Early Detection and Analysis of an Unpredicted Convective Storm over the Negev Desert
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Observations (Satellite, Radar, Hydrometric Measurements, and Radiosondes)
2.2.1. Satellite Data
2.2.2. Radar Data
2.2.3. Hydrometric Measurements
2.2.4. Radiosondes
2.3. Numerical Model Description
2.4. Cloud Detection in Early Stages
2.5. Cloud Microphysics and Severe Storms
3. Results
Cloud Detection
4. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alpert, P.; Krichak, S.O.; Shafir, H.; Haim, D.; Osetinsky, I. Climatic Trends to Extremes Employing Regional Modeling and Statistical Interpretation over the E. Mediterranean. Glob. Planet. Chang. 2008, 63, 163–170. [Google Scholar] [CrossRef]
- Lin, X. Flash Floods in Arid and Semi-Arid Zones. In IHP-V Technical Documents in Hydrology; No. 23; UNESCO: Paris, France, 1999. [Google Scholar]
- Marchi, L.; Borga, M.; Preciso, E.; Gaume, E. Characterisation of Selected Extreme Flash Floods in Europe and Implications for Flood Risk Management. J. Hydrol. 2010, 394, 118–133. [Google Scholar] [CrossRef]
- Rinat, Y.; Marra, F.; Armon, M.; Metzger, A.; Levi, Y.; Khain, P.; Vadislavsky, E.; Rosensaft, M.; Morin, E. Hydrometeorological Analysis and Forecasting of a 3d Flash-Flood-Triggering Desert Rainstorm. Nat. Hazards Earth Syst. Sci. 2021, 21, 917–939. [Google Scholar] [CrossRef]
- Ashbel, D. Great Floods in Sinai Peninsula, Palestine, Syria and the Syrian Desert, and the Influence of the Red Sea on Their Formation. Q. J. R. Meteorol. Soc. 1938, 64, 635–639. [Google Scholar] [CrossRef]
- Kahana, R.; Ziv, B.; Enzel, Y.; Dayan, U. Synoptic Climatology of Major Floods in the Negev Desert, Israel. Int. J. Climatol. 2002, 22, 867–882. [Google Scholar] [CrossRef]
- Tsvieli, Y.; Zangvil, A. Synoptic Climatological Analysis of Red Sea Trough and Non-Red Sea Trough Rain Situations over Israel. Adv. Geosci. 2007, 12, 137–143. [Google Scholar] [CrossRef]
- Dayan, U.; Lensky, I.M.; Ziv, B.; Khain, P. Atmospheric Conditions Leading to an Exceptional Fatal Flash Flood in the Negev Desert, Israel. Nat. Hazards Earth Syst. Sci. 2021, 21, 1583–1597. [Google Scholar] [CrossRef]
- Sharon, D.; Kutiel, H. The Distribution of Rainfall Intensity in Israel, Its Regional and Seasonal Variations and Its Climatological Evaluation. J. Climatol. 1986, 6, 277–291. [Google Scholar] [CrossRef]
- Dayan, U.; Ziv, B.; Margalit, A.; Morin, E.; Sharon, D. A Severe Autumn Storm over the Middle-East: Synoptic and Mesoscale Convection Analysis. Theor. Appl. Clim. 2001, 69, 103–122. [Google Scholar] [CrossRef]
- Tsvieli, Y.; Zangvil, A. Synoptic Climatological Analysis of ‘Wet’ and ‘Dry’ Red Sea Troughs over Israel. Int. J. Climatol. 2005, 25, 1997–2015. [Google Scholar] [CrossRef]
- Saaroni, H.; Harpaz, T.; Alpert, P.; Ziv, B. Automatic Identification and Classification of the Northern Part of the Red Sea Trough and Its Application for Climatological Analysis. Int. J. Climatol. 2020, 40, 3607–3622. [Google Scholar] [CrossRef]
- Ziv, B.; Saaroni, H.; Etkin, A.; Harpaz, T.; Shendrik, L. Formation of Cyclones over the East Mediterranean within Red-Sea Troughs. Int. J. Climatol. 2022, 42, 577–596. [Google Scholar] [CrossRef]
- Givati, A.; Siegel, E.; Galili, U.; Paz, D. Summary of the Exceptional Flood Events that Were Measured in the Fall of 2015; Israel Water Authority: Jerusalem, Israel, 2015. (In Hebrew) [Google Scholar]
- Schmetz, J.; Pili, P.; Tjemkes, S.; Just, D.; Kerkmann, J.; Rota, S.; Ratier, A. An Introduction to Meteosat Second Generation (MSG). Bull. Am. Meteorol. Soc. 2002, 83, 977–992. [Google Scholar] [CrossRef]
- Vermote, E.; Roger, J.C.; Ray, J. MODIS Surface Reflectance User’s Guide; MODIS Land Surface Reflectance Science Computing Facility; USGS: Reston, VA, USA, 2015. [Google Scholar]
- Mereu, L.; Marzano, F.S.; Montopoli, M.; Bonadonna, C. Retrieval of Tephra Size Spectra and Mass Flow Rate From C-Band Radar During the 2010 Eyjafjallajökull Eruption, Iceland. IEEE Trans. Geosci. Remote Sens. 2015, 53, 5644–5660. [Google Scholar] [CrossRef]
- Shentsis, I.; Laronne, J.B.; Alpert, P. Red Sea Trough Flood Events in the Negev, Israel (1964–2007). Hydrol. Sci. J. 2012, 57, 42–51. [Google Scholar] [CrossRef]
- Moncrieff, M.W.; Miller, M.J. The Dynamics and Simulation of Tropical Cumulonimbus and Squall Lines. Q. J. R. Meteorol. Soc. 1976, 102, 373–394. [Google Scholar] [CrossRef]
- Givati, A.; Lynn, B.; Liu, Y.; Rimmer, A. Using the WRF Model in an Operational Streamflow Forecast System for the Jordan River. J. Appl. Meteorol. Climatol. 2012, 51, 285–299. [Google Scholar] [CrossRef]
- Grell, G.A.; Dévényi, D. A Generalized Approach to Parameterizing Convection Combining Ensemble and Data Assimilation Techniques. Geophys. Res. Lett. 2002, 29, 38-1–38-4. [Google Scholar] [CrossRef]
- Kain, J.S. The Kain–Fritsch Convective Parameterization: An Update. J. Appl. Meteorol. 2004, 43, 170–181. [Google Scholar] [CrossRef]
- Rossow, W.B. Measuring Cloud Properties from Space: A Review. J. Clim. 1989, 2, 201–213. [Google Scholar] [CrossRef]
- Ackerman, S.A.; Frey, R.A. MODIS Atmosphere L2 Cloud Mask Product 2015; NASA: Greenbelt, MD, USA, 2015. [Google Scholar]
- Derrien, M.; Le Gléau, H. MSG/SEVIRI Cloud Mask and Type from SAFNWC. Int. J. Remote Sens. 2005, 26, 4707–4732. [Google Scholar] [CrossRef]
- Scharlemann, J.P.W.; Benz, D.; Hay, S.I.; Purse, B.V.; Tatem, A.J.; Wint, G.R.W.; Rogers, D.J. Global Data for Ecology and Epidemiology: A Novel Algorithm for Temporal Fourier Processing MODIS Data. PLoS ONE 2008, 3, e1408. [Google Scholar] [CrossRef]
- Lensky, I.M.; Dayan, U. Detection of Fine-Scale Climatic Features from Satellites and Implications to Agricultural Planning. Bull. Am. Meteorol. Soc. 2011, 92, 1131–1136. [Google Scholar] [CrossRef]
- Lensky, I.M.; Rosenfeld, D. Clouds-Aerosols-Precipitation Satellite Analysis Tool (CAPSAT). Atmos. Chem. Phys. 2008, 8, 6739–6753. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Woodley, W.L.; Lerner, A.; Kelman, G.; Lindsey, D.T. Satellite Detection of Severe Convective Storms by Their Retrieved Vertical Profiles of Cloud Particle Effective Radius and Thermodynamic Phase. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Rosenfeld, D.; Lensky, I.M. Satellite-Based Insights into Precipitation Formation Processes in Continental and Maritime Convective Clouds. Bull. Am. Meteorol. Soc. 1998, 79, 2457–2476. [Google Scholar] [CrossRef]
- Hansen, J.E.; Travis, L.D. Light Scattering in Planetary Atmospheres. Space Sci. Rev. 1974, 16, 527–610. [Google Scholar] [CrossRef]
- Lensky, I.M.; Rosenfeld, D. The Time-Space Exchangeability of Satellite Retrieved Relations between Cloud Top Temperature and Particle Effective Radius. Atmos. Chem. Phys. 2006, 6, 2887–2894. [Google Scholar] [CrossRef]
- Huang, Y.; Meng, Z.; Li, J.; Li, W.; Bai, L.; Zhang, M.; Wang, X. Distribution and Variability of Satellite-Derived Signals of Isolated Convection Initiation Events over Central Eastern China. J. Geophys. Res. Atmos. 2017, 122, 11357–11373. [Google Scholar] [CrossRef]
- Roberts, R.D.; Rutledge, S. Nowcasting Storm Initiation and Growth Using GOES-8 and WSR-88D Data. Weather Forecast. 2003, 18, 562–584. [Google Scholar] [CrossRef]
- Mecikalski, J.R.; Bedka, K.M. Forecasting Convective Initiation by Monitoring the Evolution of Moving Cumulus in Daytime GOES Imagery. Mon. Weather Rev. 2006, 134, 49–78. [Google Scholar] [CrossRef]
- Siewert, C.W.; Koenig, M.; Mecikalski, J.R. Application of Meteosat Second Generation Data towards Improving the Nowcasting of Convective Initiation. Meteorol. Appl. 2010, 17, 442–451. [Google Scholar] [CrossRef]
- Zangvil, A.; Druian, P. Upper Air Trough Axis Orientation and the Spatial Distribution of Rainfall over Israel. Int. J. Climatol. 1990, 10, 57–62. [Google Scholar] [CrossRef]
- Weygandt, S.S.; Benjamin, S.G.; Hu, M.; Alexander, C.R.; Smirnova, T.G.; James, E.P. Radar Reflectivity–Based Model Initialization Using Specified Latent Heating (Radar-LHI) within a Diabatic Digital Filter or Pre-Forecast Integration. Weather Forecast. 2022, 37, 1419–1434. [Google Scholar] [CrossRef]
- Min, C.; Chen, S.; Gourley, J.J.; Chen, H.; Zhang, A.; Huang, Y.; Huang, C. Coverage of China New Generation Weather Radar Network. Adv. Meteorol. 2019, 2019, e5789358. [Google Scholar] [CrossRef]
- Gregow, E.; Lindfors, A.V.; van der Veen, S.H.; Schoenach, D.; de Haan, S.; Lindskog, M. The Use of Satellite and Surface Observations for Initializing Clouds in the HARMONIE NWP Model. Meteorol. Appl. 2020, 27, e1965. [Google Scholar] [CrossRef]
- Kwon, I.-H.; English, S.; Bell, W.; Potthast, R.; Collard, A.; Ruston, B. Assessment of Progress and Status of Data Assimilation in Numerical Weather Prediction. Bull. Am. Meteorol. Soc. 2018, 99, ES75–ES79. [Google Scholar] [CrossRef]
- Mohandas, S. Weather and Climate Modeling. In Social and Economic Impact of Earth Sciences; Gahalaut, V.K., Rajeevan, M., Eds.; Springer Nature: Singapore, 2023; pp. 121–141. ISBN 978-981-19692-9-4. [Google Scholar]
- Castorina, G.; Caccamo, M.T.; Insinga, V.; Magazù, S.; Munaò, G.; Ortega, C.; Semprebello, A.; Rizza, U. Impact of the Different Grid Resolutions of the WRF Model for the Forecasting of the Flood Event of 15 July 2020 in Palermo (Italy). Atmosphere 2022, 13, 1717. [Google Scholar] [CrossRef]
- Musa, A.I.I.; Tsubo, M.; Ma, S.; Kurosaki, Y.; Ibaraki, Y.; Ali-Babiker, I.-E.A. Evaluation of WRF Cumulus Parameterization Schemes for the Hot Climate of Sudan Emphasizing Crop Growing Seasons. Atmosphere 2022, 13, 572. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shiff, S.; Givati, A.; Brenner, S.; Lensky, I.M. Early Detection and Analysis of an Unpredicted Convective Storm over the Negev Desert. Remote Sens. 2023, 15, 5241. https://doi.org/10.3390/rs15215241
Shiff S, Givati A, Brenner S, Lensky IM. Early Detection and Analysis of an Unpredicted Convective Storm over the Negev Desert. Remote Sensing. 2023; 15(21):5241. https://doi.org/10.3390/rs15215241
Chicago/Turabian StyleShiff, Shilo, Amir Givati, Steve Brenner, and Itamar M. Lensky. 2023. "Early Detection and Analysis of an Unpredicted Convective Storm over the Negev Desert" Remote Sensing 15, no. 21: 5241. https://doi.org/10.3390/rs15215241
APA StyleShiff, S., Givati, A., Brenner, S., & Lensky, I. M. (2023). Early Detection and Analysis of an Unpredicted Convective Storm over the Negev Desert. Remote Sensing, 15(21), 5241. https://doi.org/10.3390/rs15215241