Assessment of Extreme Ocean Winds within Intense Wintertime Windstorms over the North Pacific Using SMAP L-Band Radiometer Observations
Abstract
:1. Introduction
2. Materials and Methods
2.1. SMAP Observations
2.2. ERA5 and CFSv2 Reanalysis Datasets
2.3. Windstorms Identification and Their Intensity Metrics
- The SMAP-based maximum wind speed was ≥33 m/s (according to the Beaufort scale) within an 800 km radius of the ETC center, which greatly exceeds hurricane-force wind radii determined for North Atlantic hurricanes [38];
- The ETC low-pressure center was registered over the North Pacific (30–65°N, 130°E–120°W) using hourly SLP fields from ERA5;
- The selected HF wind zone was within the 1000 km SMAP swath and contained at least four 0.25° × 0.25° grid points, allowing unambiguously determining the maximum wind speed within the entire weather system;
- Additionally, the distribution of high wind speed was analyzed only for windstorms in which the HF wind area is completely covered by SMAP measurements.
2.4. Additional Materials
3. Results
3.1. Windstorms Characteristics
3.2. Distribution of Extreme Ocean Wind Speeds
3.3. The Most-Intense Windstorm
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Browning, K.A. The sting at the end of the tail: Damaging winds associated with extratropical cyclones. Q. J. R. Meteorol. Soc. 2004, 130, 375–399. [Google Scholar] [CrossRef]
- Ponce de León, S.; Guedes Soares, C. Hindcast of extreme sea states in North Atlantic extratropical storms. Ocean Dyn. 2015, 65, 241–254. [Google Scholar] [CrossRef]
- Vose, R.S.; Applequist, S.; Bourassa, M.A.; Pryor, S.C.; Barthelmie, R.J.; Blanton, B.; Bromirski, P.D.; Brooks, H.E.; DeGaetano, A.T.; Dole, R.M.; et al. Monitoring and understanding changes in extremes: Extratropical storms, winds, and waves. Bull. Am. Meteorol. Soc. 2014, 95, 377–386. [Google Scholar]
- Hawcroft, M.K.; Shaffrey, L.C.; Hodges, K.I.; Dacre, H.F. How much Northern Hemisphere precipitation is associated with extratropical cyclones? Geophys. Res. Lett. 2012, 39, L24809. [Google Scholar] [CrossRef]
- Pfahl, S.; Wernli, H. Quantifying the relevance of cyclones for precipitation extremes. J. Clim. 2012, 25, 6770–6780. [Google Scholar] [CrossRef]
- Hawcroft, M.; Walsh, E.; Hodges, K.; Zappa, G. Significantly increased extreme precipitation expected in Europe and North America from extratropical cyclones. Environ. Res. Lett. 2018, 13, 124006. [Google Scholar] [CrossRef]
- Kezunovic, M.; Dobson, I.; Dong, Y. Impact of extreme weather on power system blackouts and forced outages: New challenges. In Proceedings of the 7th Balkan Power Conference, Sibenik, Croatia, 10–12 September 2008. [Google Scholar]
- Mass, C.; Dotson, B. Major Extratropical Cyclones of the Northwest United States: Historical Review, Climatology, and Synoptic Environment. Mon. Weather Rev. 2010, 138, 2499–2527. [Google Scholar] [CrossRef]
- Hewson, T.D.; Neu, U. Cyclones, windstorms and the IMILAST project. New Pub Stockh. Uni Press 2015, 6, 81. [Google Scholar] [CrossRef]
- Hart, N.C.; Gray, S.L.; Clark, P.A. Sting-Jet Windstorms over the North Atlantic: Climatology and Contribution to Extreme Wind Risk. J. Clim. 2017, 30, 5455–5471. [Google Scholar] [CrossRef]
- Manning, C.; Kendon, E.J.; Fowler, H.J.; Roberts, N.M.; Berthou, S.; Suri, D.; Roberts, M.J. Extreme windstorms and sting jets in convection-permitting climate simulations over Europe. Clim. Dyn. 2022, 58, 2387–2404. [Google Scholar] [CrossRef]
- Volonté, A.; Gray, S.L.; Clark, P.A.; Martínez-Alvarado, O.; Ackerley, D. Strong surface winds in Storm Eunice. Part 1: Storm overview and indications of sting jet activity from observations and model data. Weather 2023, 9. [Google Scholar] [CrossRef]
- Shapiro, M.A.; Keyser, D. Fronts, Jet Streams and the Tropopause. In Extratropical Cyclones: The Erik Palmén Memorial Volume; Newton, C.W., Holopainen, E.O., Eds.; American Meteorological Society: Boston, MA, USA, 1990; pp. 167–191. [Google Scholar] [CrossRef]
- Nielsen, N.W.; Sass, B.H. A numerical, high-resolution study of the life cycle of the severe storm over Denmark on 3 December 1999. Tellus A Dyn. Meteorol. Oceanogr. 2003, 55, 338–351. [Google Scholar] [CrossRef]
- Wernli, H.; Dirren, S.; Liniger, M.A.; Zillig, M. Dynamical aspects of the life cycle of the winter storm ‘Lothar’ (24–26 December 1999). Q. J. R. Meteorol. Soc. 2002, 128, 405–429. [Google Scholar] [CrossRef]
- Pinto, P.; Belo-Pereira, M. Damaging convective and non-convective winds in southwestern Iberia during Windstorm Xola. Atmosphere 2020, 11, 692. [Google Scholar] [CrossRef]
- Pinto, P.; Silva, A. The strong wind event of 23rd December 2009 in the Oeste region of Portugal. Rep. Inst. Port. Mar Atmos. 2010, 40. [Google Scholar]
- Roberts, J.F.; Champion, A.J.; Dawkins, L.C.; Hodges, K.I.; Shaffrey, L.C.; Stephenson, D.B.; Stringer, M.A.; Thornton, H.E.; Youngman, B.D. The XWS open access catalog of extreme European windstorms from 1979 to 2012. Nat. Hazards Earth Syst. Sci. 2014, 14, 2487–2501. [Google Scholar] [CrossRef]
- Schultz, D.M.; Browning, K.A. What is a sting jet? Weather 2017, 72, 63–66. [Google Scholar] [CrossRef]
- Iwao, K.; Inatsu, M.; Kimoto, M. Recent changes in explosively developing extratropical cyclones over the winter northwestern Pacific. J. Clim. 2012, 25, 7282–7296. [Google Scholar] [CrossRef]
- Zhang, S.; Fu, G.; Lu, C.; Liu, J. Characteristics of Explosive Cyclones over the Northern Pacific. J. Appl. Meteorol. Climatol. 2017, 56, 3187–3210. [Google Scholar] [CrossRef]
- Cho, H.O.; Kang, M.J.; Son, S.W.; Hong, D.C.; Kang, J.M. A Critical Role of the North Pacific Bomb Cyclones in the Onset of the 2021 Sudden Stratospheric Warming. Geophys. Res. Lett. 2022, 49, e2022GL099245. [Google Scholar] [CrossRef]
- Gramcianinov, C.B.; Campos, R.M.; de Camargo, R.; Hodges, K.I.; Soares, C.G.; da Silva Dias, P.L. Analysis of Atlantic extratropical storm tracks characteristics in 41 years of ERA5 and CFSR/CFSv2 databases. Ocean Eng. 2020, 216, 108111. [Google Scholar] [CrossRef]
- Clark, P.; Browning, K.; Wang, C. The sting at the end of the tail: Model diagnostics of fine-scale three-dimensional structure of the cloud head. Q. J. R. Meteorol. Soc. A J. Atmos. Sci. Appl. Meteorol. Phys. Oceanogr. 2005, 131, 2263–2292. [Google Scholar] [CrossRef]
- Pichugin, M.K.; Gurvich, I.A.; Zabolotskikh, E.V. Severe Marine Weather Systems During Freeze-Up in the Chukchi Sea: Cold-Air Outbreak and Mesocyclone Case Studies From Satellite Multisensor Measurements and Reanalysis Datasets. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2019, 12, 3208–3218. [Google Scholar] [CrossRef]
- Gurvich, I.; Pichugin, M.; Baranyuk, A. Satellite Multi-Sensor Data Analysis of Unusually Strong Polar Lows over the Chukchi and Beaufort Seas in October 2017. Remote Sens. 2023, 15, 120. [Google Scholar] [CrossRef]
- Zabolotskikh, E.V.; Gurvich, I.A.; Chapron, B. Polar lows over the Eastern part of the Eurasian Arctic: The sea-ice retreat consequence. IEEE Geosci. Remote Sens. Lett. 2016, 13, 1492–1496. [Google Scholar] [CrossRef]
- Mitnik, L.M.; Mitnik, M.L.; Gurvich, I.A.; Vykochko, A.V.; Pichugin, M.K.; Cherny, I.V. Water vapor, cloud liquid water content and wind speed in tropical, extratropical and polar cyclones over the Northwest Pacific Ocean. In Proceedings of the 2012 IEEE International Geoscience and Remote Sensing Symposium, Munich, Germany, 22–27 July 2012; pp. 1940–1943. [Google Scholar]
- Vasilyeva, P.V.; Zabolotskikh, E.V.; Chapron, B. Comparative analysis of the North Atlantic and North Pacific extratropical cyclone characteristics retrieved from ERA-Interim reanalysis and AMSR-E data. Curr. Probl. Remote Sens. Earth Space 2018, 15, 236–248. (In Russian) [Google Scholar] [CrossRef]
- Mitnik, L.; Baranyuk, A.; Kuleshov, V.; Mitnik, M. Bomb Cyclones over the North Pacific: Atmospheric Structure and Parameters According to Passive and Active Microwave Measurements from Space. Russ. Meteorol. Hydrol. 2023, 48, 10–19. [Google Scholar] [CrossRef]
- Pichugin, M.; Gurvich, I.; Baranyuk, A. Analysis of extreme winds in intense extratropical cyclones over the North Pacific based on satellite observations from SMAP. Curr. Probl. Remote Sens. Earth Space 2022, 19, 287–299. (In Russian) [Google Scholar] [CrossRef]
- Meissner, T.; Ricciardulli, L.; Wentz, F.J. Capability of the SMAP Mission to Measure Ocean Surface Winds in Storms. Bull. Am. Meteorol. Soc. 2017, 98, 1660–1677. [Google Scholar] [CrossRef]
- Meissner, T.; Ricciardulli, L.; Manaster, A. Tropical cyclone wind speeds from WindSat, AMSR and SMAP: Algorithm development and testing. Remote Sens. 2021, 13, 1641. [Google Scholar] [CrossRef]
- Donelan, M.; Haus, B.K.; Reul, N.; Plant, W.; Stiassnie, M.; Graber, H.; Brown, O.B.; Saltzman, E. On the limiting aerodynamic roughness of the ocean in very strong winds. Geophys. Res. Lett. 2004, 31, L18306. [Google Scholar] [CrossRef]
- Bourassa, M.A.; Meissner, T.; Cerovecki, I.; Chang, P.S.; Dong, X.; De Chiara, G.; Donlon, C.; Dukhovskoy, D.S.; Elya, J.; Fore, A.; et al. Remotely sensed winds and wind stresses for marine forecasting and ocean modeling. Front. Mar. Sci. 2019, 6, 443. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Saha, S.; Moorthi, S.; Wu, X.; Wang, J.; Nadiga, S.; Tripp, P.; Behringer, D.; Hou, Y.T.; Chuang, H.-Y.; Iredell, M.; et al. The NCEP Climate Forecast System Version 2. J. Clim. 2014, 27, 2185–2208. [Google Scholar] [CrossRef]
- Bell, K.; Ray, P.S. North Atlantic hurricanes 1977–1999: Surface hurricane-force wind radii. Mon. Weather Rev. 2004, 132, 1167–1189. [Google Scholar] [CrossRef]
- Gyakum, J.R.; Anderson, J.R.; Grumm, R.H.; Gruner, E.L. North Pacific Cold-Season Surface Cyclone Activity: 1975–1983. Mon. Weather Rev. 1989, 117, 1141–1155. [Google Scholar] [CrossRef]
- Fletcher, J.; Mason, S.; Jakob, C. The climatology, meteorology, and boundary layer structure of marine cold air outbreaks in both hemispheres. J. Clim. 2016, 29, 1999–2014. [Google Scholar] [CrossRef]
- Pickart, R.S.; Macdonald, A.M.; Moore, G.W.K.; Renfrew, I.A.; Walsh, J.E.; Kessler, W.S. Seasonal Evolution of Aleutian Low Pressure Systems: Implications for the North Pacific Subpolar Circulation. J. Phys. Oceanogr. 2009, 39, 1317–1339. [Google Scholar] [CrossRef]
- Hartigan, J.A.; Hartigan, P.M. The dip test of unimodality. Ann. Stat. 1985, 13, 70–84. [Google Scholar] [CrossRef]
- Martínez-Alvarado, O.; Gray, S.L.; Catto, J.L.; Clark, P.A. Sting jets in intense winter North-Atlantic windstorms. Environ. Res. Lett. 2012, 7, 024014. [Google Scholar] [CrossRef]
- Clark, P.A.; Gray, S.L. Sting jets in extratropical cyclones: A review. Q. J. R. Meteorol. Soc. 2018, 144, 943–969. [Google Scholar] [CrossRef]
- Browning, K. The dry intrusion perspective of extra-tropical cyclone development. Meteorol. Appl. 1997, 4, 317–324. [Google Scholar] [CrossRef]
Characteristics | ERA-5 (ECMWF) | CFSv2 (NCEP) |
---|---|---|
Period | From 1979 to present time | From 2011 to present time |
Temporary resolution | Hourly | Hourly |
Model resolution | T639, 31 km | 27 km |
Horizontal resolution | 0.25 0.25 | 0.2 0.2, 0.5 × 0.5 |
Vertical resolution | 137 levels (0.01 hPa) | 37 levels (1 hPa) |
Data assimilation | 4D-Var | 3D-Var |
Date | Time (UTC) | Pc (hPa) | Lon. | Lat. | Wmax (m/s) | Intensity (hPa/h) |
---|---|---|---|---|---|---|
12 December 2015 | 19:10 | 936 | 176.0 | 48.8 | 46 | 2.14 |
14 January 2016 | 04:36 | 949 | 191.8 | 40.0 | 50 | 1.22 |
9 January 2017 | 20:27 | 962 | 153.0 | 38.5 | 49 | 0.76 * |
25 November 2017 | 18:45 | 970 | 175.0 | 50.0 | 50 | 2.32 |
6 January 2018 | 20:01 | 968 | 162.8 | 37.3 | 45 | 2.07 |
28 December 2018 | 19:11 | 957 | 173.3 | 43.5 | 60 | 2.34 |
11 March 2019 | 07:51 | 962 | 144.0 | 38.8 | 50 | 2.24 |
27 December 2019 | 20:01 | 957 | 159.3 | 37.8 | 47 | 1.33 |
29 December 2020 | 18:21 | 971 | 179.0 | 37.3 | 55 | 2.01 |
31 December 2020 | 06:03 | 928 | 168.0 | 48.0 | 47 | 2.61 |
8 January 2021 | 04:23 | 965 | 197.3 | 41.3 | 51 | 2.04 |
20 January 2021 | 06:50 | 974 | 164.3 | 43.3 | 47 | 0.70 * |
12 March 2022 | 05:10 | 967 | 187.2 | 41.0 | 46 | 1.86 |
29 November 2022 | 05:23 | 966 | 176.2 | 38.5 | 43 | 1.02 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pichugin, M.; Gurvich, I.; Baranyuk, A. Assessment of Extreme Ocean Winds within Intense Wintertime Windstorms over the North Pacific Using SMAP L-Band Radiometer Observations. Remote Sens. 2023, 15, 5181. https://doi.org/10.3390/rs15215181
Pichugin M, Gurvich I, Baranyuk A. Assessment of Extreme Ocean Winds within Intense Wintertime Windstorms over the North Pacific Using SMAP L-Band Radiometer Observations. Remote Sensing. 2023; 15(21):5181. https://doi.org/10.3390/rs15215181
Chicago/Turabian StylePichugin, Mikhail, Irina Gurvich, and Anastasiya Baranyuk. 2023. "Assessment of Extreme Ocean Winds within Intense Wintertime Windstorms over the North Pacific Using SMAP L-Band Radiometer Observations" Remote Sensing 15, no. 21: 5181. https://doi.org/10.3390/rs15215181
APA StylePichugin, M., Gurvich, I., & Baranyuk, A. (2023). Assessment of Extreme Ocean Winds within Intense Wintertime Windstorms over the North Pacific Using SMAP L-Band Radiometer Observations. Remote Sensing, 15(21), 5181. https://doi.org/10.3390/rs15215181