Negative Air Ion (NAI) Dynamics over Zhejiang Province, China, Based on Multivariate Remote Sensing Products
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Resources
2.2.1. Station-Based NAI Observations
2.2.2. Remote Sensing Data
- (1)
- Vegetation datasets
- (2)
- Meteorological datasets
- (3)
- Topographic datasets
- (4)
- Human activity intensity
- (5)
- Air quality data
2.3. Modelling
2.3.1. Random Forest
2.3.2. Path Analysis
2.3.3. Spatio-Temporal Variation Analysis
3. Results
3.1. Model Performance
3.2. Driving Factors Determination
3.3. Characteristics of the NAI Temporal and Spatial Distribution
4. Discussion
4.1. Spatial–Temporal Determinations of NAIs
4.2. Spatio-Temporal Modeling of NAIs
4.3. Spatio Distribution of NAIs in Zhejiang Province
5. Conclusions
- (1)
- Topography dominated the spatial difference of NAIs in different regions, mostly indirectly, by controlling vegetation, climate, air quality, etc., among which the SIF was most related to the NAI dynamics;
- (2)
- The RF model succeeded in modeling the spatio-temporal differences in NAI among different sites, while limitations still existed;
- (3)
- Due to the dominance of topography, the NAI concentration in Zhejiang Province declined from the southwest to the northeast, and summer and winter have the highest and lowest NAI concentrations, respectively, for all land-use types.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Villa, F.; Ceroni, M.; Bagstad, K.; Johnson, G.; Krivov, S. ARIES (ARtificial Intelligence for Ecosystem Services): A New Tool for Ecosystem Services Assessment, Planning, and Valuation. 2009. Available online: http://bioecon-network.org/pages/11th_2009/Villa.pdf (accessed on 5 November 2020).
- Skromulis, A.; Breidaks, J.; Teirumnieks, E. Effect of Atmospheric Pollution on Air Ion Concentration. Energy Procedia 2017, 113, 231–237. [Google Scholar] [CrossRef]
- Jiang, S.Y.; Ma, A.; Ramachandran, S. Negative Air Ions and Their Effects on Human Health and Air Quality Improvement. Int. J. Mol. Sci. 2018, 19, 2966. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Z.; Zhang, X. Value of ecosystem services in China. Chin. Sci. Bull. 2000, 45, 870–876. [Google Scholar] [CrossRef]
- Wen, X.; Theau, J. Assessment of ecosystem services in restoration programs in China: A systematic review. Ambio 2020, 49, 584–592. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Zhou, S.; Chen, Y.; Cheng, H.; Zhou, W.; Yang, M.; Shen, Y.; Wan, L.; Su, X.; Liu, G. How do local people value ecosystem service benefits received from conservation programs? Evidence from nature reserves on the Hengduan Mountains. Glob. Ecol. Conserv. 2022, 33, e01979. [Google Scholar] [CrossRef]
- Wang, Y.; Ni, Z.; Wu, D.; Fan, C.; Lu, J.; Xia, B. Factors influencing the concentration of negative air ions during the year in forests and urban green spaces of the Dapeng Peninsula in Shenzhen, China. J. For. Res. 2020, 31, 2537–2547. [Google Scholar] [CrossRef]
- Nadali, A.; Arfaeinia, H.; Asadgol, Z.; Fahiminia, M. Indoor and outdoor concentration of PM10, PM2.5 and PM1 in residential building and evaluation of negative air ions (NAIs) in indoor PM removal. Environ. Pollut. Bioavailab. 2020, 32, 47–55. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Wang, B.; Niu, X.; Song, Q.; Li, M.; Luo, Y.; Liang, L.; Du, P.; Peng, W. Study on the change of negative air ion concentration and its influencing factors at different spatio-temporal scales. Glob. Ecol. Conserv. 2020, 23, e01008. [Google Scholar] [CrossRef]
- Shi, G.; Yang, H.; Sang, Y.; Cai, L.; Zhang, J.; Meng, P. Relationship Between Photosynthetic Capacity and Negative Air Ion of Platycladus orientalis. Terr. Ecosyst. Conserv. 2022, 2, 13–21. [Google Scholar] [CrossRef]
- Wang, W.; Xia, S.; Zhu, Z.; Wang, T.; Cheng, X. Spatiotemporal distribution of negative air ion and PM2.5 in urban residential areas. Indoor Built Environ. 2022, 31, 1127–1141. [Google Scholar] [CrossRef]
- Miao, S.; Zhang, X.; Han, Y.; Sun, W.; Liu, C.; Yin, S. Random Forest Algorithm for the Relationship between Negative Air Ions and Environmental Factors in an Urban Park. Atmosphere 2018, 9, 463. [Google Scholar] [CrossRef] [Green Version]
- Liang, H.; Chen, X.; Yin, J.; Da, L. The spatial-temporal pattern and influencing factors of negative air ions in urban forests, Shanghai, China. J. For. Res. 2014, 25, 847–856. [Google Scholar] [CrossRef]
- Li, A.; Li, Q.; Zhou, B.; Ge, X.; Cao, Y. Temporal dynamics of negative air ion concentration and its relationship with environmental factors: Results from long-term on-site monitoring. Sci. Total Environ. 2022, 832, 155057. [Google Scholar] [CrossRef]
- Yan, X.; Wang, H.; Hou, Z.; Wang, S.; Zhang, D.; Xu, Q.; Tokola, T. Spatial analysis of the ecological effects of negative air ions in urban vegetated areas: A case study in Maiji, China. Urban For. Urban Green. 2015, 14, 636–645. [Google Scholar] [CrossRef]
- Guangyao, S.; Yu, Z.; Yuqiang, S.; Hui, H.; Jinsong, Z.; Ping, M.; Lulu, C. Modeling the response of negative air ions to environmental factors using multiple linear regression and random forest. Ecol. Inform. 2021, 66, 101464. [Google Scholar] [CrossRef]
- Yue, C.; Yuxin, Z.; Nan, Z.; Dongyou, Z.; Jiangning, Y. An inversion model for estimating the negative air ion concentration using MODIS images of the Daxing’anling region. PLoS ONE 2020, 15, e0242554. [Google Scholar] [CrossRef] [PubMed]
- Wu, C.-F.; Lai, C.-H.; Chu, H.-J.; Lin, W.-H. Evaluating and Mapping of Spatial Air Ion Quality Patterns in a Residential Garden Using a Geostatistic Method. Int. J. Environ. Res. Public Health 2011, 8, 2304–2319. [Google Scholar] [CrossRef] [PubMed]
- Li, X.; Wu, C.; Meadows, M.E.; Zhang, Z.; Lin, X.; Zhang, Z.; Chi, Y.; Feng, M.; Li, E.; Hu, Y. Factors Underlying Spatiotemporal Variations in Atmospheric PM2.5 Concentrations in Zhejiang Province, China. Remote Sens. 2021, 13, 3011. [Google Scholar] [CrossRef]
- Zhang, Q.; Gao, W.; Su, S.; Weng, M.; Cai, Z. Biophysical and socioeconomic determinants of tea expansion: Apportioning their relative importance for sustainable land use policy. Land Use Policy 2021, 68, 438–447. [Google Scholar] [CrossRef]
- Chen, G.; Li, S.; Knibbs, L.D.; Hamm, N.A.S.; Cao, W.; Li, T.; Guo, J.; Ren, H.; Abramson, M.J.; Guo, Y. A machine learning method to estimate PM2.5 concentrations across China with remote sensing, meteorological and land use information. Sci. Total Environ. 2018, 636, 52–60. [Google Scholar] [CrossRef] [PubMed]
- Mosavi, A.; Rabczuk, T.; Varkonyi-Koczy, A.R. Reviewing the Novel Machine Learning Tools for Materials Design; Recent Advances in Technology Research and Education; Springer: Berlin, Germany, 2017. [Google Scholar]
- Wu, C.C.; Lee, G.W.; Yang, S.; Yu, K.P.; Lou, C.L. Influence of air humidity and the distance from the source on negative air ion concentration in indoor air. Sci. Total Environ. 2006, 370, 245–253. [Google Scholar] [CrossRef] [PubMed]
- Shi, G.; Huang, H.; Sang, Y.; Cai, L.; Zhang, J.; Cheng, X.; Meng, P.; Sun, S.; Li, J.; Qiao, Y. Solar-induced chlorophyll fluorescence intensity has a significant correlation with negative air ion release in forest canopy. Atmos. Environ. 2021, 269, 118873. [Google Scholar] [CrossRef]
- Wang, M.; Wang, H. Spatial Distribution Patterns and Influencing Factors of PM2.5 Pollution in the Yangtze River Delta: Empirical Analysis Based on a GWR Model. Asia-Pac. J. Atmos. Sci. 2021, 57, 63–75. [Google Scholar] [CrossRef]
- Deng, L.; Deng, Q. The basic roles of indoor plants in human health and comfort. Environ. Sci. Pollut. Res. 2018, 25, 36087–36101. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Deng, X.; Long, R.; Gao, C.; Xiong, Y. Metal-organic frameworks for artificial photosynthesis via photoelectrochemical route. Curr. Opinion Electrochem. 2019, 17, 114–120. [Google Scholar] [CrossRef]
- Skalny, J.D.; Mikoviny, T.; Vladoiu, R. Negative corona discharges in pure CO2 and/or N2O gases and their mixtures with oxygen. Rom. J. Phys. 2004, 49, 321–331. [Google Scholar]
- Sinicina, N.; Skromulis, A.; Martinovs, A. Impact of Microclimate and Indoor Plants on Air Ion Concentration. In Proceedings of the International Scientific and Practical Conference, Environment Technology Resources, St. Petersburg, Russia, 6–8 October 2015. [Google Scholar]
- Chen, Q.; Wang, R.; Zhang, X.; Liu, J.; Wang, D. Effects of Different Site Conditions on the Concentration of Negative Air Ions in Mountain Forest Based on an Orthogonal Experimental Study. Sustainability 2021, 13, 2012. [Google Scholar] [CrossRef]
- Lou, W.; Yao, Y.; Sun, K.; Deng, S.; Yang, M. Variability of heat waves and recurrence probability of the severe 2003 and 2013 heat waves in Zhejiang Province, southeast China. Clim. Res. 2019, 79, 63–75. [Google Scholar] [CrossRef]
- Tomo’omi, K.; Kuraji, K.; Noguchi, H.; Tanaka, Y.; Suzuki, K.T.M. Vertical profiles of environmental factors within tropical rainforest, Lambir Hills National Park, Sarawak, Malaysia. J. For. Res. 2001, 6, 257–264. [Google Scholar] [CrossRef]
- Regaieg, O.; Yin, T.; Malenovsky, Z.; Cook, B.D.; Morton, D.C.; Gastellu-Etchegorry, J.-P. Assessing impacts of canopy 3D structure on chlorophyll fluorescence radiance and radiative budget of deciduous forest stands using DART. Remote Sens. Environ. 2021, 265, 112673. [Google Scholar] [CrossRef]
- Huang, K.; Xiao, Q.; Meng, X.; Geng, G.; Wang, Y.; Lyapustin, A.; Gu, D.; Liu, Y. Predicting monthly high-resolution PM2.5 concentrations with random forest model in the North China Plain. Environ. Pollut. 2018, 242, 675–683. [Google Scholar] [CrossRef] [PubMed]
- Li-wang, S.; Jian, D.; Wei-min, W.; De-hui, Q. Temporal and Spatial Variations of Vegetation Coverage in Zhejiang Province Based on MODIS Data. J. Yangtze River Sci. Res. Inst. 2021, 38, 40–46. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, B.; Zhang, Y.J.E.; Sciences, E. Characteristics of Air Anion Distribution in Beach and Forest Environment and the Correlation between Air Anion and the Environmental Factors. Ecol. Environ. Sci. 2017, 26, 1375–1383. [Google Scholar] [CrossRef]
- Retalis, A.; Nastos, P.; Retalis, D. Study of small ions concentration in the air above Athens, Greece. Atmos. Res. 2009, 91, 219–228. [Google Scholar] [CrossRef]
- Chen, A.; Mao, J.; Ricciuto, D.; Xiao, J.; Frankenberg, C.; Li, X.; Thornton, P.E.; Gu, L.; Knapp, A.K. Moisture availability mediates the relationship between terrestrial gross primary production and solar-induced chlorophyll fluorescence: Insights from global-scale variations. Glob. Change Biol. 2021, 27, 1144–1156. [Google Scholar] [CrossRef]
- Bai, B.; Chen, D.; Xu, T.; Shen, Z.; Cao, H.J.E.a.; Sciences, E. Differences in the Changes of Negative Air Ion Concentration among Different Vegetation Types in North Central Henan Province, China. Ecol. Environ. Sci. 2016, 25, 1629–1637. [Google Scholar] [CrossRef]
- Xing, H.; Tang, Q.; Dongyou, Z. Air Anion Concentration: Difference in Different Underlying Surfaces in Mohe. Chin. Agric. Sci. Bull. 2017, 33, 101–105. [Google Scholar]
Data Sources | Factors | Temporal Resolution | Spatial Resolution | Unit | Classification | |
---|---|---|---|---|---|---|
AgERA5 | T | Daily | 0.1° | K | Meteorological factors | |
RH | Real-time | 0.1° | / | |||
W | Daily | 0.1° | m s−1 | |||
RS | Daily | 0.1° | J m−2 d−1 | |||
VP | Daily | 0.1° | hPa | |||
CC | Daily | 0.1° | / | |||
DEWT | Daily | 0.1° | K | |||
MODIS | MYD16A2 | ET | Eight-day | 500 m | kg m−2 d−1 | |
MCD15A2H | FPAR | Eight-day | 500 m | / | ||
MCD15A2H | LAI | Eight-day | 500 m | / | ||
MYD17A2H | GPP | Eight-day | 500 m | kg C m−2 | Vegetation factor | |
GOSIF | SIF | Eight-day | 0.05° | W m−2 μm−1 sr−1 | ||
SRTM | DEM | / | 90 m | m | Topographic factor | |
Slope | / | 90 m | ° | |||
Aspect | / | 90 m | ° | |||
NPP/VIIRS | Lit | Monthly | 1000 m | / | Intensity of human activity | |
China Environmental Monitoring Station | AQI | Hourly | / | / | Air quality factor | |
PM2.5 | Hourly | / | μg m−3 | |||
PM10 | Hourly | / | μg m−3 | |||
SO2 | Hourly | / | μg m−3 | |||
NO2 | Hourly | / | μg m−3 | |||
CO | Hourly | / | mg m−3 | |||
O3 | Hourly | / | μg m−3 |
NAI Concentrations (ions cm−3) | Air Freshness | Relationship with Human Body | Grades of NAI |
---|---|---|---|
≤500 | Not fresh | Induces various diseases or physical disorders | Ⅳ |
500~1000 | Generally | Maintains health | Ⅲ |
1000~2000 | Fresh | Improves immunity | Ⅱ |
>2000 | Very fresh | Prevents or cures diseases | Ⅰ |
OBJECTID | DEM (m) | SLOPE (°) |
---|---|---|
Barren | 440.02 | 17.12 |
Built-up | 54.52 | 3.20 |
Water | 48.72 | 4.56 |
Grassland | 344.07 | 16.39 |
Forest | 413.30 | 18.44 |
Cropland | 107.09 | 5.73 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, S.; Sun, Z.; Lin, X.; Zhang, Z.; Wu, C.; Zhang, Z.; Zhou, B.; Zhao, Z.; Cao, C.; Guan, X.; et al. Negative Air Ion (NAI) Dynamics over Zhejiang Province, China, Based on Multivariate Remote Sensing Products. Remote Sens. 2023, 15, 738. https://doi.org/10.3390/rs15030738
Tao S, Sun Z, Lin X, Zhang Z, Wu C, Zhang Z, Zhou B, Zhao Z, Cao C, Guan X, et al. Negative Air Ion (NAI) Dynamics over Zhejiang Province, China, Based on Multivariate Remote Sensing Products. Remote Sensing. 2023; 15(3):738. https://doi.org/10.3390/rs15030738
Chicago/Turabian StyleTao, Sichen, Zongchen Sun, Xingwen Lin, Zhenzhen Zhang, Chaofan Wu, Zhaoyang Zhang, Benzhi Zhou, Zhen Zhao, Chenchen Cao, Xinyu Guan, and et al. 2023. "Negative Air Ion (NAI) Dynamics over Zhejiang Province, China, Based on Multivariate Remote Sensing Products" Remote Sensing 15, no. 3: 738. https://doi.org/10.3390/rs15030738
APA StyleTao, S., Sun, Z., Lin, X., Zhang, Z., Wu, C., Zhang, Z., Zhou, B., Zhao, Z., Cao, C., Guan, X., Zhuang, Q., Wen, Q., & Xu, Y. (2023). Negative Air Ion (NAI) Dynamics over Zhejiang Province, China, Based on Multivariate Remote Sensing Products. Remote Sensing, 15(3), 738. https://doi.org/10.3390/rs15030738