Surface Soil Moisture Determination of Irrigated and Drained Agricultural Lands with the OPTRAM Method and Sentinel-2 Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Areas
2.2. Meteorological Conditions
2.3. In Situ Data
2.4. Remote Sensing Data
2.5. OPTRAM Approach
2.6. Vegetation Indices
2.7. Data Analysis
3. Results
3.1. In Situ Measurements
3.2. OPTRAM Parameters Calibration
3.3. OPTRAM Model Results
3.4. Vegetation Indices Results
4. Discussion
4.1. OPTRAM Model Application
4.2. OPTRAM Model Accuracy
4.3. OPTRAM Model Parameters
4.4. Vegetation Indices Accuracy
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
No | Index Name | Abbreviation | Equation (with S2 Bands) | Reference |
---|---|---|---|---|
1 | Normalized Multi-band Drought Index | NMDI | [54] | |
2 | Normalized Difference Water Index | NDWI | [55] | |
3 | Normalized Difference Vegetation Index | NDVI | [55] | |
4 | Normalized Difference Vegetation Index—Green/Red Ratio | NDVI_GR | [56] | |
5 | STR to OPTRAM | STR | [30] | |
6 | Bare Soil Index | BSI | [57] | |
7 | Green Chromatic Coordinate Index | GCC | [58] | |
8 | Anthocyanin Reflectance Index | ARI | [59] | |
9 | Modified Anthocyanin Reflectance Index | ARI2 | [59] | |
10 | Enhanced Vegetation Index | EVI | [60] | |
11 | Moisture Stress Index | MSI | [61] | |
12 | Modified Chlorophyll Absorption in Reflectance Index | MCARI | [62] | |
13 | NDII water content of plant canopies | NDII | [63] | |
14 | Canopy Chlorophyll Content Index | CCCI | [64] | |
15 | Plant Senescence Reflectance Index | PSRI | [65] | |
16 | Shadow Index | SI | [66] | |
17 | Normalized Soil Moisture Index | NSMI | [67] | |
18 | Normalized Difference Moisture Index | NDMI | [68] |
References
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P.; et al. Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Wolanin, A.; Camps-Valls, G.; Gómez-Chova, L.; Mateo-García, G.; van der Tol, C.; Zhang, Y.; Guanter, L. Estimating Crop Primary Productivity with Sentinel-2 and Landsat 8 Using Machine Learning Methods Trained with Radiative Transfer Simulations. Remote Sens. Environ. 2019, 225, 441–457. [Google Scholar] [CrossRef]
- Priyadarshini, K.N.; Kumar, M.; Rahaman, S.A.; Nitheshnirmal, S. A Comparative Study of Advanced Land Use/Land Cover Classification Algorithms Using Sentinel-2 Data. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2018, XLII–5, 665–670. [Google Scholar] [CrossRef]
- Abdi, A.M. Land Cover and Land Use Classification Performance of Machine Learning Algorithms in a Boreal Landscape Using Sentinel-2 Data. GIScience Remote Sens. 2020, 57, 1–20. [Google Scholar] [CrossRef]
- Thanh Noi, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2017, 18, 18. [Google Scholar] [CrossRef] [PubMed]
- Topaloğlu, R.H.; Sertel, E.; Musaoğlu, N. Assessment of Classification Accuracies of Sentinel-2 and Landsat-8 Data for Land Cover/Use Mapping. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2016, XLI-B8, 1055–1059. [Google Scholar] [CrossRef]
- Puletti, N.; Chianucci, F.; Castaldi, C. Use of Sentinel-2 for Forest Classification in Mediterranean Environments. Ann. Silvic. Res. 2018, 42, 32–38. [Google Scholar]
- Vaglio Laurin, G.; Puletti, N.; Hawthorne, W.; Liesenberg, V.; Corona, P.; Papale, D.; Chen, Q.; Valentini, R. Discrimination of Tropical Forest Types, Dominant Species, and Mapping of Functional Guilds by Hyperspectral and Simulated Multispectral Sentinel-2 Data. Remote Sens. Environ. 2016, 176, 163–176. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, W.; Xing, Y.; Hu, X.; Gong, J. Estimation of the Forest Stand Mean Height and Aboveground Biomass in Northeast China Using SAR Sentinel-1B, Multispectral Sentinel-2A, and DEM Imagery. ISPRS J. Photogramm. Remote Sens. 2019, 151, 277–289. [Google Scholar] [CrossRef]
- Kaplan, G.; Avdan, U. Mapping and Monitoring Wetlands Using Sentinel-2 Satellite Imagery. ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2017, IV-4/W4, 271–277. [Google Scholar] [CrossRef]
- Araya-López, R.A.; Lopatin, J.; Fassnacht, F.E.; Hernández, H.J. Monitoring Andean High Altitude Wetlands in Central Chile with Seasonal Optical Data: A Comparison between Worldview-2 and Sentinel-2 Imagery. ISPRS J. Photogramm. Remote Sens. 2018, 145, 213–224. [Google Scholar] [CrossRef]
- Ignar, S.; Szporak-Wasilewska, S.; Gregorczyk, M. Spatial Mapping of the Leaf Area Index Using Remote Sensing and Ground Measurements—The Biebrza National Park Case Study. Sci. Rev. Eng. Env. Sci. 2023, 32, 175–185. [Google Scholar] [CrossRef]
- Veloso, A.; Mermoz, S.; Bouvet, A.; Le Toan, T.; Planells, M.; Dejoux, J.-F.; Ceschia, E. Understanding the Temporal Behavior of Crops Using Sentinel-1 and Sentinel-2-like Data for Agricultural Applications. Remote Sens. Environ. 2017, 199, 415–426. [Google Scholar] [CrossRef]
- Letey, J. Relationship between Soil Physical Properties and Crop Production. In Advances in Soil Science; Stewart, B.A., Ed.; Advances in Soil Science; Springer New York: New York, NY, USA, 1958; Volume 1, pp. 277–294. ISBN 978-1-4612-9539-6. [Google Scholar]
- Virnodkar, S.S.; Pachghare, V.K.; Patil, V.C.; Jha, S.K. Remote Sensing and Machine Learning for Crop Water Stress Determination in Various Crops: A Critical Review. Precis. Agric. 2020, 21, 1121–1155. [Google Scholar] [CrossRef]
- Lekshmi, S.U.S.; Singh, D.N.; Baghini, M.S. A Critical Review of Soil Moisture Measurement. Measurement 2014, 54, 92–105. [Google Scholar]
- Robinson, D.A.; Campbell, C.S.; Hopmans, J.W.; Hornbuckle, B.K.; Jones, S.B.; Knight, R.; Ogden, F.; Selker, J.; Wendroth, O. Soil Moisture Measurement for Ecological and Hydrological Watershed-Scale Observatories: A Review. Vadose Zone J. 2008, 7, 358–389. [Google Scholar] [CrossRef]
- Bircher, S.; Andreasen, M.; Vuollet, J.; Vehviläinen, J.; Rautiainen, K.; Jonard, F.; Weihermüller, L.; Zakharova, E.; Wigneron, J.-P.; Kerr, Y.H. Soil Moisture Sensor Calibration for Organic Soil Surface Layers. Geosci. Instrum. Method. Data Syst. 2016, 5, 109–125. [Google Scholar] [CrossRef]
- Gnatowski, T.; Szatyłowicz, J.; Pawluśkiewicz, B.; Oleszczuk, R.; Janicka, M.; Papierowska, E.; Szejba, D. Field Calibration of TDR to Assess the Soil Moisture of Drained Peatland Surface Layers. Water 2018, 10, 1842. [Google Scholar] [CrossRef]
- Ledieu, J.; De Ridder, P.; De Clerck, P.; Dautrebande, S. A Method of Measuring Soil Moisture by Time-Domain Reflectometry. J. Hydrol. 1986, 88, 319–328. [Google Scholar] [CrossRef]
- Dirksen, C.; Dasberg, S. Improved Calibration of Time Domain Reflectometry Soil Water Content Measurements. Soil Sci. Soc. Am. J. 1993, 57, 660–667. [Google Scholar] [CrossRef]
- Malicki, M.A.; Plagge, R.; Roth, C.H. Improving the Calibration of Dielectric TDR Soil Moisture Determination Taking into Account the Solid Soil. Eur. J. Soil Sci. 1996, 47, 357–366. [Google Scholar] [CrossRef]
- Szypłowska, A.; Lewandowski, A.; Yagihara, S.; Saito, H.; Furuhata, K.; Szerement, J.; Kafarski, M.; Wilczek, A.; Majcher, J.; Woszczyk, A.; et al. Dielectric Models for Moisture Determination of Soils with Variable Organic Matter Content. Geoderma 2021, 401, 115288. [Google Scholar] [CrossRef]
- Topp, G.C.; Davis, J.L.; Annan, A.P. Electromagnetic Determination of Soil Water Content: Measurements in Coaxial Transmission Lines. Water Resour. Res. 1980, 16, 574–582. [Google Scholar] [CrossRef]
- Szypłowska, A.; Lewandowski, A.; Kafarski, M.; Szerement, J.; Wilczek, A.; Budzeń, M.; Majcher, J.; Skierucha, W. Influence of Temperature on Soil Dielectric Spectra in the 20 MHz–3 GHz Frequency Range. IEEE Trans. Geosci. Remote Sens. 2023, 61, 1–10. [Google Scholar] [CrossRef]
- Roth, C.H.; Malicki, M.A.; Plagge, R. Empirical Evaluation of the Relationship between Soil Dielectric Constant and Volumetric Water Content as the Basis for Calibrating Soil Moisture Measurements by TDR. J. Soil Sci. 1992, 43, 1–13. [Google Scholar] [CrossRef]
- Yu, C.; Warrick, A.W.; Conklin, M.H.; Young, M.H.; Zreda, M. Two- and Three-Parameter Calibrations of Time Domain Reflectometry for Soil Moisture Measurement. Water Resour. Res. 1997, 33, 2417–2421. [Google Scholar] [CrossRef]
- El Hajj, M.; Baghdadi, N.; Zribi, M.; Bazzi, H. Synergic Use of Sentinel-1 and Sentinel-2 Images for Operational Soil Moisture Mapping at High Spatial Resolution over Agricultural Areas. Remote Sens. 2017, 9, 1292. [Google Scholar] [CrossRef]
- Bousbih, S.; Zribi, M.; El Hajj, M.; Baghdadi, N.; Lili-Chabaane, Z.; Gao, Q.; Fanise, P. Soil Moisture and Irrigation Mapping in A Semi-Arid Region, Based on the Synergetic Use of Sentinel-1 and Sentinel-2 Data. Remote Sens. 2018, 10, 1953. [Google Scholar] [CrossRef]
- Sadeghi, M.; Babaeian, E.; Tuller, M.; Jones, S.B. The Optical Trapezoid Model: A Novel Approach to Remote Sensing of Soil Moisture Applied to Sentinel-2 and Landsat-8 Observations. Remote Sens. Environ. 2017, 198, 52–68. [Google Scholar] [CrossRef]
- Sadeghi, M.; Jones, S.B.; Philpot, W.D. A Linear Physically-Based Model for Remote Sensing of Soil Moisture Using Short Wave Infrared Bands. Remote Sens. Environ. 2015, 164, 66–76. [Google Scholar] [CrossRef]
- Ambrosone, M.; Matese, A.; Di Gennaro, S.F.; Gioli, B.; Tudoroiu, M.; Genesio, L.; Miglietta, F.; Baronti, S.; Maienza, A.; Ungaro, F.; et al. Retrieving Soil Moisture in Rainfed and Irrigated Fields Using Sentinel-2 Observations and a Modified OPTRAM Approach. Int. J. Appl. Earth Obs. Geoinf. 2020, 89, 102113. [Google Scholar] [CrossRef]
- Kanecka-Geszke, E.; Bąk, B.; Bolewski, T.; Kaca, E. Concept and Implementation of the Polish Innovative Agro-Hydro-Meteorological Monitoring (AgHMM) in INOMEL Project. J. Water Land Dev. 2021, 51, 256–264. [Google Scholar] [CrossRef]
- Kaca, E.; Kubrak, J.; Bus, A.; Gnatowski, T.; Oleszczuk, R.; Brandyk, A.; Papierowska, E.; Stańczyk, T.; Szatyłowicz, J.; Szejba, D.; et al. Operacyjne Sterowanie Procesem Nawodnień Podsiąkowych i Odwodnień—Komputerowy System Wspomagania Decyzji Wraz z Przykładami Zastosowania; Kaca, E., Ed.; Bogucki Wydawnictwo Naukowe: Poznań, Poland, 2020; ISBN 978-83-7986-335-8. [Google Scholar]
- Bastiaanssen, W.G.M.; Molden, D.J.; Makin, I.W. Remote Sensing for Irrigated Agriculture: Examples from Research and Possible Applications. Agric. Water Manag. 2000, 46, 137–155. [Google Scholar] [CrossRef]
- Hillel, D. Soil Moisture and Seed Germination. In Water Deficits and Plant Growth; Kozlowski, T.T., Ed.; Academic Press: New York, NY, USA; London, UK, 1972; Volume 3, pp. 65–89. [Google Scholar]
- Institute of Meteorology and Water Management (IMGW—PIB). Available online: https://danepubliczne.imgw.pl (accessed on 7 July 2019).
- Kasperska-Wołowicz, W.; Łabędzki, L. Climatic and Agricultural Water Balance for Grasslands in Poland Using the Penman-Monteith Method. Ann. Wars. Agric. Univ. Land Reclam. 2006, 37, 93–100. [Google Scholar]
- Łabędzki, L. Irrigation in Poland–Current Status after Reforms in Agriculture and Future Development. J. Water Land Dev. 2007, 11, 3–16. [Google Scholar] [CrossRef]
- Skierucha, W.; Wilczek, A.; Szypłowska, A.; Sławiński, C.; Lamorski, K. A TDR-Based Soil Moisture Monitoring System with Simultaneous Measurement of Soil Temperature and Electrical Conductivity. Sensors 2012, 12, 13545–13566. [Google Scholar] [CrossRef] [PubMed]
- Delta-T Devices. ThetaProbe Soil Moisture Sensor, Type ML2x, User Manual, ML2x-UM-1.21; Delta-T Devices: Cambridge, UK, 1999. [Google Scholar]
- Flint, A.L.; Flint, L.E. Particle Density. In Methods of Soil Analysis: Part 4 Physical Methods; Wiley Online Library: Hoboken, NJ, USA, 2002; Volume 5, pp. 229–240. [Google Scholar]
- Grossman, R.B.; Reinsch, T.G. 2.1 Bulk Density and Linear Extensibility. In SSSA Book Series; Dane, J.H., Clarke Topp, G., Eds.; Soil Science Society of America: Madison, WI, USA, 2018; pp. 201–228. ISBN 978-0-89118-893-3. [Google Scholar]
- Babaeian, E.; Sadeghi, M.; Franz, T.E.; Jones, S.; Tuller, M. Mapping Soil Moisture with the OPtical TRApezoid Model (OPTRAM) Based on Long-Term MODIS Observations. Remote Sens. Environ. 2018, 211, 425–440. [Google Scholar] [CrossRef]
- Chen, M.; Zhang, Y.; Yao, Y.; Lu, J.; Pu, X.; Hu, T.; Wang, P. Evaluation of the OPTRAM Model to Retrieve Soil Moisture in the Sanjiang Plain of Northeast China. Earth Space Sci. 2020, 7, e2020EA001108. [Google Scholar] [CrossRef]
- Wojtaszek, M.V.; Abdurahmanov, I. Crop Water Condition Mapping by Optical Remote Sensing. Int. J. Geoinform. 2021, 17, 11–17. [Google Scholar] [CrossRef]
- Hassanpour, R.; Zarehaghi, D.; Neyshabouri, M.R.; Feizizadeh, B.; Rahmati, M. Modification on Optical Trapezoid Model for Accurate Estimation of Soil Moisture Content in a Maize Growing Field. J. Appl. Rem. Sens. 2020, 14, 034519. [Google Scholar] [CrossRef]
- Sinshaw, B.G.; Moges, M.A.; Tilahun, S.A.; Dokou, Z.; Moges, S.; Anagnostou, E.; Eshete, D.G.; Kindie, A.T.; Bekele, E.; Asese, M. Integration of SWAT and Remote Sensing Techniques to Simulate Soil Moisture in Data Scarce Micro-Watersheds: A Case of Awramba Micro-Watershed in the Upper Blue Nile Basin, Ethiopia. In Advances of Science and Technology, Proceedings of the 7th EAI International Conference, ICAST 2019, Bahir Dar, Ethiopia, 2–4 August 2019; Proceedings 7; Springer: Berlin/Heidelberg, Germany, 2020; pp. 294–314. [Google Scholar]
- Mokhtari, A. OPTRAM-ET: A Novel Approach to Remote Sensing of Actual Evapotranspiration Applied to Sentinel-2 and Landsat-8 Observations. Remote Sens. Environ. 2023, 286, 113443. [Google Scholar] [CrossRef]
- Burdun, I.; Bechtold, M.; Sagris, V.; Komisarenko, V.; De Lannoy, G.; Mander, Ü. A Comparison of Three Trapezoid Models Using Optical and Thermal Satellite Imagery for Water Table Depth Monitoring in Estonian Bogs. Remote Sens. 2020, 12, 1980. [Google Scholar] [CrossRef]
- Effati, M.; Bahrami, H.-A.; Gohardoust, M.; Babaeian, E.; Tuller, M. Application of Satellite Remote Sensing for Estimation of Dust Emission Probability in the Urmia Lake Basin in Iran. Soil Sci. Soc. Am. J. 2019, 83, 993–1002. [Google Scholar] [CrossRef]
- Acharya, U.; Daigh, A.L.M.; Oduor, P.G. Soil Moisture Mapping with Moisture-Related Indices, OPTRAM, and an Integrated Random Forest-OPTRAM Algorithm from Landsat 8 Images. Remote Sens. 2022, 14, 3801. [Google Scholar] [CrossRef]
- Sun, H.; Liu, H.; Ma, Y.; Xia, Q. Optical Remote Sensing Indexes of Soil Moisture: Evaluation and Improvement Based on Aircraft Experiment Observations. Remote Sens. 2021, 13, 4638. [Google Scholar] [CrossRef]
- Wang, L.; Qu, J.J. NMDI: A Normalized Multi-Band Drought Index for Monitoring Soil and Vegetation Moisture with Satellite Remote Sensing. Geophys. Res. Lett. 2007, 34, L20405. [Google Scholar] [CrossRef]
- McFeeters, S.K. The Use of the Normalized Difference Water Index (NDWI) in the Delineation of Open Water Features. Int. J. Remote Sens. 1996, 17, 1425–1432. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a Green Channel in Remote Sensing of Global Vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Rikimaru, A.; Roy, P.S.; Miyatake, S. Tropical Forest Cover Density Mapping. Trop. Ecol. 2002, 43, 39–47. [Google Scholar]
- Gómez-Giráldez, P.J.; Pérez-Palazón, M.J.; Polo, M.J.; González-Dugo, M.P. Monitoring Grass Phenology and Hydrological Dynamics of an Oak–Grass Savanna Ecosystem Using Sentinel-2 and Terrestrial Photography. Remote Sens. 2020, 12, 600. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Chivkunova, O.B.; Merzlyak, M.N. Nondestructive Estimation of Anthocyanins and Chlorophylls in Anthocyanic Leaves. Am. J. Bot. 2009, 96, 1861–1868. [Google Scholar] [CrossRef] [PubMed]
- Somvanshi, S.S.; Kumari, M. Comparative Analysis of Different Vegetation Indices with Respect to Atmospheric Particulate Pollution Using Sentinel Data. Appl. Comput. Geosci. 2020, 7, 100032. [Google Scholar] [CrossRef]
- Dotzler, S.; Hill, J.; Buddenbaum, H.; Stoffels, J. The Potential of EnMAP and Sentinel-2 Data for Detecting Drought Stress Phenomena in Deciduous Forest Communities. Remote Sens. 2015, 7, 14227–14258. [Google Scholar] [CrossRef]
- Wu, C.; Niu, Z.; Tang, Q.; Huang, W. Estimating Chlorophyll Content from Hyperspectral Vegetation Indices: Modeling and Validation. J. Agric. Meteorol. 2008, 148, 1230–1241. [Google Scholar] [CrossRef]
- Yilmaz, M.T.; Hunt, E.R.; Jackson, T.J. Remote Sensing of Vegetation Water Content from Equivalent Water Thickness Using Satellite Imagery. Remote Sens. Environ. 2008, 112, 2514–2522. [Google Scholar] [CrossRef]
- Fitzgerald, G.; Rodriguez, D.; O’Leary, G. Measuring and Predicting Canopy Nitrogen Nutrition in Wheat Using a Spectral Index—The Canopy Chlorophyll Content Index (CCCI). Field Crop. Res. 2010, 116, 318–324. [Google Scholar] [CrossRef]
- Sims, D.A.; Gamon, J.A. Relationships between Leaf Pigment Content and Spectral Reflectance across a Wide Range of Species, Leaf Structures and Developmental Stages. Remote Sens. Environ. 2002, 81, 337–354. [Google Scholar] [CrossRef]
- Yang, X.; Qin, Q.; Grussenmeyer, P.; Koehl, M. Urban Surface Water Body Detection with Suppressed Built-up Noise Based on Water Indices from Sentinel-2 MSI Imagery. Remote Sens. Environ. 2018, 219, 259–270. [Google Scholar] [CrossRef]
- Haubrock, S.-N.; Chabrillat, S.; Lemmnitz, C.; Kaufmann, H. Surface Soil Moisture Quantification Models from Reflectance Data under Field Conditions. Int. J. Remote Sens. 2008, 29, 3–29. [Google Scholar] [CrossRef]
- Gao, B.-C. NDWI—A Normalized Difference Water Index for Remote Sensing of Vegetation Liquid Water from Space. Remote Sens. Environ. 1996, 58, 257–266. [Google Scholar] [CrossRef]
Parameter, Unit | 1991–2020 1 | 2019 | |||
---|---|---|---|---|---|
Bydgoszcz | Warsaw | Czarny Rów | Grabów | Troszyn | |
Air temperature, °C | 15.8 | 15.7 | 16.1 | 16.5 | 16.9 |
Precipitation, mm | 317 | 348 | 236 | 306 | 212 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stańczyk, T.; Kasperska-Wołowicz, W.; Szatyłowicz, J.; Gnatowski, T.; Papierowska, E. Surface Soil Moisture Determination of Irrigated and Drained Agricultural Lands with the OPTRAM Method and Sentinel-2 Observations. Remote Sens. 2023, 15, 5576. https://doi.org/10.3390/rs15235576
Stańczyk T, Kasperska-Wołowicz W, Szatyłowicz J, Gnatowski T, Papierowska E. Surface Soil Moisture Determination of Irrigated and Drained Agricultural Lands with the OPTRAM Method and Sentinel-2 Observations. Remote Sensing. 2023; 15(23):5576. https://doi.org/10.3390/rs15235576
Chicago/Turabian StyleStańczyk, Tomasz, Wiesława Kasperska-Wołowicz, Jan Szatyłowicz, Tomasz Gnatowski, and Ewa Papierowska. 2023. "Surface Soil Moisture Determination of Irrigated and Drained Agricultural Lands with the OPTRAM Method and Sentinel-2 Observations" Remote Sensing 15, no. 23: 5576. https://doi.org/10.3390/rs15235576
APA StyleStańczyk, T., Kasperska-Wołowicz, W., Szatyłowicz, J., Gnatowski, T., & Papierowska, E. (2023). Surface Soil Moisture Determination of Irrigated and Drained Agricultural Lands with the OPTRAM Method and Sentinel-2 Observations. Remote Sensing, 15(23), 5576. https://doi.org/10.3390/rs15235576