Glacial Lake Outburst Flood Monitoring and Modeling through Integrating Multiple Remote Sensing Methods and HEC-RAS
Abstract
:1. Introduction
2. Study Area and Datasets
2.1. Optical Images
2.2. SAR Data
2.3. Glacier Thickness Change Data
2.4. DEM Data
2.5. Meteorological Data
3. Method
3.1. Lake Area and Volume Change Mapping with Optical Images
3.2. Deformation Velocity and Time Series of Lake Dam and Glacier Tongue with SBAS-InSAR Method
3.3. GLOF Modeling with HEC-RAS
3.4. Dam Breach Hydrography
3.5. GLOF Triggering Modeling and Sensitivity Analysis
4. Results and Discussions
4.1. Gangxi Co and Galong Co Expansion
4.2. Deformation Velocity and Time Series of Glacial Lake Dam
4.3. The Source Zones of Glacier Mass Movements and Thickness Change
4.4. Hazard Analysis of GLOFs
4.5. GLOF Modeling
4.6. Uncertainties and Future Direction
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gardner, A.S.; Moholdt, G.; Cogley, J.G.; Wouters, B.; Arendt, A.A.; Wahr, J.; Berthier, E.; Hock, R.; Pfeffer, W.T.; Kaser, G. A reconciled estimate of glacier contributions to sea level rise: 2003 to 2009. Science 2013, 340, 852–857. [Google Scholar] [CrossRef] [PubMed]
- Kääb, A.; Berthier, E.; Nuth, C.; Gardelle, J.; Arnaud, Y. Contrasting patterns of early twenty-first-century glacier mass change in the Himalayas. Nature 2012, 488, 495–498. [Google Scholar] [CrossRef] [PubMed]
- King, O.; Quincey, D.J.; Carrivick, J.L.; Rowan, A.V. Spatial variability in mass loss of glaciers in the Everest region, central Himalayas, between 2000 and 2015. Cryosphere 2017, 11, 407–426. [Google Scholar] [CrossRef]
- Richardson, S.D.; Reynolds, J.M. An overview of glacial hazards in the Himalayas. Quat. Int. 2000, 65, 31–47. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Ke, L.; Richards, K.S. Remote sensing of alpine lake water environment changes on the Tibetan Plateau and surroundings: A review. ISPRS J. Photogramm. Remote Sens. 2014, 92, 26–37. [Google Scholar] [CrossRef]
- Wang, W.; Yao, T.; Gao, Y.; Yang, X.; Kattel, D.B. A first-order method to identify potentially dangerous glacial lakes in a region of the southeastern Tibetan Plateau. Mt. Res. Dev. 2011, 31, 122–130. [Google Scholar] [CrossRef]
- Fujita, K.; Sakai, A.; Nuimura, T.; Yamaguchi, S.; Sharma, R.R. Recent changes in Imja Glacial Lake and its damming moraine in the Nepal Himalaya revealed by in situ surveys and multi-temporal ASTER imagery. Environ. Res. Lett. 2009, 4, 045205. [Google Scholar] [CrossRef]
- Emmer, A. Glacier retreat and glacial lake outburst floods (GLOFs). In Oxford Research Encyclopedia of Natural Hazard Science; Oxford University Press: Oxford, UK, 2017. [Google Scholar]
- Emmer, A.; Cochachin, A. The causes and mechanisms of moraine-dammed lake failures in the Cordillera Blanca, North American Cordillera, and Himalayas. AUC GEOGRAPHICA 2013, 48, 5–15. [Google Scholar] [CrossRef]
- Yang, L.; Lu, Z.; Zhao, C.; Kim, J.; Yang, C.; Wang, B.; Liu, X.; Wang, Z. Analyzing the triggering factors of glacial lake outburst floods with SAR and optical images: A case study in Jinweng Co, Tibet, China. Landslides 2022, 19, 855–864. [Google Scholar] [CrossRef]
- Huggel, C.; Zgraggen-Oswald, S.; Haeberli, W.; Kääb, A.; Polkvoj, A.; Galushkin, I.; Evans, S. The 2002 rock/ice avalanche at Kolka/Karmadon, Russian Caucasus: Assessment of extraordinary avalanche formation and mobility, and application of QuickBird satellite imagery. Nat. Hazard. Earth Syst. Sci. 2005, 5, 173–187. [Google Scholar] [CrossRef]
- Shugar, D.H.; Jacquemart, M.; Shean, D.; Bhushan, S.; Upadhyay, K.; Sattar, A.; Schwanghart, W.; McBride, S.; De Vries, M.V.W.; Mergili, M. A massive rock and ice avalanche caused the 2021 disaster at Chamoli, Indian Himalaya. Science 2021, 373, 300–306. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Bolch, T.; Yao, T.; Rounce, D.R.; Chen, W.; Veh, G.; King, O.; Allen, S.K.; Wang, M.; Wang, W. Underestimated mass loss from lake-terminating glaciers in the greater Himalaya. Nat. Geosci. 2023, 16, 333–338. [Google Scholar] [CrossRef]
- Wang, F.; Harindintwali, J.D.; Wei, K.; Shan, Y.; Mi, Z.; Costello, M.J.; Grunwald, S.; Feng, Z.; Wang, F.; Guo, Y. Climate change: Strategies for mitigation and adaptation. Innov. Geosci. 2023, 1, 100015. [Google Scholar] [CrossRef]
- Wei, K.; Ouyang, C.; Duan, H.; Li, Y.; Chen, M.; Ma, J.; An, H.; Zhou, S. Reflections on the catastrophic 2020 Yangtze River Basin flooding in southern China. Innovation 2020, 1, 100038. [Google Scholar] [CrossRef]
- Li, D.; Shangguan, D.; Wang, X.; Ding, Y.; Su, P.; Liu, R.; Wang, M. Expansion and hazard risk assessment of glacial lake Jialong Co in the central Himalayas by using an unmanned surface vessel and remote sensing. Sci. Total Environ. 2021, 784, 147249. [Google Scholar] [CrossRef]
- Allen, S.K.; Zhang, G.; Wang, W.; Yao, T.; Bolch, T. Potentially dangerous glacial lakes across the Tibetan Plateau revealed using a large-scale automated assessment approach. Sci. Bull. 2019, 64, 435–445. [Google Scholar] [CrossRef]
- Wang, S.; Che, Y.; Xinggang, M. Integrated risk assessment of glacier lake outburst flood (GLOF) disaster over the Qinghai–Tibetan Plateau (QTP). Landslides 2020, 17, 2849–2863. [Google Scholar] [CrossRef]
- AWAL, R.; NAKAGAWA, H.; FUJITA, M.; KAWAIKE, K.; BABA, Y.; ZHANG, H. Experimental study on glacial lake outburst floods due to waves overtopping and erosion of moraine dam. Kyoto Univ. Res. Inf. Repos. B 2010, 53, 583–594. [Google Scholar]
- Cheng, S.; Zhao, W.; Yin, Z. PS-InSAR analysis of collapsed dam and extraction of flood inundation areas in laos using sentinel-1 SAR images. In Proceedings of the 2019 IEEE 4th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chengdu, China, 20–22 December 2019; pp. 2605–2608. [Google Scholar]
- Aswathi, J.; Kumar, R.B.; Oommen, T.; Bouali, E.; Sajinkumar, K. InSAR as a tool for monitoring hydropower projects: A review. Energy Geosci. 2022, 3, 160–171. [Google Scholar] [CrossRef]
- Wangchuk, S.; Bolch, T.; Robson, B.A. Monitoring glacial lake outburst flood susceptibility using Sentinel-1 SAR data, Google Earth Engine, and persistent scatterer interferometry. Remote Sens. Environ. 2022, 271, 112910. [Google Scholar] [CrossRef]
- Lu, Z.; Kim, J. A framework for studying hydrology-driven landslide hazards in northwestern US using satellite InSAR, precipitation and soil moisture observations: Early results and future directions. GeoHazards 2021, 2, 17–40. [Google Scholar] [CrossRef]
- Hu, X.; Wang, T.; Pierson, T.C.; Lu, Z.; Kim, J.; Cecere, T.H. Detecting seasonal landslide movement within the Cascade landslide complex (Washington) using time-series SAR imagery. Remote Sens. Environ. 2016, 187, 49–61. [Google Scholar] [CrossRef]
- Honda, K.; Nakanishi, T.; Haraguchi, M.; Mushiake, N.; Iwasaki, T.; Satoh, H.; Kobori, T.; Yamaguchi, Y. Application of exterior deformation monitoring of dams by DInSAR analysis using ALOS PALSAR. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 6649–6652. [Google Scholar]
- Voege, M.; Frauenfelder, R.; Larsen, Y. Displacement monitoring at Svartevatn dam with interferometric SAR. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 3895–3898. [Google Scholar]
- Darvishi, M.; Destouni, G.; Jaramillo, F. Lake Mead and Hoover dam monitoring in Nevada and Arizona states, USA using InSAR. In Proceedings of the EGU General Assembly Conference Abstracts, online, 4–8 May 2020; p. 21582. [Google Scholar]
- Sattar, A.; Goswami, A.; Kulkarni, A.V.; Emmer, A.; Haritashya, U.K.; Allen, S.; Frey, H.; Huggel, C. Future glacial lake outburst flood (GLOF) hazard of the South Lhonak Lake, Sikkim Himalaya. Geomorphology 2021, 388, 107783. [Google Scholar] [CrossRef]
- Sattar, A.; Allen, S.; Mergili, M.; Haeberli, W.; Frey, H.; Kulkarni, A.V.; Haritashya, U.K.; Huggel, C.; Goswami, A.; Ramsankaran, R. Modeling Potential Glacial Lake Outburst Flood Process Chains and Effects From Artificial Lake-Level Lowering at Gepang Gath Lake, Indian Himalaya. J. Geophys. Res. Earth Surf. 2023, 128, e2022JF006826. [Google Scholar] [CrossRef]
- Schneider, D.; Huggel, C.; Cochachin, A.; Guillén, S.; García, J. Mapping hazards from glacier lake outburst floods based on modelling of process cascades at Lake 513, Carhuaz, Peru. Adv. Geosci. 2014, 35, 145–155. [Google Scholar] [CrossRef]
- Wang, W.; Gao, Y.; Anacona, P.I.; Lei, Y.; Xiang, Y.; Zhang, G.; Li, S.; Lu, A. Integrated hazard assessment of Cirenmaco glacial lake in Zhangzangbo valley, Central Himalayas. Geomorphology 2018, 306, 292–305. [Google Scholar] [CrossRef]
- Chen, N.S.; Hu, G.S.; Deng, W.; Khanal, N.; Zhu, Y.; Han, D. On the water hazards in the trans-boundary Kosi River basin. Nat. Hazard. Earth Syst. Sci. 2013, 13, 795–808. [Google Scholar] [CrossRef]
- Cook, K.L.; Andermann, C.; Gimbert, F.; Adhikari, B.R.; Hovius, N. Glacial lake outburst floods as drivers of fluvial erosion in the Himalaya. Science 2018, 362, 53–57. [Google Scholar] [CrossRef]
- Shijin, W.; Shitai, J. Evolution and outburst risk analysis of moraine-dammed lakes in the central Chinese Himalaya. J. Earth Syst. Sci. 2015, 124, 567–576. [Google Scholar] [CrossRef]
- Qi, M.; Liu, S.; Gao, Y. Zhangmu and Gyirong ports under the threat of glacial lake outburst flood. Sci. Cold Arid. Reg. 2020, 12, 461–476. [Google Scholar]
- Allen, S.K.; Sattar, A.; King, O.; Zhang, G.; Bhattacharya, A.; Yao, T.; Bolch, T. Glacial lake outburst flood hazard under current and future conditions: Worst-case scenarios in a transboundary Himalayan basin. Nat. Hazard. Earth Syst. Sci. 2022, 22, 3765–3785. [Google Scholar] [CrossRef]
- Qi, M.; Liu, S.; Wu, K.; Zhu, Y.; Xie, F.; Jin, H.; Gao, Y.; Yao, X. Improving the accuracy of glacial lake volume estimation: A case study in the Poiqu basin, central Himalayas. J. Hydrol. 2022, 610, 127973. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, W.; Gao, T.; An, B. Simulation and assessment of future glacial lake outburst floods in the Poiqu River Basin, Central Himalayas. Water 2021, 13, 1376. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Xie, H.; Wang, W.; Yang, W. An inventory of glacial lakes in the Third Pole region and their changes in response to global warming. Glob. Planet. Chang. 2015, 131, 148–157. [Google Scholar] [CrossRef]
- Maurer, J.; Rupper, S.; Schaefer, J. High Mountain Asia Gridded Glacier Thickness Change from Multi-Sensor DEMs, Version 1; NASA National Snow and Ice Data Center Distributed Active Archive Center: Boulder, CO, USA, 2018; Volume 10. [Google Scholar]
- Shean, D.E.; Bhushan, S.; Montesano, P.; Rounce, D.R.; Arendt, A.; Osmanoglu, B. A systematic, regional assessment of high mountain Asia glacier mass balance. Front. Earth Sci. 2020, 7, 363. [Google Scholar] [CrossRef]
- Hooper, A.; Zebker, H.A. Phase unwrapping in three dimensions with application to InSAR time series. JOSA A 2007, 24, 2737–2747. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Froehlich, D.C. Peak outflow from breached embankment dam. J. Water Resour. Plan. Manag. 1995, 121, 90–97. [Google Scholar] [CrossRef]
- Wahl, T.L. Uncertainty of predictions of embankment dam breach parameters. J. Hydraul. Eng. 2004, 130, 389–397. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, L.M. Breaching parameters for earth and rockfill dams. J. Geotech. Geoenviron. Eng. 2009, 135, 1957–1970. [Google Scholar] [CrossRef]
- Fujita, K.; Sakai, A.; Takenaka, S.; Nuimura, T.; Surazakov, A.; Sawagaki, T.; Yamanokuchi, T. Potential flood volume of Himalayan glacial lakes. Nat. Hazard. Earth Syst. Sci. 2013, 13, 1827–1839. [Google Scholar] [CrossRef]
Datasets | Time | Pixel Spacing (m) | # of Images | Objectives |
---|---|---|---|---|
PlanetScope RapidEye | 2010–2020 | 3–5 | 8 | Lake area changes |
ALOS-1 PALSAR-1 | 2007–2011 | 4.68 × 3.16 (range × azimuth) | 20 | Deformation of lake dam and glacier tongue |
ALOS-2 PALSAR-2 | 2014–2020 | 4.29 × 3.15 (range × azimuth) | 23 | Deformation of lake dam and glacier tongue |
HMA-DEM | 2002–2016 | 8 × 8 | 1 | GLOF modeling |
Glacier thickness data | 1975–2000/2000–2016 | 30 × 30 | 2 | Glacier thickness change |
SRTM-DEM | 2000 | 30 | - | InSAR processing |
Hazard Analysis | Galong Co | Assessment Methods and Sources |
---|---|---|
Atmospheric | ||
Temperature | Increasing | Climate observation, Nyalam station (Figure 3) |
Precipitation | Increasing | |
Cryospheric | ||
Lake size (area and volume) | Expansion of lake area and volume | Planet-based lake area mapping and area–volume scaling (Figure 5) [13] |
Glacier thickness | Glacier thinning trend | DEM differencing products (Figure 7) [40] |
Glacier avalanche potential | Moderate potential | HMA DEM slope analyses, glacier thinning and deformation on avalanche zones (Figure 7 and Figure 8) |
Geomorphic | ||
Dam type | Moraine | Google earth |
Downstream slope of dam | HMA DEM analyses | |
Dam stability | Instability: deformation velocity and time series | SBAS-InSAR (Figure 6) |
Breach Scenarios | Breach Width (m) | Breach Formation Time (h) | Peak Discharge (m3/s) |
---|---|---|---|
D1-V1 | 229 | 1.80 | 55742.8 |
D2-V2 | 224 | 1.89 | 47317.9 |
D3-V3 | 214 | 2.01 | 36615.1 |
Routing Location | Breach Scenarios | ||
---|---|---|---|
D1-V1 | D2-V2 | D3-V3 | |
Peak discharge over Profile C (m3/s) | 50,625.1 | 37,697.2 | 31,015.4 |
Max flow depth at Location C (m) | 46.1 | 41.4 | 37.7 |
Peak discharge over Profile D (m3/s) | 48,454.9 | 37,483.7 | 30,963.5 |
Max flow depth at Location D (m) | 40.0 | 36.0 | 32.0 |
Peak discharge over Profile E (m3/s) | 40,923.3 | 32,587.2 | 26,658.7 |
Max flow depth at Location E (m) | 34.8 | 30.3 | 26.8 |
Peak discharge over Profile F (m3/s) | 35,097.8 | 26,667.2 | 21,748.6 |
Max flow depth at Location F (m) | 23.8 | 18.0 | 15.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, L.; Lu, Z.; Ouyang, C.; Zhao, C.; Hu, X.; Zhang, Q. Glacial Lake Outburst Flood Monitoring and Modeling through Integrating Multiple Remote Sensing Methods and HEC-RAS. Remote Sens. 2023, 15, 5327. https://doi.org/10.3390/rs15225327
Yang L, Lu Z, Ouyang C, Zhao C, Hu X, Zhang Q. Glacial Lake Outburst Flood Monitoring and Modeling through Integrating Multiple Remote Sensing Methods and HEC-RAS. Remote Sensing. 2023; 15(22):5327. https://doi.org/10.3390/rs15225327
Chicago/Turabian StyleYang, Liye, Zhong Lu, Chaojun Ouyang, Chaoying Zhao, Xie Hu, and Qin Zhang. 2023. "Glacial Lake Outburst Flood Monitoring and Modeling through Integrating Multiple Remote Sensing Methods and HEC-RAS" Remote Sensing 15, no. 22: 5327. https://doi.org/10.3390/rs15225327
APA StyleYang, L., Lu, Z., Ouyang, C., Zhao, C., Hu, X., & Zhang, Q. (2023). Glacial Lake Outburst Flood Monitoring and Modeling through Integrating Multiple Remote Sensing Methods and HEC-RAS. Remote Sensing, 15(22), 5327. https://doi.org/10.3390/rs15225327