6405–6447. [Google Scholar] [CrossRef] [PubMed]
- Brown, S.S.; Stark, H.; Ravishankara, A. Applicability of the steady state approximation to the interpretation of atmospheric observations of NO3 and N2O5. J. Geophys. Res. Atmos. 2003, 108, 4539. [Google Scholar] [CrossRef]
- Hoyle, C.R.; Boy, M.; Donahue, N.M.; Fry, J.L.; Glasius, M.; Guenther, A.; Hallar, A.G.; Hartz, K.H.; Petters, M.D.; Petaja, T.; et al. A review of the anthropogenic influence on biogenic secondary organic aerosol. Atmos. Chem. Phys. 2011, 11, 321–343. [Google Scholar] [CrossRef] [Green Version]
- Ziemann, P.J.; Atkinson, R. Kinetics, products, and mechanisms of secondary organic aerosol formation. Chem. Soc. Rev. 2012, 41, 6582–6605. [Google Scholar] [CrossRef]
- Yokelson, R.J.; Burkholder, J.B.; Fox, R.W.; Talukdar, R.K.; Ravishankara, A.R. Temperature Dependence of the NO3 Absorption Spectrum. J. Phys. Chem. 1994, 98, 13144–13150. [Google Scholar] [CrossRef]
- Platt, U.; Perner, D.; Schröder, J.; Kessler, C.; Toennissen, A. The diurnal variation of NO3. J. Geophys. Res. Ocean. 1981, 86, 11965–11970. [Google Scholar] [CrossRef]
- Allan, B.J.; McFiggans, G.; Plane, J.M.; Coe, H.; McFadyen, G.G. The nitrate radical in the remote marine boundary layer. J. Geophys. Res. Atmos. 2000, 105, 24191–24204. [Google Scholar] [CrossRef]
- Geyer, A.; Ackermann, R.; Dubois, R.; Lohrmann, B.; Müller, T.; Platt, U. Long-term observation of nitrate radicals in the continental boundary layer near Berlin. Atmos. Environ. 2001, 35, 3619–3631. [Google Scholar] [CrossRef]
- Geyer, A.; Alicke, B.; Ackermann, R.; Martinez, M.; Harder, H.; Brune, W.; Di Carlo, P.; Williams, E.; Jobson, T.; Hall, S. Direct observations of daytime NO3: Implications for urban boundary layer chemistry. J. Geophys. Res. Atmos. 2003, 108, 4368. [Google Scholar] [CrossRef]
- Stutz, J.; Alicke, B.; Ackermann, R.; Geyer, A.; White, A.; Williams, E. Vertical profiles of NO3, N2O5, O3, and NOx in the nocturnal boundary layer: 1. Observations during the Texas Air Quality Study 2000. J. Geophys. Res. Atmos. 2004, 109, D12307. [Google Scholar] [CrossRef] [Green Version]
- Wängberg, I.; Barnes, I.; Becker, K. Product and mechanistic study of the reaction of NO3 radicals with α-pinene. Environ. Sci. Technol. 1997, 31, 2130–2135. [Google Scholar] [CrossRef]
- Bossmeyer, J.; Brauers, T.; Richter, C.; Rohrer, F.; Wegener, R.; Wahner, A. Simulation chamber studies on the NO3 chemistry of atmospheric aldehydes. Geophys. Res. Lett. 2006, 33, L18810. [Google Scholar] [CrossRef] [Green Version]
- Dorn, H.P.; Apodaca, R.L.; Ball, S.M.; Brauers, T.; Brown, S.S.; Crowley, J.N.; Dubé, W.P.; Fuchs, H.; Häseler, R.; Heitmann, U.; et al. Intercomparison of NO3 radical detection instruments in the atmosphere simulation chamber SAPHIR. Atmos. Meas. Tech. 2013, 6, 1111–1140. [Google Scholar] [CrossRef] [Green Version]
- King, M.D.; Dick, E.M.; Simpson, W.R. A new method for the atmospheric detection of the nitrate radical (NO3). Atmos. Environ. 2000, 34, 685–688. [Google Scholar] [CrossRef]
- Brown, S.S.; Stark, H.; Ciciora, S.J.; Ravishankara, A. In-situ measurement of atmospheric NO3 and N2O5 via cavity ring-down spectroscopy. Geophys. Res. Lett. 2001, 28, 3227–3230. [Google Scholar] [CrossRef]
- Dubé, W.P.; Brown, S.S.; Osthoff, H.D.; Nunley, M.R.; Ciciora, S.J.; Paris, M.W.; McLaughlin, R.J.; Ravishankara, A. Aircraft instrument for simultaneous, in situ measurement of NO3 and N2O5 via pulsed cavity ring-down spectroscopy. Rev. Sci. Instrum. 2006, 77, 034101. [Google Scholar] [CrossRef]
- Schuster, G.; Labazan, I.; Crowley, J.N. A cavity ring down/cavity enhanced absorption device for measurement of ambient NO3 and N2O5. Atmos. Meas. Tech. 2009, 2, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Fiedler, S.E.; Hese, A.; Ruth, A.A. Incoherent broad-band cavity-enhanced absorption spectroscopy. Chem. Phys. Lett. 2003, 371, 284–294. [Google Scholar] [CrossRef] [Green Version]
- Venables, D.S.; Titus, G.; Johannes, O.; Wenger, J.C.; Ruth, A.A. High sensitivity in situ monitoring of NO3 in an atmospheric simulation chamber using incoherent broadband cavity-enhanced absorption spectroscopy. Environ. Sci. Technol. 2006, 40, 6758. [Google Scholar] [CrossRef]
- Varma, R.M.; Venables, D.S.; Ruth, A.A.; Heitmann, U.; Schlosser, E.; Dixneuf, S. Long optical cavities for open-path monitoring of atmospheric trace gases and aerosol extinction. Appl. Opt. 2009, 48, B159–B171. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Platt, U.; Meinen, J.; Pohler, D.; Leisner, T. Broadband Cavity Enhanced Differential Optical Absorption Spectroscopy (CE-DOAS)—Applicability and corrections. Atmos. Meas. Tech. 2009, 2, 713–723. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Venables, D.S. A broadband optical cavity spectrometer for measuring weak near-ultraviolet absorption spectra of gases. Atmos. Meas. Tech. 2011, 4, 425–436. [Google Scholar] [CrossRef] [Green Version]
- Fang, B.; Zhao, W.; Xu, X.; Zhou, J.; Ma, X.; Wang, S.; Zhang, W.; Venables, D.S.; Chen, W. Portable broadband cavity-enhanced spectrometer utilizing Kalman filtering: Application to real-time, in situ monitoring of glyoxal and nitrogen dioxide. Opt. Express 2017, 25, 26910–26922. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, H.; Chen, J.; Lu, K. Development of a portable cavity-enhanced absorption spectrometer for the measurement of ambient NO3 and N2O5: Experimental setup, lab characterizations, and field applications in a polluted urban environment. Atmos. Meas. Tech. 2017, 10, 1465–1479. [Google Scholar] [CrossRef] [Green Version]
- Duan, J.; Qin, M.; Ouyang, B.; Fang, W.; Li, X.; Lu, K.; Tang, K.; Liang, S.; Meng, F.; Hu, Z. Development of an incoherent broadband cavity-enhanced absorption spectrometer for in situ measurements of HONO and NO2. Atmos. Meas. Tech. 2018, 11, 4531–4543. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Li, X.; Yang, Y.; Wang, H.; Kuang, C.; Zhu, Y.; Chen, M.; Hu, J.; Zeng, L.; Zhang, Y. Sensitive Detection of Ambient Formaldehyde by Incoherent Broadband Cavity Enhanced Absorption Spectroscopy. Anal. Chem. 2020, 92, 2697–2705. [Google Scholar] [CrossRef]
- Wang, M.; Varma, R.; Venables, D.S.; Zhou, W.; Chen, J. A Demonstration of Broadband Cavity-Enhanced Absorption Spectroscopy at Deep-Ultraviolet Wavelengths: Application to Sensitive Real-Time Detection of the Aromatic Pollutants Benzene, Toluene, and Xylene. Anal. Chem. 2022, 94, 4286–4293. [Google Scholar] [CrossRef]
- Langridge, J.M.; Ball, S.M.; Shillings, A.J.L.; Jones, R.L. A broadband absorption spectrometer using light emitting diodes for ultrasensitive, in situ trace gas detection. Rev. Sci. Instrum. 2008, 79, 123110. [Google Scholar] [CrossRef]
- Benton, A.; Langridge, J.; Ball, S.; Bloss, W.; Dall’Osto, M.; Nemitz, E.; Harrison, R.M.; Jones, R. Night-time chemistry above London: Measurements of NO3 and N2O5 from the BT Tower. Atmos. Chem. Phys. 2010, 10, 9781–9795. [Google Scholar] [CrossRef]
- Kennedy, O.; Ouyang, B.; Langridge, J.; Daniels, M.; Bauguitte, S.; Freshwater, R.; McLeod, M.; Ironmonger, C.; Sendall, J.; Norris, O. An aircraft based three channel broadband cavity enhanced absorption spectrometer for simultaneous measurements of NO3, N2O5 and NO2. Atmos. Meas. Tech. 2011, 4, 1759–1776. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Lu, K.; Chen, X.; Zhu, Q.; Qi, C.; Song, G.; Jiang, M.; Xin, L.; Shang, D.; Tan, Z. High N2O5 Concentrations Observed in Urban Beijing: Implications of a Large Nitrate Formation Pathway. Environ. Sci. Technol. Lett. 2017, 4, 416–420. [Google Scholar] [CrossRef]
- Chen, X.; Wang, H.; Lu, K.; Li, C.; Zhai, T.; Tan, Z.; Ma, X.; Yang, X.; Liu, Y.; Chen, S. Field determination of nitrate formation pathway in winter Beijing. Environ. Sci. Technol. 2020, 54, 9243–9253. [Google Scholar] [CrossRef]
- Nam, W.; Cho, C.; Perdigones, B.; Rhee, T.S.; Min, K.E. Development of a broadband cavity-enhanced absorption spectrometer for simultaneous measurements of ambient NO3, NO2, and H2O. Atmos. Meas. Tech. 2022, 15, 4473–4487. [Google Scholar] [CrossRef]
- Fuchs, H.; Dubé, W.P.; Ciciora, S.J.; Brown, S.S. Determination of Inlet Transmission and Conversion Efficiencies for in Situ Measurements of the Nocturnal Nitrogen Oxides, NO3, N2O5 and NO2, via Pulsed Cavity Ring-Down Spectroscopy. Anal. Chem. 2008, 80, 6010–6017. [Google Scholar] [CrossRef]
- Gherman, T.; Venables, D.S.; Vaughan, S.; Orphal, J.; Ruth, A.A. Incoherent Broadband Cavity-Enhanced Absorption Spectroscopy in the near-Ultraviolet: Application to HONO and NO2. Environ. Sci. Technol. 2008, 42, 890–895. [Google Scholar] [CrossRef]
- Chen, J.; Wenger, J.C.; Venables, D.S. Near-ultraviolet absorption cross sections of nitrophenols and their potential influence on tropospheric oxidation capacity. J. Phys. Chem. A 2011, 115, 12235–12242. [Google Scholar] [CrossRef] [Green Version]
- Ashu-Ayem, E.R.; Nitschke, U.; Monahan, C.; Chen, J.; Darby, S.B.; Smith, P.D.; O’Dowd, C.D.; Stengel, D.B.; Venables, D.S. Coastal Iodine Emissions. 1. Release of I-2 by Laminaria digitata in Chamber Experiments. Environ. Sci. Technol. 2012, 46, 10413–10421. [Google Scholar] [CrossRef] [Green Version]
- Hoch, D.J.; Buxmann, J.; Sihler, H.; Poehler, D.; Zetzsch, C.; Platt, U. An instrument for measurements of BrO with LED-based Cavity-Enhanced Differential Optical Absorption Spectroscopy. Atmos. Meas. Tech. 2014, 7, 199–214. [Google Scholar] [CrossRef] [Green Version]
- Wu, T.; Coeur-Tourneur, C.; Dhont, G.; Cassez, A.; Fertein, E.; He, X.; Chen, W. Simultaneous monitoring of temporal profiles of NO3, NO2 and O3 by incoherent broadband cavity enhanced absorption spectroscopy for atmospheric applications. J. Quant. Spectrosc. Radiat. Transf. 2014, 133, 199–205. [Google Scholar] [CrossRef]
- Yi, H.; Wu, T.; Wang, G.; Zhao, W.; Fertein, E.; Coeur, C.; Gao, X.; Zhang, W.; Chen, W. Sensing atmospheric reactive species using light emitting diode by incoherent broadband cavity enhanced absorption spectroscopy. Opt. Express 2016, 24, A781–A790. [Google Scholar] [CrossRef] [PubMed]
- Yi, H.; Cazaunau, M.; Gratien, A.; Michoud, V.; Pangui, E.; Doussin, J.-F.; Chen, W. Intercomparison of IBBCEAS, NitroMAC and FTIR analyses for HONO, NO2 and CH2O measurements during the reaction of NO2 with H2O vapour in the simulation chamber CESAM. Atmos. Meas. Tech. 2021, 14, 5701–5715. [Google Scholar] [CrossRef]
- Yi, H.; Meng, L.; Wu, T.; Lauraguais, A.; Coeur, C.; Tomas, A.; Fu, H.; Gao, X.; Chen, W. Absolute determination of the chemical kinetic rate constant by optically tracking the reaction on the second time-scale using cavity enhanced absorption spectroscopy. Phys. Chem. Chem. Phys. 2022, 24, 7396–7404. [Google Scholar] [CrossRef] [PubMed]
- Wu, T.; Chen, W.; Fertein, E.; Cazier, F.; Dewaele, D.; Gao, X. Development of an open-path incoherent broadband cavity-enhanced spectroscopy based instrument for simultaneous measurement of HONO and NO2 in ambient air. Appl. Phys. B Lasers Opt. 2012, 106, 501–509. [Google Scholar] [CrossRef]
- Suhail, K.; George, M.; Chandran, S.; Varma, R.; Venables, D.S.; Wang, M.; Chen, J. Open path incoherent broadband cavity-enhanced measurements of NO3 radical and aerosol extinction in the North China Plain. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 208, 24–31. [Google Scholar] [CrossRef]
- Wang, H.; Lu, K. Monitoring Ambient Nitrate Radical by Open-Path Cavity-Enhanced Absorption Spectroscopy. Anal. Chem. 2019, 91, 10687–10693. [Google Scholar] [CrossRef]
- Voigt, S.; Orphal, J.; Burrows, J.P. The temperature and pressure dependence of the absorption cross-sections of NO2 in the 250–800 nm region measured by Fourier-transform spectroscopy. J. Photochem. Photobiol. A Chem. 2002, 149, 1–7. [Google Scholar] [CrossRef]
- Schmidl, G.; Paa, W.; Triebel, W.; Schippel, S.; Heyer, H. Spectrally resolved cavity ring down measurement of high reflectivity mirrors using a supercontinuum laser source. Appl. Opt. 2009, 48, 6754–6759. [Google Scholar] [CrossRef]
- Fullam, D.P.; Shoji, K.; Venables, D.S. Using integrated absorption to calibrate optical cavity spectrometers. Anal. Methods 2015, 7, 3298–3301. [Google Scholar] [CrossRef] [Green Version]
- Washenfelder, R.A.; Attwood, A.R.; Flores, J.M.; Zarzana, K.J.; Rudich, Y.; Brown, S.S. Broadband cavity-enhanced absorption spectroscopy in the ultraviolet spectral region for measurements of nitrogen dioxide and formaldehyde. Atmos. Meas. Tech. 2016, 9, 41–52. [Google Scholar] [CrossRef]
- Wu, T.; Zhao, W.; Chen, W.; Zhang, W.; Gao, X. Incoherent broadband cavity enhanced absorption spectroscopy for in situ measurements of NO2 with a blue light emitting diode. Appl. Phys. B Lasers Opt. 2009, 94, 85–94. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, C.; Zhao, W.; Fang, B.; Xu, X.; Gai, Y.; Lin, X.; Chen, W.; Zhang, W. Ultra-sensitive measurement of peroxy radicals by chemical amplification broadband cavity-enhanced spectroscopy. Analyst 2016, 141, 5870–5878. [Google Scholar] [CrossRef]
- Ball, S.M.; Jones, R.L. Broad-band cavity ring-down spectroscopy. Chem. Rev. 2003, 103, 5239–5262. [Google Scholar] [CrossRef]
- Rothman, L.S.; Gordon, I.E.; Barbe, A.; Benner, D.C.; Bernath, P.F.; Birk, M.; Boudon, V.; Brown, L.R.; Campargue, A.; Champion, J.P.; et al. The HITRAN 2008 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 533–572. [Google Scholar] [CrossRef] [Green Version]
- McLean, A.B.; Mitchell, C.E.J.; Swanston, D.M. Implementation of an efficient analytical approximation to the Voigt function for photoemission lineshape analysis. J. Electron. Spectrosc. Relat. Phenom. 1994, 69, 125–132. [Google Scholar] [CrossRef]
- Allan, D.W. Statistics of atomic frequency standards. Proc. IEEE 1966, 54, 221–230. [Google Scholar] [CrossRef] [Green Version]
- Li, C.M.; Wang, H.C.; Chen, X.R.; Zhai, T.Y.; Chen, S.Y.; Li, X.; Zeng, L.M.; Lu, K.D. Thermal dissociation cavity-enhanced absorption spectrometer for measuring NO2, RO2NO2, and RONO2 in the atmosphere. Atmos. Meas. Tech. 2021, 14, 4033–4051. [Google Scholar] [CrossRef]
- Horbanski, M.; Pöhler, D.; Lampel, J.; Platt, U. The ICAD (iterative cavity-enhanced DOAS) method. Atmos. Meas. Tech. 2019, 12, 3365–3381. [Google Scholar] [CrossRef] [Green Version]
- Tang, J.Y.; Li, Y.J.; Li, X.L.; Jing, S.A.; Huang, C.; Zhu, J.P.; Hu, Q.Y.; Wang, H.L.; Lu, J.; Lou, S.R.; et al. Intermediate volatile organic compounds emissions from vehicles under real world conditions. Sci. Total Environ. 2021, 788, 147795. [Google Scholar] [CrossRef]
- Leleux, D.; Claps, R.; Chen, W.; Tittel, F.; Harman, T. Applications of Kalman filtering to real-time trace gas concentration measurements. Appl. Phys. B 2002, 74, 85–93. [Google Scholar] [CrossRef]
- Chen, W.; Yi, H.; Wu, T.; Zhao, W.; Lengignon, C.; Wang, G.; Fertein, E.; Coeur, C.; Wysocki, G.; Wang, T. Photonic sensing of reactive atmospheric species. Encycl. Anal. Chem. 2017, 1–60. [Google Scholar] [CrossRef]
- Tang, K.; Qin, M.; Fang, W.; Duan, J.; Meng, F.; Ye, K.; Zhang, H.; Xie, P.; He, Y.; Xu, W. Simultaneous detection of atmospheric HONO and NO2 utilising an IBBCEAS system based on an iterative algorithm. Atmos. Meas. Tech. 2020, 13, 6487–6499. [Google Scholar] [CrossRef]
- Bian, X.; Zhou, S.; Sun, X.; Yu, B.; Li, J. Continuous measurement of NO2 in flue gas employing cavity-enhanced spectroscopy sensing system. Measurement 2022, 201, 111729. [Google Scholar] [CrossRef]
- Li, J.; Reiffs, A.; Parchatka, U.; Fischer, H. In situ measurements of atmospheric CO and its correlation with NOx and O3 at a rural mountain site. Metrol. Meas. Syst. 2015, 22, 25–38. [Google Scholar] [CrossRef]
- Thompson, A.M.; Cicerone, R.J. Possible perturbations to atmospheric CO, CH4, and OH. J. Geophys. Res. Atmos. 1986, 91, 10853–10864. [Google Scholar] [CrossRef]
Reference | Eff. Optical Path Length (Mirror Displacement) | Reflectivity | NO3 | NO2 | ||
---|---|---|---|---|---|---|
Limit of Detection (Time Resolution) | Uncertainty | Limit of Detection (Time Resolution) | Uncertainty | |||
Venables et al. [20] | 2 km (4.5 m) | 99.775% at 665 nm | 4 pptv (N.A. 57 s) | 14% | 10 ppbv (N.A. 57 s) | 11% |
Varma et al. [21] | 18.27 km (20.13 m) | 99.9% at 660 nm | 2 pptv (N.A., 5 s) | 18% | 2 ppbv (N.A., 5 s) | 14% |
Wu et al. [40] | 22 km (2 m) | 99.991% at 638,670 nm | 7.9 pptv (N.A. 60 s) | 12% | 9.0 ppbv (N.A. 60 s) | 9% |
Yi et al. [41] | 6.7 km (2 m) | 99.97% at 662 nm | 3.6 pptv (N.A., 60 s) | 7.8% | 4.1 ppbv (N.A., 60 s) | 9.1% |
Suhail et al. [45] | 7 km (3.5 m) | 99.95% at 660 nm | 36 pptv (N.A. 600 s) | N.A. | N.A. | N.A. |
Wang and Lu [46] | 5.1 km (0.84 m) | 99.985% at 660 nm | 3.0 pptv (2σ, 30 s) | 11–15% | N.A. | N.A. |
This work | 21.7 km (3.65 m) | 99.987% at 675 nm | 5.8 pptv (2σ, 2 s) | 14% | 5.8 ppbv (2σ, 2 s) | 6% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Lou, S.; Hu, W.; Wang, H.; Wang, X.; Fan, F.; Varma, R.; Venables, D.S.; Chen, J. Intercomparison of NO3 under Humid Conditions with Open-Path and Extractive IBBCEAS in an Atmospheric Reaction Chamber. Remote Sens. 2023, 15, 739. https://doi.org/10.3390/rs15030739
Wang M, Lou S, Hu W, Wang H, Wang X, Fan F, Varma R, Venables DS, Chen J. Intercomparison of NO3 under Humid Conditions with Open-Path and Extractive IBBCEAS in an Atmospheric Reaction Chamber. Remote Sensing. 2023; 15(3):739. https://doi.org/10.3390/rs15030739
Chicago/Turabian StyleWang, Meng, Shengrong Lou, Weiwei Hu, Haichao Wang, Xinming Wang, Fengxian Fan, Ravi Varma, Dean S. Venables, and Jun Chen. 2023. "Intercomparison of NO3 under Humid Conditions with Open-Path and Extractive IBBCEAS in an Atmospheric Reaction Chamber" Remote Sensing 15, no. 3: 739. https://doi.org/10.3390/rs15030739
APA StyleWang, M., Lou, S., Hu, W., Wang, H., Wang, X., Fan, F., Varma, R., Venables, D. S., & Chen, J. (2023). Intercomparison of NO3 under Humid Conditions with Open-Path and Extractive IBBCEAS in an Atmospheric Reaction Chamber. Remote Sensing, 15(3), 739. https://doi.org/10.3390/rs15030739