Significant Inverse Influence of Tropical Indian Ocean SST on SIF of Indian Vegetation during the Summer Monsoon Onset Phase
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Data Analysis
3. Results
3.1. SIF and SST Variations during the Summer Monsoon
3.2. Linear Correlations between SST and SIF
3.3. Partialling out of ENSO and IOD Teleconnections from SST-SIF Correlations
3.4. The SST–SIF Link during the Onset Phase of Summer Monsoon
3.5. The SST–SIF Link after the Onset of the Summer Monsoon
4. Discussion
4.1. The Possible Physical Mechanisms behind the Significant SST–SIF Relationships during the Onset Phase of the Monsoon
4.2. Weakening of the SST–SIF Relationship after the Onset Phase of Monsoon
5. Conclusions
Scope and Challenges
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gonsamo, A.; Chen, J.M.; Lombardozzi, D. Global Vegetation Productivity Response to Climatic Oscillations during the Satellite Era. Glob. Change Biol. 2016, 22, 3414–3426. [Google Scholar] [CrossRef] [PubMed]
- O’Carroll, A.G.; Armstrong, E.M.; Beggs, H.; Bouali, M.; Casey, K.S.; Corlett, G.K.; Dash, P.; Donlon, C.; Gentemann, C.L.; Høyer, J.L.; et al. Observational Needs of Sea Surface Temperature. Front. Mar. Sci. 2019, 6, 420. [Google Scholar] [CrossRef]
- Phillips, H.E.; Tandon, A.; Furue, R.; Hood, R.; Ummenhofer, C.C.; Benthuysen, J.A.; Menezes, V.; Hu, S.; Webber, B.; Sanchez-Franks, A.; et al. Progress in Understanding of Indian Ocean Circulation, Variability, Air-Sea Exchange, and Impacts on Biogeochemistry. Ocean Sci. 2021, 17, 1677–1751. [Google Scholar] [CrossRef]
- Ocean Health Index Sea Surface Temperature. Available online: https://oceanhealthindex.org/ (accessed on 23 January 2021).
- Reimer, J.J.; Vargas, R.; Rivas, D.; Gaxiola-Castro, G.; Hernandez-Ayon, J.M.; Lara-Lara, R. Sea Surface Temperature Influence on Terrestrial Gross Primary Production along the Southern California Current. PLoS ONE 2015, 10, e0125177. [Google Scholar] [CrossRef] [PubMed]
- Chen, M.; Parton, W.J.; DelGrosso, S.J.; Hartman, M.D.; Day, K.A.; Tucker, C.J.; Derner, J.D.; Knapp, A.K.; Smith, W.K.; Ojima, D.S.; et al. The Signature of Sea Surface Temperature Anomalies on the Dynamics of Semiarid Grassland Productivity. Ecosphere 2017, 8, e02069. [Google Scholar] [CrossRef] [Green Version]
- Zhu, Z.; Piao, S.; Xu, Y.; Bastos, A.; Ciais, P.; Peng, S. The Effects of Teleconnections on Carbon Fluxes of Global Terrestrial Ecosystems. Geophys. Res. Lett. 2017, 44, 3209–3218. [Google Scholar] [CrossRef]
- Nzabarinda, V.; Bao, A.; Xu, W.; Uwamahoro, S.; Jiang, L.; Duan, Y.; Nahayo, L.; Yu, T.; Wang, T.; Long, G. Assessment and Evaluation of the Response of Vegetation Dynamics to Climate Variability in Africa. Sustainability 2021, 13, 1234. [Google Scholar] [CrossRef]
- Wang, J.; Wang, M.; Kim, J.S.; Joiner, J.; Zeng, N.; Jiang, F.; Wang, H.; He, W.; Wu, M.; Chen, T.; et al. Modulation of Land Photosynthesis by the Indian Ocean Dipole: Satellite-Based Observations and CMIP6 Future Projections. Earth’s Future 2021, 9, 1–14. [Google Scholar] [CrossRef]
- Kim, I.W.; Stuecker, M.F.; Timmermann, A.; Zeller, E.; Kug, J.S.; Park, S.W.; Kim, J.S. Tropical Indo-Pacific SST Influences on Vegetation Variability in Eastern Africa. Sci. Rep. 2021, 11, 10462. [Google Scholar] [CrossRef]
- Frankenberg, C.; Berry, J. Solar Induced Chlorophyll Fluorescence: Origins, Relation to Photosynthesis and Retrieval; Elsevier: Amsterdam, The Netherlands, 2017; Volume 1–9, ISBN 9780128032206. [Google Scholar]
- He, L.; Magney, T.; Dutta, D.; Yin, Y.; Köhler, P.; Grossmann, K.; Stutz, J.; Dold, C.; Hatfield, J.; Guan, K.; et al. From the Ground to Space: Using Solar-Induced Chlorophyll Fluorescence to Estimate Crop Productivity. Geophys. Res. Lett. 2020, 47, 1–12. [Google Scholar] [CrossRef]
- Li, X.; Xiao, J.; He, B.; Altaf Arain, M.; Beringer, J.; Desai, A.R.; Emmel, C.; Hollinger, D.Y.; Krasnova, A.; Mammarella, I.; et al. Solar-Induced Chlorophyll Fluorescence is Strongly Correlated with Terrestrial Photosynthesis for a Wide Variety of Biomes: First Global Analysis Based on OCO-2 and Flux Tower Observations. Glob. Change Biol. 2018, 24, 3990–4008. [Google Scholar] [CrossRef]
- Siegmann, B.; Cendrero-Mateo, M.P.; Cogliati, S.; Damm, A.; Gamon, J.; Herrera, D.; Jedmowski, C.; Junker-Frohn, L.V.; Kraska, T.; Muller, O.; et al. Downscaling of Far-Red Solar-Induced Chlorophyll Fluorescence of Different Crops from Canopy to Leaf Level Using a Diurnal Data Set Acquired by the Airborne Imaging Spectrometer HyPlant. Remote Sens. Environ. 2021, 264, 112609. [Google Scholar] [CrossRef]
- Xu, S.; Atherton, J.; Riikonen, A.; Zhang, C.; Oivukkamäki, J.; MacArthur, A.; Honkavaara, E.; Hakala, T.; Koivumäki, N.; Liu, Z.; et al. Structural and Photosynthetic Dynamics Mediate the Response of SIF to Water Stress in a Potato Crop. Remote Sens. Environ. 2021, 263, 112555. [Google Scholar] [CrossRef]
- Helm, L.T.; Shi, H.; Lerdau, M.T.; Yang, X. Solar-Induced Chlorophyll Fluorescence and Short-Term Photosynthetic Response to Drought. Ecol. Appl. 2020, 30, e02101. [Google Scholar] [CrossRef]
- Hernández-Clemente, R.; Hornero, A.; Mottus, M.; Penuelas, J.; González-Dugo, V.; Jiménez, J.C.; Suárez, L.; Alonso, L.; Zarco-Tejada, P.J. Early Diagnosis of Vegetation Health from High-Resolution Hyperspectral and Thermal Imagery: Lessons Learned from Empirical Relationships and Radiative Transfer Modelling. Curr. For. Rep. 2019, 5, 169–183. [Google Scholar] [CrossRef] [Green Version]
- Porcar-Castell, A.; Tyystjärvi, E.; Atherton, J.; Van Der Tol, C.; Flexas, J.; Pfündel, E.E.; Moreno, J.; Frankenberg, C.; Berry, J.A. Linking Chlorophyll a Fluorescence to Photosynthesis for Remote Sensing Applications: Mechanisms and Challenges. J. Exp. Bot. 2014, 65, 4065–4095. [Google Scholar] [CrossRef] [Green Version]
- Liu, W.; Atherton, J.; Mõttus, M.; Gastellu-Etchegorry, J.P.; Malenovský, Z.; Raumonen, P.; Åkerblom, M.; Mäkipää, R.; Porcar-Castell, A. Simulating Solar-Induced Chlorophyll Fluorescence in a Boreal Forest Stand Reconstructed from Terrestrial Laser Scanning Measurements. Remote Sens. Environ. 2019, 232, 111274. [Google Scholar] [CrossRef]
- Zhang, Y.; Xiao, X.; Jin, C.; Dong, J.; Zhou, S.; Wagle, P.; Joiner, J.; Guanter, L.; Zhang, Y.; Zhang, G.; et al. Consistency between Sun-Induced Chlorophyll Fluorescence and Gross Primary Production of Vegetation in North America. Remote Sens. Environ. 2016, 183, 154–169. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Joiner, J.; Hamed Alemohammad, S.; Zhou, S.; Gentine, P. A Global Spatially Contiguous Solar-Induced Fluorescence (CSIF) Dataset Using Neural Networks. Biogeosciences 2018, 15, 5779–5800. [Google Scholar] [CrossRef] [Green Version]
- Geng, G.; Yang, R.; Liu, L. Downscaled Solar-Induced Chlorophyll Fluorescence Has Great Potential for Monitoring the Response of Vegetation to Drought in the Yellow River Basin, China: Insights from an Extreme Event. Ecol. Indic. 2022, 138, 108801. [Google Scholar] [CrossRef]
- Peng, B.; Guan, K.; Zhou, W.; Jiang, C.; Frankenberg, C.; Sun, Y.; He, L.; Köhler, P. Assessing the Benefit of Satellite-Based Solar-Induced Chlorophyll Fluorescence in Crop Yield Prediction. Int. J. Appl. Earth Obs. Geoinf. 2020, 90, 102126. [Google Scholar] [CrossRef]
- Hong, Z.; Hu, Y.; Cui, C.; Yang, X.; Tao, C.; Luo, W.; Zhang, W.; Li, L.; Meng, L. An Operational Downscaling Method of Solar-Induced Chlorophyll Fluorescence (SIF) for Regional Drought Monitoring. Agriculture 2022, 12, 547. [Google Scholar] [CrossRef]
- Orth, R.; Seneviratne, S.I. Variability of Soil Moisture and Sea Surface Temperatures Similarly Important for Warm-Season Land Climate in the Community Earth System Model. J. Clim. 2017, 30, 2141–2162. [Google Scholar] [CrossRef]
- Yan, B.; Mao, J.; Shi, X.; Hoffman, F.M.; Notaro, M.; Zhou, T.; McDowell, N.; Dickinson, R.E.; Xu, M.; Gu, L.; et al. Predictability of Tropical Vegetation Greenness Using Sea Surface Temperatures. Environ. Res. Commun. 2019, 1, 31003. [Google Scholar] [CrossRef]
- Huang, M.; Wang, Z.; Wang, S.; Gu, F.; Gong, H.; Hao, M.; Shao, Y. Global Vegetation Productivity Responses to the West Pacific Warm Pool. Sci. Total Environ. 2019, 655, 641–651. [Google Scholar] [CrossRef]
- Pereira, M.P.S.; Costa, M.H.; Justino, F.; Malhado, A.C.M. Response of South American Terrestrial Ecosystems to Future Patterns of Sea Surface Temperature. Adv. Meteorol. 2017, 2017, 2149479. [Google Scholar] [CrossRef] [Green Version]
- Ying, K.; Peng, J.; Dan, L.; Zheng, X. Ocean—Atmosphere Teleconnections Play a Key Role in the Interannual Variability of Seasonal Gross Primary Production in China. Adv. Atmos. Sci. 2022, 39, 1329–1342. [Google Scholar] [CrossRef]
- Huber, S.; Fensholt, R. Analysis of Teleconnections between AVHRR-Based Sea Surface Temperature and Vegetation Productivity in the Semi-Arid Sahel. Remote Sens. Environ. 2011, 115, 3276–3285. [Google Scholar] [CrossRef]
- Sarkar, S.; Kafatos, M. Interannual Variability of Vegetation over the Indian Sub-Continent and Its Relation to the Different Meteorological Parameters. Remote Sens. Environ. 2004, 90, 268–280. [Google Scholar] [CrossRef]
- Nayak, R.K.; Dadhwal, K.V.; Patel, N.R.; Dutt, C.B.S. Inter-Annual Variability of Net Ecosystem Productivity over India. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2012, XXXVIII-8/W20, 125–128. [Google Scholar] [CrossRef] [Green Version]
- Valsala, V.; Tiwari, Y.K.; Pillai, P.; Roxy, M.; Maksyutov, S.; Murtugudde, R. Intraseasonal Variability of Terrestrial Biospheric CO2 Fluxes over India during Summer Monsoons. J. Geophys. Res. Biogeosci. 2013, 118, 752–769. [Google Scholar] [CrossRef]
- Yadav, R.K.; Roxy, M.K. On the Relationship between North India Summer Monsoon Rainfall and East Equatorial Indian Ocean Warming. Glob. Planet. Change 2019, 179, 23–32. [Google Scholar] [CrossRef]
- Asoka, A.; Mishra, V. Prediction of Vegetation Anomalies to Improve Food Security and Water Management in India. Geophys. Res. Lett. 2015, 42, 5290–5298. [Google Scholar] [CrossRef] [Green Version]
- Sharma, A.; Goyal, M.K. Assessment of Ecosystem Resilience to Hydroclimatic Disturbances in India. Glob. Chang. Biol. 2018, 24, e432–e441. [Google Scholar] [CrossRef]
- Nayak, R.K.; Patel, N.R.; Dadhwal, V.K. Inter-Annual Variability and Climate Control of Terrestrial Net Primary Productivity over India. Int. J. Climatol. 2013, 33, 132–142. [Google Scholar] [CrossRef]
- Banger, K.; Tian, H.; Tao, B.; Ren, W.; Pan, S.; Dangal, S.; Yang, J. Terrestrial Net Primary Productivity in India during 1901–2010: Contributions from Multiple Environmental Changes. Clim. Change 2015, 132, 575–588. [Google Scholar] [CrossRef]
- Nayak, R.K.; Patel, N.R.; Dadhwal, V.K. Spatio-Temporal Variability of Net Ecosystem Productivity over India and Its Relationship to Climatic Variables. Environ. Earth Sci. 2015, 74, 1743–1753. [Google Scholar] [CrossRef]
- Bala, G.; Joshi, J.; Chaturvedi, R.K.; Gangamani, H.V.; Hashimoto, H.; Nemani, R. Remote Sensing Trends and Variability of AVHRR-Derived NPP in India. Remote Sens. 1982, 5, 810–829. [Google Scholar] [CrossRef] [Green Version]
- Rao, A.S.; Bala, G.; Ravindranath, N.H.; Nemani, R. Multi-Model Assessment of Trends, Variability and Drivers of Terrestrial Carbon Uptake in India. J. Earth Syst. Sci. 2019, 128, 99. [Google Scholar] [CrossRef] [Green Version]
- Kumar, A.; Pandey, V.; Shekh, A.M.; Lunagaria, M.M.; Patel, H.R. The Impact of El Nino and La Nina (ENSO) on Monsoon Rainfall in Gujarat Department of Agricultural Meteorology. J. Agrometeorol. 2012, 14, 151–156. [Google Scholar]
- Deb Burman, P.K.; Sarma, D.; Chakraborty, S.; Karipot, A.; Jain, A.K. The Effect of Indian Summer Monsoon on the Seasonal Variation of Carbon Sequestration by a Forest Ecosystem over North-East India. SN Appl. Sci. 2020, 2, 154. [Google Scholar] [CrossRef] [Green Version]
- Roxy, M. Sensitivity of Precipitation to Sea Surface Temperature over the Tropical Summer Monsoon Region and Its Quantification. Clim. Dyn. 2014, 43, 1159–1169. [Google Scholar] [CrossRef]
- Ahmad, L.; Habib Kanth, R.; Parvaze, S.; Sheraz Mahdi, S. Agro-Climatic and Agro-Ecological Zones of India. In Experimental Agrometeorology: A Practical Manual; Ahmad, L., Habib Kanth, R., Parvaze, S., Sheraz Mahdi, S., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 99–118. ISBN 978-3-319-69185-5. [Google Scholar]
- Qiu, R.; Han, G.; Ma, X.; Xu, H.; Shi, T.; Zhang, M. A Comparison of OCO-2 SIF, MODIS GPP, and GOSIF Data from Gross Primary Production (GPP) Estimation and Seasonal Cycles in North America. Remote Sens. 2020, 12, 258. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xiao, J. Mapping Photosynthesis Solely from Solar-Induced Chlorophyll Fluorescence: A Global, Fine-Resolution Dataset of Gross Primary Production Derived from OCO-2. Remote Sens. 2019, 11, 2563. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Xiao, J. A global, 0.05-Degree Product of Solar-Induced Chlorophyll Fluorescence Derived from OCO-2, MODIS, and Reanalysis Data. Remote Sens. 2019, 11, 517. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Li, X.; He, B.; Arain, M.A.; Beringer, J.; Desai, A.R.; Emmel, C.; Hollinger, D.Y.; Krasnova, A.; Mammarella, I.; et al. Solar-Induced Chlorophyll Fluorescence Exhibits a Universal Relationship with Gross Primary Productivity across a Wide Variety of Biomes. Glob. Chang. Biol. 2019, 25, e4–e6. [Google Scholar] [CrossRef] [Green Version]
- Ranjan, A.K.; Dash, J.; Xiao, J.; Gorai, A.K. Vegetation Activity Enhanced in India during the COVID-19 Lockdowns: Evidence from Satellite Data. Geocarto Int. 2022, 37, 12618–12637. [Google Scholar] [CrossRef]
- Chhabra, A.; Gohel, A. Elucidating Space Based Observations of Solar Induced Chlorophyll Fluorescence over Terrestrial Vegetation of India. Trop. Ecol. 2020, 61, 32–41. [Google Scholar] [CrossRef]
- Huang, B.; Liu, C.; Banzon, V.; Freeman, E.; Graham, G.; Hankins, B.; Smith, T.; Zhang, H.M. Improvements of the Daily Optimum Interpolation Sea Surface Temperature (DOISST) Version 2.1. J. Clim. 2021, 34, 2923–2939. [Google Scholar] [CrossRef]
- Reynolds, R.W.; Smith, T.M.; Liu, C.; Chelton, D.B.; Casey, K.S.; Schlax, M.G. Daily High-Resolution-Blended Analyses for Sea Surface Temperature. J. Clim. 2007, 20, 5473–5496. [Google Scholar] [CrossRef]
- Banzon, V.; Smith, T.M.; Mike Chin, T.; Liu, C.; Hankins, W. A Long-Term Record of Blended Satellite and in Situ Sea-Surface Temperature for Climate Monitoring, Modeling and Environmental Studies. Earth Syst. Sci. Data 2016, 8, 165–176. [Google Scholar] [CrossRef] [Green Version]
- Rayner, N.A.; Parker, D.E.; Horton, E.B.; Folland, C.K.; Alexander, L.V.; Rowell, D.P.; Kent, E.C.; Kaplan, A. Global Analyses of Sea Surface Temperature, Sea Ice, and Night Marine Air Temperature since the Late Nineteenth Century. J. Geophys. Res. Atmos. 2003, 108, 4407. [Google Scholar] [CrossRef] [Green Version]
- Saji, N.H.; Yamagata, T. Possible Impacts of Indian Ocean Dipole Mode Events on Global Climate. Clim. Res. 2003, 25, 151–169. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef]
- GES-DISC. Amy McNally NASA/GSFC/HSL (2018) FLDAS Noah Land Surface Model L4 Global Monthly 0.1 × 0.1 Degree (MERRA-2 and CHIRPS) (Version 001) [Dataset]; Goddard Earth Sciences Data and Information Services Center (GES DISC): Greenbelt, MA, USA, 2018. [CrossRef]
- Pai, D.S.; Sridhar, L.; Rajeevan, M.; Sreejith, O.P.; Satbhai, N.S.; Mukhopadhyay, B. Development of a New High Spatial Resolution (0.25° × 0.25°) Long Period (1901–2010) Daily Gridded Rainfall Data Set over India and Its Comparison with Existing Data Sets over the Region. Mausam 2014, 65, 1–18. [Google Scholar] [CrossRef]
- Wilson, S.S.; Joseph, P.V.; Mohanakumar, K.; Johannessen, O.M. Interannual and Long Term Variability of Low Level Jetstream of the Asian Summer Monsoon. Tellus A Dyn. Meteorol. Oceanogr. 2018, 70, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Nandini, G.; Vinoj, V.; Pandey, S.K. Arabian Sea Aerosol-Indian Summer Monsoon Rainfall Relationship and Its Modulation by El-Nino Southern Oscillation. NPJ Clim. Atmos. Sci. 2022, 5, 25. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Minola, L.; Zhang, F.; Azorin-Molina, C.; Pirooz, A.A.S.; Flay, R.G.J.; Hersbach, H.; Chen, D. Near-Surface Mean and Gust Wind Speeds in ERA5 across Sweden: Towards an Improved Gust Parametrization. Clim. Dyn. 2020, 55, 887–907. [Google Scholar] [CrossRef]
- Von Storch, H.; Zwiers, F. Testing Ensembles of Climate Change Scenarios for “Statistical Significance”. Clim. Change 2013, 117, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Goswami, B.N.; Krishnamurthy, V.; Annmalai, H. A Broad-Scale Circulation Index for the Interannual Variability of the Indian Summer Monsoon. Q. J. R. Meteorol. Soc. 1999, 125, 611–633. [Google Scholar] [CrossRef]
- Singh, M.; Bhatla, R. Intense Rainfall Conditions over Indo-Gangetic Plains under the Influence of Madden–Julian Oscillation. Meteorol. Atmos. Phys. 2020, 132, 441–449. [Google Scholar] [CrossRef]
- Sahoo, M.; Kumar Yadav, R. The Interannual Variability of Rainfall over Homogeneous Regions of Indian Summer Monsoon. Theor. Appl. Climatol. 2022, 148, 1303–1316. [Google Scholar] [CrossRef]
- Pathak, A.; Ghosh, S.; Alejandro Martinez, J.; Dominguez, F.; Kumar, P. Role of Oceanic and Land Moisture Sources and Transport in the Seasonal and Interannual Variability of Summer Monsoon in India. J. Clim. 2017, 30, 1839–1859. [Google Scholar] [CrossRef]
- Roxy, M.K.; Ritika, K.; Terray, P.; Murtugudde, R.; Ashok, K.; Goswami, B.N. Drying of Indian Subcontinent by Rapid Indian Ocean Warming and a Weakening Land-Sea Thermal Gradient. Nat. Commun. 2015, 6, 7423. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Osakabe, Y.; Osakabe, K.; Shinozaki, K.; Tran, L.-S.P. Response of Plants to Water Stress. Front. Plant Sci. 2014, 5, 86. [Google Scholar] [CrossRef] [Green Version]
- Costa de Oliveira, A.; Marini, N.; Farias, D.R. Climate Change: New Breeding Pressures and Goals; Elsevier Ltd.: Amsterdam, The Netherlands, 2014; Volume 2, ISBN 9780080931395. [Google Scholar]
- Singh, S.K.; Reddy, V.R.; Devi, M.J.; Timlin, D.J. Impact of Water Stress under Ambient and Elevated Carbon Dioxide across Three Temperature Regimes on Soybean Canopy Gas Exchange and Productivity. Sci. Rep. 2021, 11, 16511. [Google Scholar] [CrossRef]
- Zhou, Z.Q.; Xie, S.P.; Zhang, R. Variability and Predictability of Indian Rainfall during the Monsoon Onset Month of June. Geophys. Res. Lett. 2019, 46, 14782–14788. [Google Scholar] [CrossRef]
- Sharma, A.; Goyal, M.K. District-Level Assessment of the Ecohydrological Resilience to Hydroclimatic Disturbances and Its Controlling Factors in India. J. Hydrol. 2018, 564, 1048–1057. [Google Scholar] [CrossRef]
- Xu, H.J.; Wang, X.P. Effects of Altered Precipitation Regimes on Plant Productivity in the Arid Region of Northern China. Ecol. Inform. 2016, 31, 137–146. [Google Scholar] [CrossRef]
- Zhu, Y.; Luo, P.; Zhang, S.; Sun, B. Spatiotemporal Analysis of Hydrological Variations and Their Impacts on Vegetation in Semiarid Areas from Multiple Satellite Data. Remote Sens. 2020, 12, 4177. [Google Scholar] [CrossRef]
- Ji, Y.; Zhou, G.; Luo, T.; Dan, Y.; Zhou, L.; Lv, X. Variation of Net Primary Productivity and Its Drivers in China’s Forests during 2000–2018. For. Ecosyst. 2020, 7, 15. [Google Scholar] [CrossRef] [Green Version]
- Pathak, A.; Ghosh, S.; Kumar, P.; Murtugudde, R. Role of Oceanic and Terrestrial Atmospheric Moisture Sources in Intraseasonal Variability of Indian Summer Monsoon Rainfall. Sci. Rep. 2017, 7, 12729. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Data | Spatial Resolution (Deg) | Source |
---|---|---|
Solar-Induced chlorophyll Fluorescence | 0.05 × 0.05 | GOSIF V2 |
Sea Surface Temperature | 0.25 × 0.25 | NOAA OISST V2.1 |
Air Temperature at 2 m | 0.5 × 0.625 | MERRA-2 Model |
Specific humidity at 850 hPa | 0.5 × 0.625 | MERRA-2 Model |
Rainfall | 0.25 × 0.25 | IMD |
Wind components at 850 hPa | 0.25 × 0.25 | ERA5 |
Soil Moisture | 0.1 × 0.1 | FLDAS Model |
NINO3 SST and DMI | - | NOAA PSL GCOS |
SST | Sea Surface Temperature |
SIF | Solar-Induced Chlorophyll Fluorescence |
WIO | Western Indian Ocean |
NIO | Northern Indian Ocean |
CIO | Central Indian Ocean |
ENSO | El Niño Southern Oscillation |
IOD | Indian Ocean dipole |
DMI | Dipole mode index |
ACZ | Agro-climatic zones |
WCPG | Western coastal plains and Ghats |
ECPH | Eastern coastal plains and hills |
EPH | Eastern plateau and hills |
WPH | Western plateau and hills |
SPH | Southern plateau and hills |
CPH | Central plateau and hills |
TGP | Trans-Gangetic plains |
UGP | Upper Gangetic plains |
MGP | Middle Gangetic plains |
LGP | Lower Gangetic plains |
GPH | Gujarat plain and hills |
WDR | Western dry region |
WHR | Western Himalaya region |
EHR | Eastern Himalaya region |
ACZ | Minimum | Mean | Maximum |
---|---|---|---|
WCPG | 0.019 | 0.30 | 0.41 |
ECPH | 0.011 | 0.20 | 0.47 |
EPH | 0.013 | 0.25 | 0.45 |
WPH | 0.013 | 0.18 | 0.38 |
SPH | 0.016 | 0.17 | 0.41 |
CPH | 0.01 | 0.17 | 0.34 |
TGP | 0.01 | 0.18 | 0.34 |
UGP | 0.049 | 0.22 | 0.37 |
MGP | 0.014 | 0.22 | 0.43 |
LGP | 0.022 | 0.24 | 0.41 |
GPH | 0 | 0.13 | 0.35 |
WDR | 0 | 0.05 | 0.19 |
WHR | 0 | 0.08 | 0.39 |
EHR | 0 | 0.35 | 0.54 |
Correlation Coefficient (r) | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Agro Climatic Zone | Western Indian Ocean (WIO) | Northern Indian Ocean (NIO) | Central Indian Ocean (CIO) | |||||||||
Jun | Jul | Aug | Sep | Jun | Jul | Aug | Sep | Jun | Jul | Aug | Sep | |
WCPG | −0.4 | −0.066 | +0.581 | +0.593 | −0.083 | −0.051 | +0.649 | +0.495 | −0.296 | −0.375 | −0.045 | +0.398 |
ECPH | −0.549 | −0.142 | +0.062 | +0.216 | −0.196 | −0.077 | +0.201 | +0.262 | −0.227 | +0.147 | +0.292 | +0.533 |
EPH | −0.609 | −0.207 | +0.125 | +0.042 | −0.534 | −0.313 | +0.205 | +0.141 | −0.676 | −0.241 | +0.084 | +0.475 |
WPH | −0.222 | +0.187 | −0.041 | −0.332 | −0.325 | +0.061 | +0.011 | −0.270 | −0.657 | +0.266 | +0.394 | −0.061 |
SPH | −0.478 | +0.005 | −0.159 | +0.037 | −0.245 | +0.0003 | −0.037 | +0.145 | −0.295 | +0.262 | +0.317 | +0.387 |
CPH | −0.546 | −0.122 | +0.005 | −0.337 | −0.607 | −0.166 | +0.163 | −0.177 | −0.738 | +0.151 | +0.425 | +0.008 |
TGP | −0.559 | −0.220 | −0.368 | −0.472 | −0.476 | −0.167 | −0.184 | −0.141 | −0.494 | +0.210 | +0.382 | +0.129 |
UGP | −0.593 | −0.342 | −0.115 | −0.087 | −0.540 | −0.343 | +0.071 | −0.328 | −0.546 | −0.017 | +0.116 | −0.120 |
MGP | −0.443 | −0.401 | −0.201 | +0.219 | −0.557 | −0.407 | −0.016 | +0.288 | −0.554 | −0.133 | −0.290 | +0.280 |
LGP | −0.322 | −0.445 | −0.481 | −0.388 | −0.282 | −0.372 | −0.109 | +0.090 | −0.317 | −0.016 | −0.267 | +0.351 |
GPH | −0.291 | +0.119 | −0.365 | −0.433 | −0.387 | +0.036 | −0.137 | −0.104 | −0.607 | +0.191 | +0.592 | +0.376 |
WDR | −0.408 | +0.181 | −0.280 | −0.512 | −0.396 | +0.122 | −0.031 | −0.149 | −0.412 | +0.228 | +0.505 | +0.270 |
WHR | −0.526 | −0.400 | −0.095 | +0.057 | −0.501 | −0.381 | +0.391 | +0.206 | −0.536 | −0.029 | +0.453 | +0.258 |
EHR | −0.177 | −0.063 | −0.369 | −0.449 | −0.374 | −0.121 | −0.229 | −0.383 | −0.128 | +0.277 | +0.227 | −0.057 |
Partial Correlation Coefficient (r) between Indian Ocean SST and SIF Limiting NINO3 Index and DMI | |||||||||
---|---|---|---|---|---|---|---|---|---|
Oceanic Region | June | August | September | ||||||
ACZ | Independent Variables | ACZ | Independent Variables | ACZ | Independent Variables | ||||
NINO3 | DMI | NINO3 | DMI | NINO3 | DMI | ||||
WIO | ECPH | −0.55 | −0.38 | WCPG | +0.51 | +0.16 | WCPG | +0.58 | +0.316 |
EPH | −0.63 | −0.56 | LGP | −0.59 | −0.32 | TGP | −0.37 | −0.69 | |
CPH | −0.56 | −0.66 | WDR | −0.34 | −0.72 | ||||
SPH | −0.49 | −0.37 | |||||||
TGP | −0.57 | −0.59 | |||||||
UGP | −0.62 | −0.52 | |||||||
WHR | −0.55 | −0.50 | |||||||
NIO | EPH | −0.51 | −0.49 | WCPG | +0.59 | +0.54 | WCPG | +0.46 | +0.24 |
CPH | −0.58 | −0.65 | |||||||
TGP | −0.45 | −0.47 | |||||||
UGP | −0.51 | −0.49 | |||||||
MGP | −0.52 | −0.52 | |||||||
WHR | −0.46 | −0.47 | |||||||
CIO | EPH | −0.66 | −0.72 | GPH | +0.55 | +0.58 | ECPH | +0.55 | +0.48 |
WPH | −0.65 | −0.66 | WDR | +0.46 | +0.53 | EPH | +0.53 | +0.48 | |
CPH | −0.72 | −0.74 | |||||||
TGP | −0.46 | −0.50 | |||||||
UGP | −0.51 | −0.59 | |||||||
MGP | −0.52 | −0.58 | |||||||
GPH | −0.58 | −0.61 | |||||||
WHR | −0.50 | −0.56 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varghese, R.; Behera, S.K.; Behera, M.D. Significant Inverse Influence of Tropical Indian Ocean SST on SIF of Indian Vegetation during the Summer Monsoon Onset Phase. Remote Sens. 2023, 15, 1756. https://doi.org/10.3390/rs15071756
Varghese R, Behera SK, Behera MD. Significant Inverse Influence of Tropical Indian Ocean SST on SIF of Indian Vegetation during the Summer Monsoon Onset Phase. Remote Sensing. 2023; 15(7):1756. https://doi.org/10.3390/rs15071756
Chicago/Turabian StyleVarghese, Roma, Swadhin K. Behera, and Mukunda Dev Behera. 2023. "Significant Inverse Influence of Tropical Indian Ocean SST on SIF of Indian Vegetation during the Summer Monsoon Onset Phase" Remote Sensing 15, no. 7: 1756. https://doi.org/10.3390/rs15071756