Deformation Monitoring and Dynamic Analysis of Long-Runout Bedding Landslide Based on InSAR and Particle Flow Code
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.1.1. Geomorphology
2.1.2. Geological Structure and Formation Lithology
2.1.3. Meteorology and Hydrology
2.2. Movement Characteristics of the Landslide
2.2.1. Sliding Source Area
2.2.2. Propagation Area
2.2.3. Debris Flow Accumulation Area
2.3. Methods
2.3.1. InSAR Monitoring
2.3.2. Numerical Analysis
3. Results
3.1. Deformation Characteristics Revealed by InSAR Observations
3.2. Movement Characteristics Revealed by PFC3D Observations
3.2.1. Landslide Movement and Accumulation
3.2.2. Velocity and Displacement Trajectory
4. Discussion
4.1. Identification of Slippery Features
4.2. Hazard Model
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gao, Y.; Li, B.; Feng, Z.; Zuo, X. Global climate change and geological disaster response analysis. J. Geomech. 2017, 23, 65–77. [Google Scholar]
- Heim, A. Bergsturz und Menschenleben; Fretz & Wasmuth: Tübingen, Germany, 1932. [Google Scholar]
- Voight, B.; Pariseau, W.G. Rockslides and avalanches: An introduction. Developments in Geotechnical Engineering; Elsevier: Amsterdam, The Netherlands, 1978; p. 10. [Google Scholar]
- Xu, Q.; Hunag, R.Q.; Yin, Y.P.; Hou, S.S.; Dong, X.J.; Dong, X.J.; Fan, X.M.; Tang, M.G. The Jiweishan landslide of 5 June 2009 in Wulong, Chongqing: Characteristics and failure mechanism. J. Eng. Geol. 2009, 17, 433–444. (In Chinese) [Google Scholar]
- Yin, Y.P. Mechanism of apparent dip slide of inclined bedding rockslide: A case study of Jiweishan rockslide in Wulong, Chongqing. Chin. J. Rock Mech. Eng. 2010, 29, 217–226. (In Chinese) [Google Scholar]
- Yin, Y.P.; Wang, W.P.; Zhang, N.; Yan, J.K.; Wei, Y.J.; Yang, L.W. Long runout geological disaster initiated by the ridge-top rockslide in a strong earthquake area: A case study of the Xinmo landslide in Maoxian County, Sichuan Province. Geol. China 2017, 44, 827–841. (In Chinese) [Google Scholar]
- Li, B.; Gao, Y.; Yin, Y.; Wan, J.; He, K.; Wu, W.; Zhang, H. Rainstorm-induced large-scale landslides in northeastern Chongqing, China, 31 August to 2 September 2014. Bull. Eng. Geol. Environ. 2022, 81, 271. [Google Scholar] [CrossRef]
- Dahal, R.K.; Hasegawa, S. Representative rainfall thresholds for landslides in the Nepal Himalaya. Geomorphology 2008, 100, 429–443. [Google Scholar] [CrossRef]
- Bhardwaj, A.; Wasson, R.J.; Ziegler, A.D.; Chow, W.T.L.; Sundriyal, Y.P. Characteristics of rain-induced landslides in the Indian Himalaya: A case study of the Mandakini catchment during the 2013 flood. Geomorphology 2019, 330, 100–115. [Google Scholar] [CrossRef]
- Iverson, R.M. Landslide triggering by rain infiltration. Water Resour. Res. 2000, 36, 1897–1910. [Google Scholar] [CrossRef]
- Matsuura, S.; Asano, S.; Okamoto, T. Relationship between rain and meltwater, pore-water pressure and displacement of a reactivated landslide. Eng. Geol. 2008, 101, 49–59. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L. The mechanism of a railway landslide caused by rainfall. Landslides 2010, 7, 149–156. [Google Scholar] [CrossRef]
- Vassallo, R.; Grimaldi, G.M.; Di Maio, C. Pore water pressures induced by historical rain series in a clayey landslide: 3D modeling. Landslides 2015, 12, 731–744. [Google Scholar] [CrossRef]
- Xu, Q. The 13 August 2010 catastrophic debris flows in Sichuan province: Characteristics, genetic mechanism and suggestions. J. Eng. Geol. 2010, 18, 596–608. (In Chinese) [Google Scholar]
- Gao, Y.; He, K.; Li, Z.; Gao, H.Y.; Wei, T.Y.; Xing, A.G.; Li, B. An analysis of disaster types and dynamics of landslides in the southwest karst mountain areas. Hydrogeol. Eng. Geol. 2020, 47, 14–23. (In Chinese) [Google Scholar]
- Gao, H.Y.; Gao, Y.; He, K.; Li, B.; Zhao, Z.N.; Chen, L.C.; Wang, Y.F. Impact and scraping effects of the high-elevation, long-runout “7.23” landslide in Shuicheng, Guizhou. Carsol. Sin. 2020, 39, 535–546. (In Chinese) [Google Scholar]
- Li, Z.; Gao, Y.; He, K.; Gao, H.Y.; Wei, T.Y.; Liu, Z.; Zhao, Z.N. Analysis of the fluidization process of the high position and long-runout landslide in Shuicheng, Liupanshui, Guizhou Province. J. Geomech. 2020, 26, 520–532. (In Chinese) [Google Scholar]
- Buss, E.; Heim, A. Der Bergsturz von Elm den 11 September 1881: Denkschrift. Z. Der Dtsch. Ges. Für Geowiss. 1881, 540–564. [Google Scholar]
- Kent, P.E. The transport mechanism in catastrophic rock falls. J. Geol. 1966, 74, 79–83. [Google Scholar] [CrossRef]
- Sassa, K. Geotechnical model for the motion of landslides (Special lecture). In Proceedings of the 5th International Symposium on Landslides, Lausanne, Switzerland, 10–15 July 1988; A.A. Balkema: Amsterdam, The Netherlands, 1989; Volume 1, pp. 37–56. [Google Scholar]
- Hungr, O. A model for the runout analysis of rapid flow slides, debris flows, and avalanches. Can. Geotech. J. 1995, 32, 610–623. [Google Scholar] [CrossRef]
- Davies, T.R.; McSaveney, M.J.; Hodgson, K.A. A fragmentation-spreading model for long-runout rock avalanches. Can. Geotech. J. 1999, 36, 1096–1110. [Google Scholar] [CrossRef]
- Xing, A.G.; Gao, G.Y.; Chen, L.Z.; Hu, H.T. Study on hydrodynamics mechanism of large highspeed landslide in the set-out stage. Chin. J. Rock Mech. Eng. 2004, 23, 607–613. (In Chinese) [Google Scholar]
- Xing, A.G.; Yin, Y.P. Whole course analysis on hydrokinetics mechanism of Touzhai gully landslide. J. Tongji Univ. Nat. Sci. 2009, 37, 481–485. (In Chinese) [Google Scholar]
- De Blasio, F.V.; Crosta, G.B. Fragmentation and boosting of rock falls and rock avalanches. Geophys. Res. Lett. 2015, 42, 8463–8470. [Google Scholar] [CrossRef]
- Lai, Z.; Vallejo, L.E.; Zhou, W.; Ma, G.; Espitia, J.M.; Caicedo, B.; Chang, X. Collapse of granular columns with fractal particle size distribution: Implications for understanding the role of small particles in granular flows. Geophys. Res. Lett. 2017, 44, 12–181. [Google Scholar] [CrossRef]
- Gao, Y.; Yin, Y.; Li, B.; Wei, T.; Li, Z.; Gao, H. The role of fluid drag force in the dynamic process of two-phase flow-like landslides. Landslides 2022, 19, 1791–1805. [Google Scholar] [CrossRef]
- Evans, S.G.; Hungr, O.; Clague, J.J. Dynamics of the 1984 rock avalanche and associated distal debris flow on Mount Cayley, British Columbia, Canada; Implications for Landslide Hazard Assessment on Dissected Volcanoes. Eng. Geol. 2001, 61, 29–51. [Google Scholar] [CrossRef]
- Sassa, K.; Wang, G.; Fukuoka, H.; Wang, F.; Ochiai, T.; Sugiyama, M.; Sekiguchi, T. Landslide risk evaluation and hazard zoning for rapid and long-travel landslides in urban development areas. Landslides 2004, 1, 221–235. [Google Scholar] [CrossRef]
- Sassa, K.; Nagai, O.; Solidum, R.; Yamazaki, Y.; Ohta, H. An integrated model simulating the initiation and motion of earthquake and rain induced rapid landslides and its application to the 2006 leyte landslide. Landslides 2010, 7, 219–236. [Google Scholar] [CrossRef]
- Zhang, Y.J.; Xing, A.G.; Zhu, J.L. Dynamics analysis of Niujuangou rockslide-debris avalanche triggered by the Wenchuan earthquake. J. Shanghai Jiaotong Univ. 2012, 46, 1665–1670. (In Chinese) [Google Scholar]
- Gao, Y.; Yin, Y.; Li, B.; Feng, Z.; Wang, W.; Zhang, N.; Xing, A. Characteristics and numerical runout modeling of the heavy rainfall-induced catastrophic landslide-debris flow at Sanxicun, Dujiangyan, China, following the Wenchuan Ms 8.0 Earthquake. Landslides 2017, 14, 1361–1374. [Google Scholar] [CrossRef]
- Gao, Y.; Yin, Y.; Li, B.; He, K.; Wang, X. Post-failure behavior analysis of the Shenzhen “12.20” CDW landfill landslide. Waste Manag. 2019, 83, 171–183. [Google Scholar] [CrossRef]
- Gao, Y.; Li, B.; Gao, H.; Chen, L.; Wang, Y. Dynamic characteristics of high-elevation and long-runout landslides in the Emeishan basalt area: A case study of the Shuicheng “7.23” landslide in Guizhou, China. Landslides 2020, 17, 1663–1677. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Chen, L.; Yan, J.K.; Gao, Y. Study on the catastrophic process of rapid and long run-out landslides based on DAN-W. Northwest. Geol. 2021, 54, 204–211. (In Chinese) [Google Scholar]
- Zhang, L.; Tang, H.M.; Xiong, C.R.; Huang, L.; Zou, Z.X. Movement process simulation of high-speed long-distance Jiweishan landslide with PFC3D. Chin. J. Rock Mech. Eng. 2012, 31, 2601–2611. (In Chinese) [Google Scholar]
- Meng, H.Y.; Zhan, J.W.; Lu, Q.Z.; Zhao, C.Y.; Hang, J.L.; Sun, Y.M. Kinematics characteristics and numerical simulation analysis of “8.12” giant landslide in Shanyang county, Shaanxi province. J. Eng. Geol. 2022, 1–18. (In Chinese) [Google Scholar]
- Zhou, C.; Huang, W.; Ai, D.; Xu, H.; Yuan, J.; Kou, L.; Luo, X. Catastrophic landslide triggered by extreme rainfall in Chongqing, China: 13 July 2020, Niuerwan landslide. Landslides 2022, 19, 2397–2407. [Google Scholar] [CrossRef]
- Zhou, C.; Cao, Y.; Hu, X.; Yin, K.; Wang, Y.; Catani, F. Enhanced dynamic landslide hazard mapping using MT-InSAR method in the Three Gorges Reservoir Area. Landslides 2022, 19, 1585–1597. [Google Scholar] [CrossRef]
- Zhang, X.; Chen, L.; Zhou, C. Deformation Monitoring and Trend Analysis of Reservoir Bank Landslides by Combining Time-Series InSAR and Hurst Index. Remote Sens. 2023, 15, 619. [Google Scholar] [CrossRef]
- Su, C.; Mergili, M.; Rana, N.M.; Zhang, S.; Dai, C.; Wang, B.; Han, Y. Failure analysis and flow dynamic modeling using a new slow-flow functionality: The 2022 Jiaokou (China) tailings dam breach. Landslides 2023, 1–13. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef]
- Goldstein, R.M.; Werner, C.L. Radar interferogram filtering for geophysical applications. Geophys. Res. Lett. 1998, 25, 4035–4038. [Google Scholar] [CrossRef]
- Costantini, M. A novel phase unwrapping method based on network programming. IEEE Trans. Geosci. Remote Sens. 1998, 36, 813–821. [Google Scholar] [CrossRef]
- Lyons, S.; Sandwell, D. Fault creep along the southern San Andreas from interferometric synthetic aperture radar, permanent scatterers, and stacking. J. Geophys. Res. Solid Earth 2003, 108, B1. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, C.; Zhang, Q.; Lu, Z.; Li, Z.; Yang, C.; Zhu, W.; Liu-Zeng, J.; Chen, L.; Liu, C. Integration of Sentinel−1 and ALOS/PALSAR-2 SAR datasets for mapping active landslides along the Jinsha river corridor, China. Eng. Geol. 2021, 284, 106033. [Google Scholar] [CrossRef]
- Doin, M.-P.; Lasserre, C.; Peltzer, G.; Cavalié, O.; Doubre, C. Corrections of stratified tropospheric delays in SAR interferometry: Validation with global atmospheric models. J. Appl. Geophys. 2009, 69, 35–50. [Google Scholar] [CrossRef]
- Guo, J.; Cui, Y.; Xu, W.; Yin, Y.; Li, Y.; Jin, W. Numerical investigation of the landslide-debris flow transformation process considering topographic and entrainment effects: A case study. Landslides 2022, 19, 773–788. [Google Scholar] [CrossRef]
- Jiang, Z.; Zhao, C.; Yan, M.; Wang, B.; Liu, X. The early identification and spatio-temporal characteristics of loess landslides with Sentinel−1a datasets: A case of Dingbian county, China. Remote Sens. 2022, 14, 6009. [Google Scholar] [CrossRef]
- Liang, J.; Dong, J.; Zhang, S.; Zhao, C.; Liu, B.; Yang, L.; Yan, S.; Ma, X. Discussion on InSAR identification effectivity of potential landslides and factors that influence the effectivity. Remote Sens. 2022, 14, 1952. [Google Scholar] [CrossRef]
- Zhang, H.; Gao, Y.; Li, B.; Li, J.; Wu, W. Numerical simulation analysis of the solid–liquid coupling process in a hybrid landslide: A case study of the Wushanping landslide. J. Geomech. 2022, 28, 1104–1114. (In Chinese) [Google Scholar]
- Wei, T. Study on Drag Effect of Flow Like Landslides. Master’s Thesis, Chang’an University, Xi’An, China, 2022. (In Chinese). [Google Scholar]
SAR Satellite | Sentinel−1 |
---|---|
Orbit direction | Ascending |
Azimuth (°) | −12.65 |
Incidence angle (°) | 39.27 |
Spacing (Range × Azimuth) | 5 × 20 |
Duration | 24 October 2017–16 July 2020 |
Numbers | 83 |
Microscopic parameters of the upper layer soil | Minimum particle radius Rmin (m) | Particle radius ratio Rmax/Rmin | Density ρ (kg·m−3) | Contact modulus (MPa) | Coefficient of friction |
1.2 | 1.67 | 2300 | 1000 | 0.2 | |
Parallel bond modulus (MPa) | Parallel bond stiffness ratio K | Normal bond strength (MPa) | Tangential bond strength (MPa) | Damping coefficient | |
0 | 0 | 0 | 0 | 0.37 | |
Microscopic parameters of the lower layer bedrock | Minimum particle radius Rmin (m) | Particle radius ratio Rmax/Rmin | Density ρ (kg·m−3) | Contact modulus (MPa) | Coefficient of friction |
2 | 1 | 2300 | 1000 | 0.5 | |
Parallel bond modulus (MPa) | Parallel bond stiffness ratio K | Normal bond strength (MPa) | Tangential bond strength (MPa) | Damping coefficient | |
1256 | 1 | 100 | 100 | 0.37 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; Li, J.; Liu, X.; Wu, W.; Zhang, H.; Liu, P. Deformation Monitoring and Dynamic Analysis of Long-Runout Bedding Landslide Based on InSAR and Particle Flow Code. Remote Sens. 2023, 15, 5105. https://doi.org/10.3390/rs15215105
Gao Y, Li J, Liu X, Wu W, Zhang H, Liu P. Deformation Monitoring and Dynamic Analysis of Long-Runout Bedding Landslide Based on InSAR and Particle Flow Code. Remote Sensing. 2023; 15(21):5105. https://doi.org/10.3390/rs15215105
Chicago/Turabian StyleGao, Yang, Jun Li, Xiaojie Liu, Weile Wu, Han Zhang, and Pengfei Liu. 2023. "Deformation Monitoring and Dynamic Analysis of Long-Runout Bedding Landslide Based on InSAR and Particle Flow Code" Remote Sensing 15, no. 21: 5105. https://doi.org/10.3390/rs15215105
APA StyleGao, Y., Li, J., Liu, X., Wu, W., Zhang, H., & Liu, P. (2023). Deformation Monitoring and Dynamic Analysis of Long-Runout Bedding Landslide Based on InSAR and Particle Flow Code. Remote Sensing, 15(21), 5105. https://doi.org/10.3390/rs15215105