Spatiotemporal Vegetation Variability and Linkage with Snow-Hydroclimatic Factors in Western Himalaya Using Remote Sensing and Google Earth Engine (GEE)
Abstract
:1. Introduction
2. Study Area
3. Geospatial Data and Methods
3.1. Forest and Grassland
3.2. Hydroclimatic Datasets
3.3. MODIS Daily Cloud-Free Snow Cover Product
3.4. Method of Evaluation
3.5. Geostatistical Analysis
4. Results & Analysis
4.1. Annual Spatiotemporal Variation in Forest and Grassland
4.2. Inter- and Intra-Annual Variation of Snow-Hydrolytic Factors
4.3. Temporal Variation and Trends Analysis
4.4. Spatiotemporal Change in Forest and Grassland
4.5. The Relationship between Forest and Grassland with Snow-Hydroclimatic Factors
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
a.s.l. | Above Sea Level |
ASTER | Advanced Spaceborne Thermal Emission and Reflection Radiometer |
AWiFS | Advanced Wide Field Sensor |
CARI | Chlorophyll Absorption Ratio Index |
DVI | Difference Vegetation Index |
ET | Evapotranspiration |
FSI | Forest Survey of India |
GEE | Google Earth Engine |
ha | Hectares |
HP | Himachal Pradesh |
IGBP | International Geosphere-Biosphere Program |
IHR | Indian Himalayan Region |
LST | Land Surface Temperature |
MCARI | Modified Chlorophyll Absorption Ratio Index |
M-K | Mann–Kendall |
MODIS | Moderate Resolution Imaging Spectroradiometer |
NDVI | Normalized Difference Vegetation Index |
PPT | Precipitation |
RSVI | Renormalized Difference Vegetation Index |
SCA | Snow Cover Area |
TGDVI | Three-band Gradient Difference Vegetation Index |
TRMM | Tropical Rainfall Measuring Mission |
TVI | Triangular Vegetation Index |
References
- Hamid, M.; Khuroo, A.A.; Malik, A.H.; Ahmad, R.; Singh, C.P.; Dolezal, J.; Haq, S.M. Early Evidence of Shifts in Alpine Summit Vegetation: A Case Study from Kashmir Himalaya. Front. Plant Sci. 2020, 11, 421. [Google Scholar] [CrossRef]
- Srivastava, A.; Rodriguez, J.F.; Saco, P.M.; Kumari, N.; Yetemen, O. Global Analysis of Atmospheric Transmissivity Using Cloud Cover, Aridity and Flux Network Datasets. Remote Sens. 2021, 13, 1716. [Google Scholar] [CrossRef]
- Kumar, U.; Sahoo, B.; Chatterjee, C.; Raghuwanshi, N.S. Evaluation of Simplified Surface Energy Balance Index (S-SEBI) Method for Estimating Actual Evapotranspiration in Kangsabati Reservoir Command Using Landsat 8 Imagery. J. Indian Soc. Remote Sens. 2020, 48, 1421–1432. [Google Scholar] [CrossRef]
- Negi, S.P. Forest Cover in Indian Himalayan States-An Overview. Indian J. For. 2009, 32, 1–5. [Google Scholar]
- Brown, S.; Gillespie, A.J.R.; Lugo, A.E. Biomass Estimation Methods for Tropical Forests with Applications to Forest Inventory Data. For. Sci. 1989, 35, 881–902. [Google Scholar]
- Tiwari, A.K. Mapping Forest Biomass through Digital Processing of IRS-IA Data. Int. J. Remote Sens. 1994, 15, 1849–1866. [Google Scholar] [CrossRef]
- Ma, X.; Tian, L.; Jiang, Y.; Liang, J.; Tian, J.; Zhou, J.; Shao, C.; Yang, K. Large Uncertainties in Precipitation Exert Considerable Impact on Land Surface Temperature Modeling over the Tibetan Plateau. J. Geophys. Res. Atmos. 2023, 128, e2022JD037615. [Google Scholar] [CrossRef]
- Valjarević, A.; Djekić, T.; Stevanović, V.; Ivanović, R.; Jandziković, B. GIS Numerical and Remote Sensing Analyses of Forest Changes in the Toplica Region for the Period of 1953–2013. Appl. Geogr. 2018, 92, 131–139. [Google Scholar] [CrossRef]
- Barmpoutis, P.; Papaioannou, P.; Dimitropoulos, K.; Grammalidis, N. A Review on Early Forest Fire Detection Systems Using Optical Remote Sensing. Sensors 2020, 20, 6442. [Google Scholar] [CrossRef]
- Ha, T.V.; Uereyen, S.; Kuenzer, C. Agricultural Drought Conditions over Mainland Southeast Asia: Spatiotemporal Characteristics Revealed from MODIS-Based Vegetation Time-Series. Int. J. Appl. Earth Obs. Geoinf. 2023, 121, 103378. [Google Scholar] [CrossRef]
- Sur, K.; Lunagaria, M.M. Association between Drought and Agricultural Productivity Using Remote Sensing Data: A Case Study of Gujarat State of India. J. Water Clim. Chang. 2020, 11, 189–202. [Google Scholar] [CrossRef]
- Sur, K.; Dave, R.; Chauhan, P. Spatio-Temporal Changes in NDVI and Rainfall over Western Rajasthan and Gujarat Region of India. J. Agrometeorol. 2018, 20, 189–195. [Google Scholar]
- Nagler, P.L.; Glenn, E.P.; Nguyen, U.; Scott, R.L.; Doody, T. Estimating Riparian and Agricultural Actual Evapotranspiration by Reference Evapotranspiration and MODIS Enhanced Vegetation Index. Remote Sens. 2013, 5, 3849–3871. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation. Environmental Science, 1974. Available online: https://ntrs.nasa.gov/citations/19730017588 (accessed on 8 February 2023).
- Jackson, R.D.; Slater, P.N.; Pinter, P.J., Jr. Discrimination of Growth and Water Stress in Wheat by Various Vegetation Indices through Clear and Turbid Atmospheres. Remote Sens. Environ. 1983, 13, 187–208. [Google Scholar] [CrossRef]
- Kim, M.S.; Daughtry, C.S.T.; Chappelle, E.W.; McMurtrey, J.E.; Walthall, C.L. The Use of High Spectral Resolution Bands for Estimating Absorbed Photosynthetically Active Radiation (A Par). In Proceedings of the CNES, Proceedings of 6th International Symposium on Physical Measurements and Signatures in Remote Sensing, Val d’Isère, France, 17–21 January 1994. [Google Scholar]
- Roujean, J.-L.; Breon, F.-M. Estimating PAR Absorbed by Vegetation from Bidirectional Reflectance Measurements. Remote Sens. Environ. 1995, 51, 375–384. [Google Scholar] [CrossRef]
- Daughtry, C.S.T.; Walthall, C.L.; Kim, M.S.; De Colstoun, E.B.; McMurtrey Iii, J.E. Estimating Corn Leaf Chlorophyll Concentration from Leaf and Canopy Reflectance. Remote Sens. Environ. 2000, 74, 229–239. [Google Scholar] [CrossRef]
- Broge, N.H.; Leblanc, E. Comparing Prediction Power and Stability of Broadband and Hyperspectral Vegetation Indices for Estimation of Green Leaf Area Index and Canopy Chlorophyll Density. Remote Sens. Environ. 2001, 76, 156–172. [Google Scholar] [CrossRef]
- Tang, S.; Zhu, Q.; Wang, J.; Zhou, Y.; Zhao, F. Principle and Application of Three-Band Gradient Difference Vegetation Index. Sci. China Ser. D Earth Sci. 2005, 48, 241–249. [Google Scholar] [CrossRef]
- Glenn, E.P.; Huete, A.R.; Nagler, P.L.; Nelson, S.G. Relationship between Remotely-Sensed Vegetation Indices, Canopy Attributes and Plant Physiological Processes: What Vegetation Indices Can and Cannot Tell Us about the Landscape. Sensors 2008, 8, 2136–2160. [Google Scholar] [CrossRef]
- Wagener, T.; Sivapalan, M.; Troch, P.; Woods, R. Catchment Classification and Hydrologic Similarity. Geogr. Compass 2007, 1, 901–931. [Google Scholar] [CrossRef]
- Sharma, A.; Wasko, C.; Lettenmaier, D.P. If Precipitation Extremes Are Increasing, Why Aren’t Floods? Water Resour. Res. 2018, 54, 8545–8551. [Google Scholar] [CrossRef]
- Yao, J.; Hu, W.; Chen, Y.; Huo, W.; Zhao, Y.; Mao, W.; Yang, Q. Hydro-Climatic Changes and Their Impacts on Vegetation in Xinjiang, Central Asia. Sci. Total Environ. 2019, 660, 724–732. [Google Scholar] [CrossRef]
- Kumar, A.; Negi, H.S.; Kumar, K. Long-Term Mass Balance Modelling (1986–2018) and Climate Sensitivity of Siachen Glacier. East Karakoram. Environ. Monit. Assess. 2020, 192, 368. [Google Scholar] [CrossRef]
- Kumari, N.; Srivastava, A.; Dumka, U.C. A Long-Term Spatiotemporal Analysis of Vegetation Greenness over the Himalayan Region Using Google Earth Engine. Climate 2021, 9, 109. [Google Scholar] [CrossRef]
- Batar, A.K.; Watanabe, T.; Kumar, A. Assessment of Land-Use/Land-Cover Change and Forest Fragmentation in the Garhwal Himalayan Region of India. Environments 2017, 4, 34. [Google Scholar] [CrossRef]
- Mishra, N.B.; Chaudhuri, G. Spatio-Temporal Analysis of Trends in Seasonal Vegetation Productivity across Uttarakhand, Indian Himalayas, 2000–2014. Appl. Geogr. 2015, 56, 29–41. [Google Scholar] [CrossRef]
- Nouri, H.; Beecham, S.; Anderson, S.; Nagler, P. High Spatial Resolution WorldView-2 Imagery for Mapping NDVI and Its Relationship to Temporal Urban Landscape Evapotranspiration Factors. Remote Sens. 2014, 6, 580–602. [Google Scholar] [CrossRef]
- Jaswal, A.K.; Karandikar, A.S.; Gujar, M.K.; Bhan, S.C. Seasonal and Annual Rainfall Trends in Himachal Pradesh during 1951–2005. Mausam 2015, 66, 247–264. [Google Scholar] [CrossRef]
- Singh, D.K.; Gusain, H.S.; Mishra, V.; Gupta, N. Snow Cover Variability in North-West Himalaya during Last Decade. Arab. J. Geosci. 2018, 11, 579. [Google Scholar] [CrossRef]
- Singh, D.K.; Mishra, V.D.; Gusain, H.S.; Singh, K.K.; Das, R.K.; Gupta, N. Validation of Landsat-8 Satellite-Derived Radiative Energy Fluxes Using Wireless Sensor Network Data over Beas River Basin, India. Int. J. Remote Sens. 2021, 42, 6891–6918. [Google Scholar] [CrossRef]
- Tawde, S.A.; Kulkarni, A.V.; Bala, G. An Estimate of Glacier Mass Balance for the Chandra Basin, Western Himalaya, for the Period 1984–2012. Ann. Glaciol. 2017, 58, 99–109. [Google Scholar] [CrossRef]
- Sangewar, C.V.; Shukla, S.P.; Singh, R.K. Inventory of the Himalayan Glaciers: A Contribution to the International Hydrological Programme. Updated ed Updated ed. Director General Geological Survey of India. 2009. Available online: http://books.google.com/books?id=rTBA7FPb6-QC (accessed on 8 February 2023).
- Arendt, A.; Bliss, A.; Bolch, T.; Cogley, J.G.; Gardner, A.; Hagen, J.-O.; Hock, R.; Huss, M.; Kaser, G.; Kienholz, C. Randolph Glacier Inventory–A Dataset of Global Glacier Outlines: Version 6.0: Technical Report, Global Land Ice Measurements from Space. 2017. [Google Scholar]
- Prakash, C.; Nagarajan, R. Outburst Susceptibility Assessment of Moraine-dammed Lakes in Western Himalaya Using an Analytic Hierarchy Process. Earth Surf. Processes Landf. 2017, 42, 2306–2321. [Google Scholar] [CrossRef]
- Friedl, M.A.; McIver, D.K.; Hodges, J.C.F.; Zhang, X.Y.; Muchoney, D.; Strahler, A.H.; Woodcock, C.E.; Gopal, S.; Schneider, A.; Cooper, A. Global Land Cover Mapping from MODIS: Algorithms and Early Results. Remote Sens. Environ. 2002, 83, 287–302. [Google Scholar] [CrossRef]
- Friedl, M.A.; Sulla-Menashe, D.; Tan, B.; Schneider, A.; Ramankutty, N.; Sibley, A.; Huang, X. MODIS Collection 5 Global Land Cover: Algorithm Refinements and Characterization of New Datasets. Remote Sens. Environ. 2010, 114, 168–182. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, X.; Deng, J.; Ma, X.; Liang, T. Development and Validation for Daily Cloud-Free Snow Products in Middle-and-High Latitude Areas in Eurasia. Remote Sens. Technol. Appl. 2016, 31, 1013–1021. [Google Scholar]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.; Joyce, R.; Xie, P.; Yoo, S.-H. NASA Global Precipitation Measurement (GPM) Integrated Multi-Satellite Retrievals for GPM (IMERG). Algorithm Theor. Basis Doc. (ATBD) Version 2015, 4, 30. [Google Scholar]
- Shukla, A.K.; Ojha, C.S.P.; Singh, R.P.; Pal, L.; Fu, D. Evaluation of TRMM Precipitation Dataset over Himalayan Catchment: The Upper Ganga Basin, India. Water 2019, 11, 613. [Google Scholar] [CrossRef]
- Mishra, B.; Babel, M.S.; Tripathi, N.K. Analysis of Climatic Variability and Snow Cover in the Kaligandaki River Basin, Himalaya, Nepal. Theor. Appl. Clim. 2014, 116, 681–694. [Google Scholar] [CrossRef]
- El Kenawy, A.M.; Hereher, M.E.; Robaa, S.M. An Assessment of the Accuracy of MODIS Land Surface Temperature over Egypt Using Ground-Based Measurements. Remote Sens. 2019, 11, 2369. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Hamed, K.H. Exact Distribution of the Mann–Kendall Trend Test Statistic for Persistent Data. J. Hydrol. 2009, 365, 86–94. [Google Scholar] [CrossRef]
- Deng, W.; Song, J.; Bai, H.; He, Y.; Yu, M.; Wang, H.; Cheng, D. Analyzing the Impacts of Climate Variability and Land Surface Changes on the Annual Water–Energy Balance in the Weihe River Basin of China. Water 2018, 10, 1792. [Google Scholar] [CrossRef]
- Ruigar, H.; Golian, S. Assessing the Correlation between Climate Signals and Monthly Mean and Extreme Precipitation and Discharge of Golestan Dam Watershed. Earth Sci. Res. J. 2015, 19, 65–72. [Google Scholar]
- Ludescher, J.; Bunde, A.; Schellnhuber, H.J. Statistical Significance of Seasonal Warming/Cooling Trends. Proc. Natl. Acad. Sci. USA 2017, 114, E2998–E3003. [Google Scholar] [CrossRef]
- Budyko, M.I.; Miller, D.H. Climate and Life; Academic Press: New York, NY, USA, 1974. [Google Scholar]
- Zhang, L.; Dawes, W.R.; Walker, G.R. Response of Mean Annual Evapotranspiration to Vegetation Changes at Catchment Scale. Water Resour. Res. 2001, 37, 701–708. [Google Scholar] [CrossRef]
- Nemani, R.R.; Keeling, C.D.; Hashimoto, H.; Jolly, W.M.; Piper, S.C.; Tucker, C.J.; Myneni, R.B.; Running, S.W. Climate-Driven Increases in Global Terrestrial Net Primary Production from 1982 to 1999. Science 2003, 300, 1560–1563. [Google Scholar] [CrossRef] [PubMed]
- Papagiannopoulou, C.; Miralles, D.G.; Dorigo, W.A.; Verhoest, N.E.C.; Depoorter, M.; Waegeman, W. Vegetation Anomalies Caused by Antecedent Precipitation in Most of the World. Environ. Res. Lett. 2017, 12, 074016. [Google Scholar] [CrossRef]
- Pandey, R.; Kumar, P.; Archie, K.M.; Gupta, A.K.; Joshi, P.K.; Valente, D.; Petrosillo, I. Climate Change Adaptation in the Western-Himalayas: Household Level Perspectives on Impacts and Barriers. Ecol. Indic. 2018, 84, 27–37. [Google Scholar] [CrossRef]
- Wagle, P.; Xiao, X.; Torn, M.S.; Cook, D.R.; Matamala, R.; Fischer, M.L.; Jin, C.; Dong, J.; Biradar, C. Sensitivity of Vegetation Indices and Gross Primary Production of Tallgrass Prairie to Severe Drought. Remote Sens. Environ. 2014, 152, 1–14. [Google Scholar] [CrossRef]
IGBP Class Code | MCD12Q1 Land Type | Reclassified Land Type |
---|---|---|
1 | Evergreen needleleaf forest | Forest |
2 | Evergreen broadleaf forest | |
3 | Deciduous needleleaf forest | |
4 | Deciduous broadleaf forest | |
5 | Mixed forest | |
6 | Closed shrublands | Grassland |
7 | Open shrublands | |
8 | Woody savannas | |
9 | Savannas | |
10 | Grasslands |
Trend | Beas Basin | Chandra Basin | Bhaga Basin | ||||||
---|---|---|---|---|---|---|---|---|---|
Slope | Z-Value | Significant | Slope | Z-Value | Significant | Slope | Z-Value | Significant | |
Forest (ha/yr) | −214 | −2.59 | ** | - | - | - | - | - | - |
Grassland (ha/yr) | 459 | 4.20 | *** | 176.9 | 1.75 | + | 9.1 | −0.04 | |
ET (mm/yr) | 0.76 | 3.85 | *** | 0.39 | 2.31 | * | 0.44 | 2.38 | * |
PPT (mm/yr) | 1.4 | 2.87 | ** | 1.6 | 2.66 | ** | 1.2 | 2.24 | * |
LST (K/yr) | −0.03 | −1.12 | −0.02 | −0.28 | −0.01 | −0.63 | |||
SCA (ha/yr) | 120 | 0.62 | 236.5 | 0.70 | 120.2 | 0.87 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Singh, D.K.; Singh, K.K.; Petropoulos, G.P.; Boaz, P.S.; Jain, P.; Singh, S.; Gupta, D.K.; Sood, V. Spatiotemporal Vegetation Variability and Linkage with Snow-Hydroclimatic Factors in Western Himalaya Using Remote Sensing and Google Earth Engine (GEE). Remote Sens. 2023, 15, 5239. https://doi.org/10.3390/rs15215239
Singh DK, Singh KK, Petropoulos GP, Boaz PS, Jain P, Singh S, Gupta DK, Sood V. Spatiotemporal Vegetation Variability and Linkage with Snow-Hydroclimatic Factors in Western Himalaya Using Remote Sensing and Google Earth Engine (GEE). Remote Sensing. 2023; 15(21):5239. https://doi.org/10.3390/rs15215239
Chicago/Turabian StyleSingh, Dhiraj Kumar, Kamal Kant Singh, George P. Petropoulos, Priestly Shan Boaz, Prince Jain, Sartajvir Singh, Dileep Kumar Gupta, and Vishakha Sood. 2023. "Spatiotemporal Vegetation Variability and Linkage with Snow-Hydroclimatic Factors in Western Himalaya Using Remote Sensing and Google Earth Engine (GEE)" Remote Sensing 15, no. 21: 5239. https://doi.org/10.3390/rs15215239