Sparsity-Based Joint Array Calibration and Ambiguity Resolving for Forward-Looking Multi-Channel SAR Imagery
Abstract
:1. Introduction
2. FLMC-SAR Geometry Model
3. FLMC-SAR Observation Model
3.1. FLMC-SAR Signal Model
3.2. Doppler Ambiguity in FLMC-SAR System
3.3. FLMC-SAR Observation Model
4. Sparsity-Based Array Error Estimation and Doppler Ambiguity Resolving
4.1. Improved Quasi-Newton Kernel
Algorithm 1: Improved quasi-Newton |
Range cycle: Traverse all range bin Azimuth cycle: Traverse all N azimuth bin within the same range bin Input: The signal of an imaging unit within the same range unit , the steering vector matrix of the imaging unit , k=0. Step 1 Image reconstruction: end Step 2 Array error estimation: until
end |
4.2. Computational Complexity
5. Results
5.1. Point Target Simulation
5.2. Surface Target Simulation
5.3. Real Data Experiment
6. Discussion
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Krishnan, V.; Swoboda, J.; Yarman, C.E.; Yazici, B. Multistatic Synthetic Aperture Radar Image Formation. IEEE Trans. Image Process. 2010, 19, 1290–1306. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cetin, M.; Karl, W.C. Feature-enhanced synthetic aperture radar image formation based on nonquadratic regularization. IEEE Trans. Image Process. 2001, 10, 623–631. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, Y.; Jiao, R.; Huang, H.; Wang, Q.; Lai, T. A Framework for Distributed LEO SAR Air Moving Target 3D Imaging via Spectral Estimation. Remote Sens. 2022, 14, 5956. [Google Scholar] [CrossRef]
- Sikaneta, I.; Gierull, C.H.; Cerutti-Maori, D. Optimum Signal Processing for Multi-channel SAR: With Application to High-Resolution Wide-Swath Imaging. IEEE Trans. Geosci. Remote Sens. 2014, 52, 6059–6109. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.W.; Chen, J.; Xu, H.; Sun, B. A Parameter-Adjusting Polar Format Algorithm for Extremely High Squint SAR Imaging. IEEE Trans. Geosci. Remote Sens. 2014, 52, 640–650. [Google Scholar] [CrossRef]
- Li, Z.; Wang, H.; Su, T.; Bao, Z. Generation of Wide-Swath and High-Resolution SAR Images from Multi-channel Small Spaceborne SAR Systems. IEEE Geosci. Remote Sens. Lett. 2005, 2, 82–86. [Google Scholar] [CrossRef]
- Huang, Y.; Liao, G.; Zhang, Z.; Xiang, Y.; Li, J.; Nehorai, A. SAR Automatic Target Recognition Using Joint Low-Rank and Sparse Multiview Denoising. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1570–1574. [Google Scholar] [CrossRef]
- Yarman, C.E.; Yazici, B.; Cheney, M. Bistatic Synthetic Aperture Radar Imaging for Arbitrary Flight Trajectories. IEEE Trans. Image Process. 2008, 17, 84–93. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Yazici, B. Bistatic Synthetic Aperture Radar Imaging Using UltraNarrowband Continuous Waveforms. IEEE Trans. Image Process. 2012, 21, 3673–3686. [Google Scholar] [CrossRef]
- Pu, W.; Wu, J.; Huang, Y.; Yang, J.; Li, W.; Yang, H. Joint Sparsity-Based Imaging and Motion Error Estimation for BFSAR. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1393–1408. [Google Scholar] [CrossRef]
- Qiu, X.; Hu, D.; Ding, C. Some reflections on bistatic SAR of forward-looking configuration. IEEE Geosci. Remote Sens. Lett. 2008, 5, 735–739. [Google Scholar] [CrossRef]
- Pu, W.; Li, W.; Wu, J.; Huang, Y.; Yang, J.; Yang, H. An Azimuth Variant Autofocus Scheme of Bistatic Forward-Looking Synthetic Aperture Radar. IEEE Geosci. Remote Sens. Lett. 2017, 14, 689–693. [Google Scholar]
- Liu, Z.; Ye, H.; Li, Z.; Yang, Q.; Sun, Z.; Wu, J.; Yang, J. Optimally Matched Space-Time Filtering Technique for BFSAR Nonstationary Clutter Suppression. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5210617. [Google Scholar] [CrossRef]
- Krieger, G.; Mittermayer, J.; Buckreuss, S.; Wendler, M.; Sutor, T.; Witte, F.; Moreira, A. SIREV-Sector Imaging Radar for Enhanced Vision. Aerosp. Sci. Technol. 2003, 7, 147–158. [Google Scholar] [CrossRef] [Green Version]
- Krieger, G.; Mittermayer, J.; Wendler, M.; Witte, F.; Moreira, A. SIREV- Sector Imaging Radar for Enhanced Vision. Proc. Int. Symp. ISPA. 2001, 3, 377–382. [Google Scholar]
- Soumekh, M. Moving target detection in foliage using along track monopulse synthetic aperture radar imaging. IEEE Trans. Image Process. 1997, 6, 1148–1163. [Google Scholar] [CrossRef] [Green Version]
- Dai, S.; Liu, M.; Sun, Y.; Wiesbeck, W. The Latest Development of High Resolution Imaging for Forward Looking SAR with Multiple Receiving Antennas. Proc. IEEE Int. Geosci. Remote Sens. Symp. 2001, 3, 1433–1435. [Google Scholar]
- Dai, S.; Wiesbeck, W. High Resolution Imaging for Forward Looking SAR with Multiple Receiving Antennas. Proc. IEEE Int. Geosci. Remote Sens. Symp. 2000, 5, 2254–2256. [Google Scholar]
- Wang, W. Forward-Looking SAR Imaging with Frequency Diverse Array Antenna. Proc. IEEE Int. Geosci. Remote Sens. Symp. 2016, 8, 4191–4194. [Google Scholar]
- Franceschetti, G.; Iodice, A.; Riccio, D. Forward-Looking Synthetic Aperture Radar (FLoSAR): The Array Approach. IEEE Geosci. Remote Sens. Lett. 2014, 11, 303–307. [Google Scholar] [CrossRef]
- Franceschetti, G.; Iodice, A.; Riccio, D. FLoSAR: A New Concept for Synthetic Aperture Radar. Proc. Radar Conf. 2008, 5, 1–4. [Google Scholar]
- Mahafza, B.R.; Knight, D.L.; Audeh, N.F. Forward-Looking SAR Imaging Using A Linear Array with Transverse Motion. Proc. Southeastcon. 1993, 3, 4. [Google Scholar]
- Lu, J.; Zhang, L.; Huang, Y.; Cao, Y. High-Resolution Forward-Looking Multi-Channel SAR Imagery with Array Deviation Angle Calibration. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6914–6928. [Google Scholar] [CrossRef]
- Lu, J.; Zhang, L.; Quan, Y.; Meng, Z.; Cao, Y. Parametric Azimuth-Variant Motion Compensation for Forward-Looking Multi-channel SAR Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 59, 8521–8537. [Google Scholar] [CrossRef]
- Takemuram, N.; Deguchi, H.; Yonezawa, R.; Chiba, I. Phased Array Calibration Method with Evaluating Phase Shifter Error. Antennas and Propag. Int. Symp. 2001, 3, 259–263. [Google Scholar]
- Mano, S.; Katagi, T. A Method for Measuring Amplitude and Phase of Each Radiating Element of A Phased Array Antenna. Trans. IECE 1982, 5, 555–560. [Google Scholar]
- Ng, B.C.; See, C.M.S. Sensor-Array Calibration Using A Maximum-Likelihood Approach. IEEE Trans. Antennas Propag. 1996, 44, 827–835. [Google Scholar]
- Herman, M.A.; Strohmer, T. High-resolution radar via compressed sensing. IEEE Trans. Signal Process. 2009, 57, 2275–2284. [Google Scholar] [CrossRef] [Green Version]
- Varshney, K.R.; Çetin, M.; Fisher, J.W.; Willsky, A.S. Sparse Representation in Structured Dictionaries With Application to Synthetic Aperture Radar. IEEE Trans. Signal Process. 2008, 56, 3548–3561. [Google Scholar] [CrossRef] [Green Version]
- Onhon, N.Ö.; Cetin, M. A Sparsity-Driven Approach for Joint SAR Imaging and Phase Error Correction. IEEE Trans. Image Process. 2012, 21, 2075–2088. [Google Scholar] [CrossRef]
- Pu, W. Deep SAR Imaging and Motion Compensation. IEEE Trans. Image Process. 2021, 30, 2232–2247. [Google Scholar] [CrossRef]
- Zhang, S.; Dong, G.; Kuang, G. Super Resolution Downward-Looking Linear Array Three-Dimensional SAR Imaging Based on Two-Dimensional Compressive Sensing. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2016, 9, 2184–2196. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, S.; Liu, Y.; Li, X. Joint Structured Sparsity and Least Entropy Constrained Sparse Aperture Radar Imaging and Autofocusing. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6580–6593. [Google Scholar] [CrossRef]
- Ender, J.H.G. On compressive sensing applied to radar. Signal Process. 2010, 90, 1402–1414. [Google Scholar] [CrossRef]
- Potter, L.C.; Ertin, E.; Parker, J.T.; Cetin, M. Sparsity and compressed sensing in radar imaging. Proc. IEEE 2010, 98, 1006–1020. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, B.; Chen, J.; Hong, W. Structured Low-rank and Sparse Method for ISAR Imaging with 2-D Compressive Sampling. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5239014. [Google Scholar] [CrossRef]
- Xu, G.; Zhang, B.; Yu, H.; Chen, J. Sparse Synthetic Aperture Radar Imaging from Compressed Sensing and Machine Learning: Theories, Applications and Trends. IEEE Geosci. Remote Sens. Magazine. 2022. early access. [Google Scholar] [CrossRef]
- Qiu, W.; Zhou, J.; Fu, Q. Jointly Using Low-Rank and Sparsity Priors for Sparse Inverse Synthetic Aperture Radar Imaging. IEEE Trans. Image Process. 2020, 29, 100–115. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Li, X.; Hu, D. Enhancing ISAR Image Efficiently via Convolutional Reweighted l1 Minimization. IEEE Trans. Image Process. 2021, 30, 4291–4304. [Google Scholar] [CrossRef]
- Bi, H.; Zhang, B.; Zhu, X.X.; Hong, W.; Sun, J.; Wu, Y. L1 -Regularization-Based SAR Imaging and CFAR Detection via Complex Approximated Message Passing. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3426–3440. [Google Scholar] [CrossRef]
- Shao, S.; Zhang, L.; Wei, J.; Liu, H. Two-Dimension Joint Super-Resolution ISAR Imaging With Joint Motion Compensation and Azimuth Scaling. IEEE Geosci. Remote Sens. Lett. 2021, 18, 1411–1415. [Google Scholar] [CrossRef]
- Ding, J.; Wang, M.; Kang, H.; Wang, Z. MIMO Radar Super-Resolution Imaging Based on Reconstruction of the Measurement Matrix of Compressed Sensing. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar] [CrossRef]
- Li, W.; Zhang, W.; Zhang, Q.; Zhang, Y.; Huang, Y.; Yang, J. Simultaneous Super-Resolution and Target Detection of Forward-Looking Scanning Radar via Low-Rank and Sparsity Constrained Method. IEEE Trans. Geosci. Remote Sens. 2020, 58, 7085–7095. [Google Scholar] [CrossRef]
- Wei, Y.; Li, Y.; Ding, Z.; Wang, Y.; Zeng, T.; Long, T. SAR Parametric Super-Resolution Image Reconstruction Methods Based on ADMM and Deep Neural Network. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10197–10212. [Google Scholar] [CrossRef]
- Wu, C.; Zhang, Z.; Chen, L.; Yu, W. Super-Resolution for MIMO Array SAR 3-D Imaging Based on Compressive Sensing and Deep Neural Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2020, 13, 3109–3124. [Google Scholar] [CrossRef]
- Zhang, S.; Liu, Y.; Li, X. Fast Sparse Aperture ISAR Autofocusing and Imaging via ADMM Based Sparse Bayesian Learning. IEEE Trans. Image Process. 2020, 29, 3213–3226. [Google Scholar] [CrossRef]
- Ji, S.; Xue, Y.; Carin, L. Bayesian Compressive Sensing. IEEE Trans. Signal Process. 2008, 56, 2346–2356. [Google Scholar] [CrossRef]
- Wu, J.; Liu, F.; Jiao, L.C.; Wang, X. Compressive Sensing SAR Image Reconstruction Based on Bayesian Framework and Evolutionary Computation. IEEE Trans. Image Process. 2011, 20, 1904–1911. [Google Scholar] [CrossRef]
- Vogel, C.R.; Oman, M.E. Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans. Image Process. 1998, 7, 813–824. [Google Scholar] [CrossRef]
Left Area | Right Area | |||||||
---|---|---|---|---|---|---|---|---|
(, ) | (, ) | (, ) | (, ) | (, ) | (, 4) | (, 3) | (, 5) | (, 4) |
Carrier frequency | 30 GHz | Platform height | 4000 m |
Bandwidth | 55 MHz | Platform velocity | 84 m/s |
Number of array element | 9 | Reference slant range | 8400 m |
PRF | 2500 Hz | Synthetic aperture time | 0.82 s |
Carrier frequency | 30 GHz | Platform height | 4000 m |
Bandwidth | 55 MHz | Platform velocity | 80 m/s |
Number of array element | 9 | Reference slant range | 8000 m |
PRF | 6000 Hz | Synthetic aperture time | 1.3 s |
Beamforming | 3.23 | 6.87 | 2.95 | 9.69 | 2.23 | 3.22 | 3.23 | 6.88 | 2.95 |
Proposed method | 23.42 | 24.79 | 25.03 | 23.72 | 24.71 | 25.11 | 23.77 | 23.56 | 25.41 |
Azimuth Angle/° | Reference Slant Range | Beamforming | Proposed Method | ||||
---|---|---|---|---|---|---|---|
PSLR/dB | ISLR/dB | IRW/m | PSLR/m | ISLR/m | IRW/m | ||
−5 | −12.19 | −1.03 | 6.05 | −13.46 | −10.27 | 6.05 | |
4 | −12.94 | −1.60 | 7.43 | −13.39 | −1.96 | 7.30 | |
−1 | −12.90 | −1.75 | 10.03 | −14.53 | −12.24 | 10.03 | |
5 | −12.30 | −1.06 | 5.89 | −13.54 | −10.53 | 5.89 | |
−1 | −12.91 | −1.59 | 7.41 | −13.38 | −1.94 | 7.40 | |
3 | −12.89 | −1.70 | 9.61 | −14.30 | −11.88 | 9.95 | |
−1 | −12.24 | −1.09 | 5.95 | −13.65 | −10.79 | 5.95 | |
4 | −12.88 | −1.58 | 7.43 | −13.38 | −1.92 | 7.30 | |
−1 | −12.89 | −1.69 | 10.02 | −14.29 | −11.82 | 10.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, J.; Wang, X.; Cao, Y.; Zhang, L. Sparsity-Based Joint Array Calibration and Ambiguity Resolving for Forward-Looking Multi-Channel SAR Imagery. Remote Sens. 2023, 15, 647. https://doi.org/10.3390/rs15030647
Lu J, Wang X, Cao Y, Zhang L. Sparsity-Based Joint Array Calibration and Ambiguity Resolving for Forward-Looking Multi-Channel SAR Imagery. Remote Sensing. 2023; 15(3):647. https://doi.org/10.3390/rs15030647
Chicago/Turabian StyleLu, Jingyue, Xuhua Wang, Yunhe Cao, and Lei Zhang. 2023. "Sparsity-Based Joint Array Calibration and Ambiguity Resolving for Forward-Looking Multi-Channel SAR Imagery" Remote Sensing 15, no. 3: 647. https://doi.org/10.3390/rs15030647
APA StyleLu, J., Wang, X., Cao, Y., & Zhang, L. (2023). Sparsity-Based Joint Array Calibration and Ambiguity Resolving for Forward-Looking Multi-Channel SAR Imagery. Remote Sensing, 15(3), 647. https://doi.org/10.3390/rs15030647