Estimation of Earth Rotation Parameters and Prediction of Polar Motion Using Hybrid CNN–LSTM Model
Abstract
:1. Introduction
- VLBI observations from 2011 to 2020 were estimated by Vienna VLBI Software 3.2 (VieVS 3.2) [31,32] to obtain 10-year ERP time series. Furthermore, in order to compare the difference in ERP accuracy between other VLBI solutions, we estimated the observations of the CONT08, CONT11, CONT14, and CONT17 campaigns. To further explore high-frequency variations and investigate long-term series information of polar motion, fast Fourier transform (FFT) was used for the spectral analysis of polar motion series;
- The LS + AR model is currently one of the more accurate models for short-term polar motion series prediction; however, it is less effective in medium- and long-term prediction. This experiment aims to resolve the problem that the existing methods are not effective for the medium- and long-term prediction of polar motion series and the inadequate modelling capabilities of various influencing factors. In this paper, a hybrid CNN–LSTM model to predict polar motion is proposed by this paper; the CNN model can effectively extract features that affect polar motion series, and the LSTM model has natural advantages in the medium- and long-term time series prediction. To compare the differences in prediction accuracy, we also construct the LS + AR models for polar motion prediction based on Earth orientation parameters prediction comparison campaign (EOP PCC) [1,33].
2. The ERP Estimation and Analysis Based on VLBI Observations
2.1. Sources of VLBI Observations
2.2. Error Analysis
2.3. The ERP Solution Strategies and Analysisas
2.4. Spectral Analysis Based on FFT
3. Polar Motion Prediction Based on Hybrid CNN–LSTM Model
3.1. Hybrid CNN–LSTM Model
3.1.1. CNN Model
3.1.2. LSTM Model
3.1.3. Hybrid CNN–LSTM Model
3.2. LS + AR Model
3.2.1. LS Model
3.2.2. AR Model
3.3. Error Analysis
3.4. Strategies for Polar Motion Prediction
3.4.1. Sources of Polar Motion Data
3.4.2. Experimental Schemes
- Scheme 1: 1 January 2015 to 31 October 2020 was chosen as the 6-year base time series, with the LS + AR method used for prediction;
- Scheme 2: 1 January 2015 to 31 October 2020 was selected as the 6-year base time series, with the CNN–LSTM method used for prediction;
- Scheme 3: 1 January 2013 to 31 October 2020 was chosen as the 8-year base time series and the CNN–LSTM method is used for prediction;
- Scheme 4: 1 January 2011 to 31 October 2020 was selected as the 10-year base time series, with the CNN–LSTM method used prediction;
- Scheme 5: 1 January 2009 to 31 October 2020 was chosen as the 12-year base time series, with the CNN–LSTM method used for prediction;
- Scheme 6: Prediction of the polar motion series based on the ERP series estimated from 2011 to 2020 VLBI observations, with the CNN–LSTM method used for prediction.
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalarus, M.; Schuh, H.; Kosek, W.; Akyilmaz, O.; Bizouard, C.; Gambis, D.; Gross, R.; Jovanović, B.; Kumakshev, S.; Kutterer, H.; et al. Achievements of the Earth orientation parameters prediction comparison campaign. J. Geod. 2010, 84, 587–596. [Google Scholar] [CrossRef]
- Herring, T.A.; Dong, D. Measurement of diurnal and semidiurnal rotational variations and tidal parameters of Earth. J. Geophys. Res. Solid Earth 1994, 99, 18051–18071. [Google Scholar] [CrossRef]
- Chen, J.L.; Wilson, C.R.; Eanes, R.J.; Tapley, B.D. A new assessment of long-wavelength gravitational variations. J. Geophys. Res. Solid Earth 2000, 105, 16271–16277. [Google Scholar] [CrossRef]
- Freedman, A.P.; Steppe, J.A.; Dickey, J.O.; Eubanks, T.M.; Sung, L.Y. The short-term prediction of universal time and length of day using atmospheric angular momentum. J. Geophys. Res. 1994, 99, 6981–6996. [Google Scholar] [CrossRef]
- Gambis, D. Monitoring Earth orientation using space-geodetic techniques: State-of-the-art and prospective. J. Geod. 2004, 78, 295–303. [Google Scholar] [CrossRef]
- Lambeck, K. The Earth’s Variable Rotation; Cambridge University Press: Cambridge, UK, 1980. [Google Scholar]
- Xu, C.; Shen, W.; Chao, D. Geophysical Geodesy Principles and Methods; Wuhan University Press: Wuhan, China, 2006. [Google Scholar]
- Böhm, S.; Brzeziński, A.; Schuh, H. Complex demodulation in VLBI estimation of high frequency Earth rotation components. J. Geodyn. 2012, 62, 56–68. [Google Scholar] [CrossRef]
- Dow, J.M.; Neilan, R.E.; Rizos, C. The International GNSS Service in a changing landscape of Global Navigation Satellite Systems. J. Geod. 2009, 83, 191–198. [Google Scholar] [CrossRef]
- Brzeziński, A. On estimation of high frequency geophysical signals in Earth rotation by complex demodulation. J. Geodyn. 2012, 62, 74–82. [Google Scholar] [CrossRef]
- Brzeziński, A.; Bizouard, C.; Petrov, S.D. Influence Of The Atmosphere On Earth Rotation: What New Can Be Learned From The Recent Atmospheric Angular Momentum Estimates? Surv. Geophys. 2002, 23, 33–69. [Google Scholar] [CrossRef]
- MacMillan, D.S. EOP and scale from continuous VLBI observing: CONT campaigns to future VGOS networks. J. Geod. 2017, 91, 819–829. [Google Scholar] [CrossRef]
- Nilsson, T.; Heinkelmann, R.; Karbon, M.; Raposo-Pulido, V.; Soja, B.; Schuh, H. Earth orientation parameters estimated from VLBI during the CONT11 campaign. J. Geod. 2014, 88, 491–502. [Google Scholar] [CrossRef]
- Puente, V.; Azcue, E.; Gomez-Espada, Y.; Garcia-Espada, S. Comparison of common VLBI and GNSS estimates in CONT17 campaign. J. Geod. 2021, 95, 120. [Google Scholar] [CrossRef]
- Akyilmaz, O.; Kutterer, H. Prediction of Earth rotation parameters by fuzzy inference systems. J. Geod. 2004, 78, 82–93. [Google Scholar] [CrossRef]
- Kosek, W.; Kalarus, M.; Niedzielski, T. Forecasting of the Earth orientation parameters—Comparison of different algorithms. Nagoya J. Med. Sci. 2008, 69, 155–158. [Google Scholar]
- Schuh, H.; Ulrich, M.; Egger, D.; Müller, J.; Schwegmann, W. Prediction of Earth orientation parameters by artificial neural networks. J. Geod. 2002, 76, 247–258. [Google Scholar] [CrossRef]
- Jin, X.; Liu, X.; Guo, J.; Shen, Y. Analysis and prediction of polar motion using MSSA method. Earth Planets Space 2021, 73, 147. [Google Scholar] [CrossRef]
- Kiani Shahvandi, M.; Schartner, M.; Soja, B. Neural ODE Differential Learning and Its Application in Polar Motion Prediction. J. Geophys. Res. Solid Earth 2022, 127, e2022JB024775. [Google Scholar] [CrossRef]
- Akyilmaz, O.; Kutterer, H.; Shum, C.K.; Ayan, T. Fuzzy-wavelet based prediction of Earth rotation parameters. Appl. Soft Comput. 2011, 11, 837–841. [Google Scholar] [CrossRef]
- Kosek, W.; McCarthy, D.D.; Luzum, B.J. El Niño Impact on Polar Motion Prediction Errors. Stud. Geophys. Geod. 2001, 45, 347–361. [Google Scholar] [CrossRef]
- Niedzielski, T.; Kosek, W. Prediction of UT1–UTC, LOD and AAM χ3 by combination of least-squares and multivariate stochastic methods. J. Geod. 2007, 82, 83–92. [Google Scholar] [CrossRef]
- Chin, T.M.; Gross, R.S.; Dickey, J.O. Modeling and forecast of the polar motion excitation functions for short-term polar motion prediction. J. Geod. 2004, 78, 343–353. [Google Scholar] [CrossRef]
- Gambis, D.; Salstein, D.A.; Lambert, S. Use of atmospheric angular momentum forecasts for UT1 predictions: Analyses over CONT08. J. Geod. 2011, 85, 435–441. [Google Scholar] [CrossRef]
- Su, X.; Liu, L.; Houtse, H.; Wang, G. Long-term polar motion prediction using normal time–Frequency transform. J. Geod. 2013, 88, 145–155. [Google Scholar] [CrossRef] [Green Version]
- Li, P.; Abdel-Aty, M.; Yuan, J. Real-time crash risk prediction on arterials based on LSTM-CNN. Accid. Anal. Prev. 2020, 135, 105371. [Google Scholar] [CrossRef] [PubMed]
- Tian, C.; Ma, J.; Zhang, C.; Zhan, P. A Deep Neural Network Model for Short-Term Load Forecast Based on Long Short-Term Memory Network and Convolutional Neural Network. Energies 2018, 11, 3493. [Google Scholar] [CrossRef] [Green Version]
- Xia, W.; Zhu, W.; Liao, B.; Chen, M.; Cai, L.; Huang, L. Novel architecture for long short-term memory used in question classification. Neurocomputing 2018, 299, 20–31. [Google Scholar] [CrossRef]
- Karim, F.; Majumdar, S.; Darabi, H.; Chen, S. LSTM Fully Convolutional Networks for Time Series Classification. IEEE Access 2018, 6, 1662–1669. [Google Scholar] [CrossRef]
- Zhou, H.; Sun, J.; Zhao, Z.; Yang, Y.; Xie, A.; Chiclana, F. Attention-Based Deep Learning Model for Predicting Collaborations Between Different Research Affiliations. IEEE Access 2019, 7, 118068–118076. [Google Scholar] [CrossRef]
- Böhm, J.; Böhm, S.; Nilsson, T.; Pany, A.; Plank, L.; Spicakova, H.; Teke, K.; Schuh, H. The New Vienna VLBI Software VieVS. In Geodesy for Planet Earth; Springer: Berlin/Heidelberg, Germany, 2012; pp. 1007–1011. [Google Scholar]
- Böhm, J.; Böhm, S.; Boisits, J.; Girdiuk, A.; Gruber, J.; Hellerschmied, A.; Krásná, H.; Landskron, D.; Madzak, M.; Mayer, D.; et al. Vienna VLBI and Satellite Software (VieVS) for Geodesy and Astrometry. Publ. Astron. Soc. Pac. 2018, 130, 044503. [Google Scholar] [CrossRef]
- Kalarus, M.; Kosek, W.; Schuh, H. Current Results of the Earth Orientation Parameters Prediction Comparison Campaign; Observatoire de Paris: Paris, France, 2007. [Google Scholar]
- Ros, C.T.; Pavetich, P.; Nilsson, T.; Böhm, J.; Schuh, H. Vienna SAC-SOS: Analysis of the European Vlbi Sessions. In Proceedings of the IVS 2012 General Meeting Proceedings “Launching the Next-Generation IVS Network”, Madrid, Spain, 4–9 March 2012. [Google Scholar]
- Petit, G. Relativity in the IERS Conventions. Proc. Int. Astron. Union 2010, 5, 16–21. [Google Scholar] [CrossRef] [Green Version]
- Altamimi, Z.; Rebischung, P.; Métivier, L.; Collilieux, X. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geophys. Res. Solid Earth 2016, 121, 6109–6131. [Google Scholar] [CrossRef]
- Gordon, D. Impact of the VLBA on reference frames and earth orientation studies. J. Geod. 2016, 91, 735–742. [Google Scholar] [CrossRef]
- Landskron, D.; Böhm, J. VMF3/GPT3: Refined discrete and empirical troposphere mapping functions. J. Geod. 2018, 92, 349–360. [Google Scholar] [CrossRef]
- Blakemore, D. Relevance and Linguistic Meaning: The Semantics and Pragmatics of Discourse Markers; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Bonn, U.u.L. Ensemble Simulations of Atmospheric Angular Momentum and Its Influence on the Earth’s Rotation. Doctoral Dissertation, Universitäts-und Landesbibliothek Bonn, Bonn, Germany, 2009. [Google Scholar]
- Montesinos López, O.A.; Montesinos López, A.; Crossa, J. Convolutional Neural Networks; Springer International Publishing: Cham, Switzerland, 2022; pp. 533–577. [Google Scholar]
- Zang, H.; Liu, L.; Sun, L.; Cheng, L.; Wei, Z.; Sun, G. Short-term global horizontal irradiance forecasting based on a hybrid CNN-LSTM model with spatiotemporal correlations. Renew. Energy 2020, 160, 26–41. [Google Scholar] [CrossRef]
- Zhao, J.; Mao, X.; Chen, L. Speech emotion recognition using deep 1D & 2D CNN LSTM networks. Biomed. Signal Process. Control 2019, 47, 312–323. [Google Scholar] [CrossRef]
- Abdeljaber, O.; Avci, O.; Kiranyaz, S.; Gabbouj, M.; Inman, D.J. Real-time vibration-based structural damage detection using one-dimensional convolutional neural networks. J. Sound Vib. 2017, 388, 154–170. [Google Scholar] [CrossRef]
- Li, T.; Hua, M.; Wu, X. A Hybrid CNN-LSTM Model for Forecasting Particulate Matter (PM2.5). IEEE Access 2020, 8, 26933–26940. [Google Scholar] [CrossRef]
- Liu, H.; Mi, X.-w.; Li, Y.-f. Wind speed forecasting method based on deep learning strategy using empirical wavelet transform, long short term memory neural network and Elman neural network. Energy Convers. Manag. 2018, 156, 498–514. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to Forget: Continual Prediction with LSTM. Neural Comput. 2000, 12, 2451–2471. [Google Scholar] [CrossRef]
- Young, P.; Shellswell, S. Time series analysis, forecasting and control. IEEE Trans. Autom. Control 1972, 17, 281–283. [Google Scholar] [CrossRef]
- Bizouard, C.; Lambert, S.; Gattano, C.; Becker, O.; Richard, J.-Y. The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014. J. Geod. 2018, 93, 621–633. [Google Scholar] [CrossRef]
- McCarthy, D.D.; Seidelmann, P.K. Time: From Earth Rotation to Atomic Physics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- King, M.A.; Watson, C.S. Geodetic vertical velocities affected by recent rapid changes in polar motion. Geophys. J. Int. 2014, 199, 1161–1165. [Google Scholar] [CrossRef] [Green Version]
- Gross, R. The excitation of the Chandler wobble. Geophys. Res. Lett. 2000, 27, 2329–2332. [Google Scholar] [CrossRef] [Green Version]
- King, N.E.; Agnew, D.C. How large is the retrograde annual wobble. Geophys. Res. Lett. 1991, 18, 1735–1738. [Google Scholar] [CrossRef]
- Schindelegger, M.; Böhm, J.; Salstein, D.; Schuh, H. High-resolution atmospheric angular momentum functions related to Earth rotation parameters during CONT08. J. Geod. 2011, 85, 425–433. [Google Scholar] [CrossRef]
- Min, Z.; Haoming, Y.; Yaozhong, Z. The investigation of atmospheric angular momentum as a contributor to polar wobble and length of day change with AMIP II GCM data. Adv. Atmos. Sci. 2002, 19, 287–296. [Google Scholar] [CrossRef]
- Höpfner, J. Low-Frequency Variations, Chandler and Annual Wobbles of Polar Motion as Observed Over One Century. Surv. Geophys. 2004, 25, 1–54. [Google Scholar] [CrossRef] [Green Version]
- Gross, R.; Fukumori, I.; Menemenlis, D. Atmospheric and Oceanic Excitation of the Earth’s Wobbles During 1980–2000. J. Geophys. Res. Solid Earth 2003, 108, B8. [Google Scholar] [CrossRef]
Days in Future (d) | PMX (mas) | PMY (mas) | UT1-UTC (ms) |
---|---|---|---|
1 | 0.29 | 0.28 | 0.08 |
5 | 1.86 | 0.60 | 0.20 |
10 | 3.25 | 2.62 | 0.54 |
20 | 5.62 | 4.27 | 2.40 |
40 | 10.03 | 6.33 | 5.16 |
90 | 17.36 | 9.26 | 9.82 |
CONT08 | CONT11 | CONT14 | CONT17 | ||
---|---|---|---|---|---|
Observation Epoch | 12–26 August 2008 | 15–29 September 2011 | 6–20 May 2014 | 28 November–12 December 2017 | |
Period (days) | 15 | 15 | 15 | 15 | |
Stations Network | 11 | 14 | 16 | Legacy-1 | Legacy-2 |
14 | 14 | ||||
Recording Rate (Mbit/s) | 512 | 512 | 512 | 512 | 256 |
Parameters | Parameter Settings | |
---|---|---|
Precession–nutation model | IAU2006/2000A [35] | |
ITRF model | ITRF2014 [36] | |
ICRF model | ICRF3 [37] | |
Troposphere model | VMF3 [38] | |
Pressure and temperature | NGS file | |
Ionosphere model | NGS file | |
Ephemeris model | JPL421 | |
EOP (IERS14 C04) | A priori offsets for nutation | yes |
High-frequency ERP | yes | |
Libration | yes | |
Station Corrections | Earth tides | yes |
Ocean tides | yes | |
Atmospheric tides | yes | |
Atmospheric load | yes | |
Polar tides | yes | |
Thermal antenna deformation | yes |
Period | PMX (mas) | PMY (mas) | UT1-UTC (ms) |
---|---|---|---|
CONT08 | 0.048 | 0.060 | 0.005 |
CONT11 | 0.047 | 0.050 | 0.011 |
CONT14 | 0.047 | 0.044 | 0.013 |
CONT17 | 0.028 | 0.035 | 0.010 |
2011 | 0.181 | 0.188 | 0.030 |
2012 | 0.194 | 0.163 | 0.018 |
2013 | 0.178 | 0.182 | 0.023 |
2014 | 0.248 | 0.234 | 0.018 |
2015 | 0.135 | 0.227 | 0.021 |
2016 | 0.157 | 0.267 | 0.016 |
2017 | 0.212 | 0.124 | 0.019 |
2018 | 0.245 | 0.162 | 0.023 |
2019 | 0.182 | 0.253 | 0.015 |
2020 | 0.135 | 0.248 | 0.018 |
IAA | 0.198 | 0.243 | 0.017 |
BKG | 0.176 | 0.196 | 0.016 |
GSFC | 0.183 | 0.097 | 0.018 |
Parameters | Schemes | Time Span (d) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 5 | 10 | 20 | 30 | 40 | 60 | 90 | 120 | 180 | 270 | 360 | ||
PMX | 1 | 0.23 | 2.16 | 3.04 | 6.86 | 10.37 | 11.17 | 19.37 | 24.67 | 30.58 | 32.07 | 34.63 | 39.43 |
2 | 2.14 | 2.03 | 2.30 | 4.18 | 7.51 | 10.87 | 16.10 | 23.73 | 32.44 | 57.62 | 100.65 | 95.11 | |
3 | 1.93 | 2.40 | 3.35 | 5.31 | 5.00 | 4.36 | 6.96 | 17.47 | 32.50 | 46.41 | 41.91 | 37.71 | |
4 | 0.35 | 1.55 | 2.37 | 3.37 | 4.13 | 4.93 | 6.59 | 8.43 | 13.57 | 31.94 | 47.10 | 56.26 | |
5 | 0.61 | 1.22 | 1.37 | 1.37 | 1.48 | 1.43 | 1.46 | 4.33 | 6.35 | 11.34 | 19.68 | 18.01 | |
6 | 0.04 | 1.71 | 2.57 | 2.08 | 4.54 | 8.78 | 18.69 | 35.38 | 46.38 | 46.65 | 42.47 | 38.73 | |
PMY | 1 | 0.61 | 1.69 | 2.57 | 5.05 | 11.71 | 14.31 | 18.64 | 24.59 | 31.67 | 34.05 | 34.87 | 40.36 |
2 | 0.21 | 0.39 | 2.13 | 5.69 | 5.54 | 5.07 | 6.49 | 18.03 | 23.82 | 22.39 | 62.25 | 109.30 | |
3 | 0.44 | 0.38 | 1.06 | 4.73 | 8.11 | 9.99 | 16.94 | 23.35 | 22.90 | 30.42 | 35.07 | 31.52 | |
4 | 0.86 | 1.34 | 2.75 | 7.71 | 10.89 | 12.14 | 16.42 | 18.83 | 17.12 | 45.05 | 59.21 | 60.17 | |
5 | 2.11 | 3.24 | 4.78 | 4.93 | 4.59 | 6.11 | 7.93 | 11.60 | 15.64 | 26.41 | 29.94 | 27.75 | |
6 | 4.24 | 5.36 | 7.28 | 10.76 | 14.97 | 20.57 | 27.11 | 31.68 | 29.76 | 26.93 | 22.90 | 20.39 |
Span (d) | Bulletin A | CNN–LSTM | Improvement | |||
---|---|---|---|---|---|---|
PMX (mas) | PMY (mas) | PMX (mas) | PMY (mas) | PMX (%) | PMY (%) | |
1 | 0.19 | 0.51 | 0.61 | 2.11 | −221.05 | −313.72 |
5 | 0.79 | 1.62 | 0.91 | 2.32 | −15.19 | −43.21 |
10 | 1.11 | 2.03 | 1.09 | 2.79 | 1.80 | −37.43 |
20 | 1.55 | 3.45 | 1.18 | 4.46 | 23.87 | −29.28 |
30 | 3.34 | 4.34 | 1.32 | 4.13 | 60.48 | 4.84 |
40 | 5.24 | 6.67 | 1.25 | 5.40 | 76.15 | 19.63 |
90 | 12.80 | 11.07 | 2.99 | 10.19 | 22.54 | 7.95 |
180 | 11.40 | 25.84 | 8.83 | 22.36 | 22.56 | 13.47 |
270 | 18.94 | 29.93 | 15.85 | 26.79 | 16.31 | 10.50 |
360 | 24.45 | 28.71 | 14.03 | 24.99 | 42.62 | 12.96 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yu, K.; Yang, K.; Shen, T.; Li, L.; Shi, H.; Song, X. Estimation of Earth Rotation Parameters and Prediction of Polar Motion Using Hybrid CNN–LSTM Model. Remote Sens. 2023, 15, 427. https://doi.org/10.3390/rs15020427
Yu K, Yang K, Shen T, Li L, Shi H, Song X. Estimation of Earth Rotation Parameters and Prediction of Polar Motion Using Hybrid CNN–LSTM Model. Remote Sensing. 2023; 15(2):427. https://doi.org/10.3390/rs15020427
Chicago/Turabian StyleYu, Kehao, Kai Yang, Tonghui Shen, Lihua Li, Haowei Shi, and Xu Song. 2023. "Estimation of Earth Rotation Parameters and Prediction of Polar Motion Using Hybrid CNN–LSTM Model" Remote Sensing 15, no. 2: 427. https://doi.org/10.3390/rs15020427
APA StyleYu, K., Yang, K., Shen, T., Li, L., Shi, H., & Song, X. (2023). Estimation of Earth Rotation Parameters and Prediction of Polar Motion Using Hybrid CNN–LSTM Model. Remote Sensing, 15(2), 427. https://doi.org/10.3390/rs15020427