A Multiscale Cross Interaction Attention Network for Hyperspectral Image Classification
Abstract
:1. Introduction
- (1)
- To strengthen the distinguishability of HSI and dispel the interference of redundant information, we design an interaction attention module (IAM). IAM can highlight spectral–spatial features favorable for classification by learning the importance of different spectral bands, spatial contexts, and cross dimensions.
- (2)
- To enrich the multiformity of spectral–spatial information, we devise a multiscale cross feature extraction module (MCFEM) based on an innovative multibranch lower triangular fusion structure. For one thing, MCFEM utilizes multiple available receptive fields to extract multiscale spectral–spatial features. For another thing, MCFEM introduces “up-to-down” and “down-to-up” fusion strategies to maximize use of information flows between different convolutional layers and branches.
- (3)
- IAM and MCFEM constitute the proposed HSI classification method. Compared with the state-of-the-art results of DL methods, the experimental results on three benchmark datasets show competitive performance, which indicates the proposed method exhibits potential to capture more discriminative and representative multiscale spectral–spatial features.
2. Related Works
3. Method
3.1. Interaction Attention Module
3.1.1. Spectral Attention Block
3.1.2. Spatial Attention Block
3.1.3. Cross Dimension Attention Block
3.1.4. IAM
3.2. Multiscale Cross Feature Extraction Module
4. Experiments and Discussion
4.1. Experimental Datasets
4.2. Experimental Setup
4.3. Comparison Methods
4.4. Discussion
4.4.1. Influence of Different Spatial Sizes
4.4.2. Influence of Diverse Training Percentage
4.4.3. Influence of Different Numbers of Principal Components
4.4.4. Influence of Diverse Compressed Ratio in the IAM
4.4.5. Influence of Various Numbers of Branches in the MCFEM
4.5. Ablation Study
4.5.1. Effect of IAM
4.5.2. Effect of the Presented Method
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wu, Z.; Zhu, W.; Chanussot, J.; Xu, Y.; Osher, S. Hyperspectral Anomaly Detection via Global and Local Joint Modeling of Background. IEEE Trans. Signal Process. 2019, 67, 3858–3869. [Google Scholar] [CrossRef]
- Du, B.; Ru, L.; Wu, C.; Zhang, L. Unsupervised Deep Slow Feature Analysis for Change Detection in Multi-Temporal Remote Sensing Images. IEEE Trans. Geosci. Remote. Sens. 2019, 57, 9976–9992. [Google Scholar] [CrossRef] [Green Version]
- Laurin, G.V.; Chan, J.C.-W.; Chen, Q.; Lindsell, J.; Coomes, D.A.; Guerriero, L.; Del Frate, F.; Miglietta, F.; Valentini, R. Biodiversity Mapping in a Tropical West African Forest with Airborne Hyperspectral Data. PLoS ONE 2014, 9, e97910. [Google Scholar] [CrossRef]
- Du, H.; Qi, H.; Wang, X.; Ramanath, R.; Snyder, W. Band selection using independent component analysis for hyperspectral image processing. In Proceedings of the 32nd Applied Imagery Pattern Recognition Workshop, Washington, DC, USA, 15–17 October 2003. [Google Scholar]
- Bandos, T.V.; Bruzzone, L.; Camps-Valls, G. Classification of Hyperspectral Images with Regularized Linear Discriminant Analysis. IEEE Trans. Geosci. Remote. Sens. 2009, 47, 862–873. [Google Scholar] [CrossRef]
- Li, W.; Du, Q. Joint Within-Class Collaborative Representation for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2014, 7, 2200–2208. [Google Scholar] [CrossRef]
- Uss, M.L.; Vozel, B.; Lukin, V.V.; Chehdi, K. Maximum likelihood estimation of spatially correlated signal-dependent noise in hyperspectral images. Opt. Eng. 2012, 51, 111712. [Google Scholar] [CrossRef]
- Zhang, X.; Gao, Z.; Jiao, L.; Zhou, H. Multifeature hyperspectral image classification with local and nonlocal spatial information via Markov random field in semantic space. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1409–1424. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Gao, L.; Liao, W.; Zhang, B.; Pizurica, A.; Philips, W. Multiscale superpixel-level subspace-based support vector ma-chines for hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2017, 14, 2142–2146. [Google Scholar] [CrossRef]
- Zhu, J.; Hu, J.; Jia, S.; Jia, X.; Li, Q. Multiple 3-D Feature Fusion Framework for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2018, 56, 1873–1886. [Google Scholar] [CrossRef]
- Li, J.; Marpu, P.R.; Plaza, A.; Bioucas-Dias, J.M.; Benediktsson, J.A. Generalized Composite Kernel Framework for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2013, 51, 4816–4829. [Google Scholar] [CrossRef]
- Li, L.; Ge, H.; Gao, J. A spectral-spatial kernel-based method for hyperspectral imagery classification. Adv. Space Res. 2017, 59, 954–967. [Google Scholar] [CrossRef]
- Zhang, H.; Li, J.; Huang, Y.; Zhang, L. A Nonlocal Weighted Joint Sparse Representation Classification Method for Hyperspectral Imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2014, 7, 2056–2065. [Google Scholar] [CrossRef]
- Hu, W.; Huang, Y.; Wei, L.; Zhang, F.; Li, H. Deep Convolutional Neural Networks for Hyperspectral Image Classification. J. Sensors 2015, 2015, 258619. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Wu, G.; Zhang, F.; Du, Q. Hyperspectral Image Classification Using Deep Pixel-Pair Features. IEEE Trans. Geosci. Remote Sens. 2017, 55, 844–853. [Google Scholar] [CrossRef]
- Cao, X.; Ren, M.; Zhao, J.; Li, H.; Jiao, L. Hyperspectral Imagery Classification Based on Compressed Convolutional Neural Network. IEEE Geosci. Remote Sens. Lett. 2020, 17, 1583–1587. [Google Scholar] [CrossRef]
- Roy, S.K.; Krishna, G.; Dubey, S.R.; Chaudhuri, B.B. HybridSN: Exploring 3-D–2-D CNN Feature Hierarchy for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2020, 17, 277–281. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Li, W.; Du, Q. Diverse Region-Based CNN for Hyperspectral Image Classification. IEEE Trans. Image Process. 2018, 27, 2623–2634. [Google Scholar] [CrossRef] [PubMed]
- Ahmad, M. A Fast 3D CNN for Hyperspectral Image Classification. arXiv 2020, arXiv:2004.14152. [Google Scholar] [CrossRef]
- Zhu, J.; Fang, L.; Ghamisi, P. Deformable Convolutional Neural Networks for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1254–1258. [Google Scholar] [CrossRef]
- Xue, A.; Yu, X.; Liu, B.; Tan, X.; Wei, X. HResNetAM: Hierarchical Residual Network with Attention Mechanism for Hyper-spectral Image Classification. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2021, 14, 3566–3580. [Google Scholar] [CrossRef]
- Xie, J.; He, N.; Fang, L.; Ghamisi, P. Multiscale Densely-Connected Fusion Networks for Hyperspectral Images Classification. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 246–259. [Google Scholar] [CrossRef]
- Xu, Z.; Yu, H.; Zheng, K.; Gao, L.; Song, M. A Novel Classification Framework for Hyperspectral Image Classification Based on Multiscale Spectral-Spatial Convolutional Network. In Proceedings of the 2021 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, Netherlands, 24–26 March 2021; pp. 1–5. [Google Scholar]
- Zhang, X.; Wang, Y.; Zhang, N.; Xu, D.; Luo, H.; Chen, B.; Ben, G. Spectral–Spatial Fractal Residual Convolutional Neural Network With Data Balance Augmentation for Hyperspectral Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 10473–10487. [Google Scholar] [CrossRef]
- Gao, H.; Zhang, Y.; Chen, Z.; Li, C. A Multiscale Dual-Branch Feature Fusion and Attention Network for Hyperspectral Images Classification. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2021, 14, 8180–8192. [Google Scholar] [CrossRef]
- Song, W.; Li, S.; Fang, L.; Lu, T. Hyperspectral Image Classification With Deep Feature Fusion Network. IEEE Trans. Geosci. Remote Sens. 2018, 56, 3173–3184. [Google Scholar] [CrossRef]
- Li, H.-C.; Hu, W.-S.; Li, W.; Li, J.; Du, Q.; Plaza, A. A3 CLNN: Spatial, Spectral and Multiscale Attention ConvLSTM Neural Network for Multisource Remote Sensing Data Classification. IEEE Trans. Neural Networks Learn. Syst. 2020, 33, 747–761. [Google Scholar] [CrossRef]
- Zhou, Q.; Bao, W.; Zhang, X.; Ma, X. A Joint Spatial-Spectral Representation Based Capsule Network for Hyperspectral Image Classification. In Proceedings of the 2021 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, Netherlands, 24–26 March 2021; pp. 1–5. [Google Scholar]
- Yang, K.; Sun, H.; Zou, C.; Lu, X. Cross-Attention Spectral–Spatial Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote. Sens. 2022, 60, 3133582. [Google Scholar] [CrossRef]
- Hang, R.; Li, Z.; Liu, Q.; Ghamisi, P.; Bhattacharyya, S.S. Hyperspectral Image Classification With Attention-Aided CNNs. IEEE Trans. Geosci. Remote Sens. 2020, 59, 2281–2293. [Google Scholar] [CrossRef]
- Xiang, J.; Wei, C.; Wang, M.; Teng, L. End-to-End Multilevel Hybrid Attention Framework for Hyperspectral Image Classi-fication. IEEE Geosci. Remote Sens. Lett. 2022, 19, 1–5. [Google Scholar]
- Tu, B.; He, W.; He, W.; Ou, X.; Plaza, A. Hyperspectral Classification via Global-Local Hierarchical Weighting Fusion Net-work. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2022, 15, 184–200. [Google Scholar] [CrossRef]
- Kang, X.; Xiang, X.; Li, S.; Benediktsson, J.A. PCA-Based Edge-Preserving Features for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 7140–7151. [Google Scholar] [CrossRef]
- Mercier, G.; Lennon, M. Support vector machines for hyperspectral image classification with spectral-based kernels. Proc. IEEE Int. Geosci. Remote Sens. Symp. 2003, 6, 288–290. [Google Scholar]
- Shen, L.; Jia, S. Three-Dimensional Gabor Wavelets for Pixel-Based Hyperspectral Imagery Classification. IEEE Trans. Geosci. Remote Sens. 2011, 49, 5039–5046. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, Z.; Zhao, X.; Wang, G.; Gu, Y. Deep Learning-Based Classification of Hyperspectral Data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 2094–2107. [Google Scholar] [CrossRef]
- Mou, L.; Ghamisi, P.; Zhu, X.X. Deep Recurrent Neural Networks for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3639–3655. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Xiao, L.; Yang, J. C Content-Guided Convolutional Neural Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 58, 6124–6137. [Google Scholar] [CrossRef]
- Chen, Y.; Zhao, X.; Jia, X. Spectral–Spatial Classification of Hyperspectral Data Based on Deep Belief Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2015, 8, 2381–2392. [Google Scholar] [CrossRef]
- Liu, L.; Li, W.; Shi, Z.; Zou, Z. Physics-Informed Hyperspectral Remote Sensing Image Synthesis With Deep Conditional Generative Adversarial Networks. IEEE Trans. Geosci. Remote Sens. 2022, 60, 3173532. [Google Scholar] [CrossRef]
- Wang, S.; Gong, G.; Zhong, P.; Du, B.; Zhang, L.; Yang, J. Multiscale Dynamic Graph Convolutional Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 58, 3162–3177. [Google Scholar]
- Wang, X.; Fan, Y. Multiscale Densely Connected Attention Network for Hyperspectral Image Classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 1617–1628. [Google Scholar] [CrossRef]
- Yu, H.; Zhang, H.; Liu, Y.; Zheng, K.; Xu, Z.; Xiao, C. Dual-Channel Convolution Network With Image-Based Global Learning Framework for Hyperspectral Image Classification. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Lee, H.; Kwon, H. Going Deeper with Contextual CNN for Hyperspectral Image Classification. IEEE Trans. Image Process 2017, 26, 4843–4855. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Huang, L.; He, J. A Multiscale Deep Middle-level Feature Fusion Network for Hyperspectral Classification. Remote Sens. 2019, 11, 695. [Google Scholar] [CrossRef] [Green Version]
- Zhao, W.; Du, S. Learning multiscale and deep representations for classifying remotely sensed imagery. ISPRS J. Photogramm. Remote Sens. 2016, 113, 155–165. [Google Scholar] [CrossRef]
- Xu, Q.; Xiao, Y.; Wang, D.; Luo, B. CSA-MSO3DCNN: Multiscale Octave 3D CNN with Channel and Spatial Attention for Hyperspectral Image Classification. Remote Sens. 2020, 12, 188. [Google Scholar] [CrossRef] [Green Version]
- Fu, H.; Sun, G.; Ren, J.; Zhang, A.; Jia, X. Fusion of PCA and Segmented-PCA Domain Multiscale 2-D-SSA for Effective Spec-tral-Spatial Feature Extraction and Data Classification in Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2020, 60, 5500214. [Google Scholar]
- Zhou, L.; Yang, Z.; Yuan, Q.; Zhou, Z.; Hu, D. Salient Region Detection via Integrating Diffusion-Based Compactness and Local Contrast. IEEE Trans. Image Process. 2015, 24, 3308–3320. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Ji, W.; Piao, Y.; Li, J.; Zhang, Y.; Xu, S.; Lu, H. LFNet: Light Field Fusion Network for Salient Object Detection. IEEE Trans. Image Process 2020, 29, 6276–6287. [Google Scholar] [CrossRef]
- Li, J.; Wu, C.; Song, R.; Xie, W.; Ge, C.; Li, B.; Li, Y. Hybrid 2-D–3-D Deep Residual Attentional Network With Structure Tensor Constraints for Spectral Super-Resolution of RGB Images. IEEE Trans. Geosci. Remote Sens. 2021, 59, 2321–2335. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, S.; Xu, J.; Yang, J.; Tai, Y.-W. An Accurate and Lightweight Method for Human Body Image Super-Resolution. IEEE Trans. Image Process. 2021, 30, 2888–2897. [Google Scholar] [CrossRef]
- Chen, L.; Liu, H.; Yang, M.; Qian, Y.; Xiao, Z.; Zhong, X. Remote Sensing Image Super-Resolution via Residual Aggregation and Split Attentional Fusion Network. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9546–9556. [Google Scholar] [CrossRef]
- Liu, Q.; Su, H.; El-Khamy, M. Deep Guidance Decoder with Semantic Boundary Learning for Boundary-Aware Semantic Segmentation. In Proceedings of the 2022 IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 7–9 January 2022. [Google Scholar]
- Zhang, R.; Chen, J.; Feng, L.; Li, S.; Yang, W.; Guo, D. A Refined Pyramid Scene Parsing Network for Polarimetric SAR Image Semantic Segmentation in Agricultural Areas. IEEE Geosci. Remote. Sens. Lett. 2022, 19, 3086117. [Google Scholar] [CrossRef]
- Li, G.; Li, L.; Zhang, J. Hierarchical Semantic Broadcasting Network for Real-Time Semantic Segmentation. IEEE Signal Process Lett. 2022, 29, 309–313. [Google Scholar] [CrossRef]
- Guo, W.; Ye, H.; Cao, F. Feature-Grouped Network With Spectral–Spatial Connected Attention for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 60, 3051056. [Google Scholar] [CrossRef]
- Xiong, Z.; Yuan, Y.; Wang, Q. AI-NET: Attention Inception Neural Networks for Hyperspectral Image Classification. In Proceedings of the GARSS 2018–2018 IEEE International Geoscience and Remote Sensing Symposium, Valencia, Spain, 22–27 July 2018. [Google Scholar]
- Mou, L.; Zhu, X.X. Learning to Pay Attention on Spectral Domain: A Spectral Attention Module-Based Convolutional Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 58, 110–122. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, S.; Chanussot, J.; Li, X. Scene Classification With Recurrent Attention of VHR Remote Sensing Images. IEEE Trans. Geosci. Remote Sens. 2019, 57, 1155–1167. [Google Scholar] [CrossRef]
- Xi, B.; Li, J.; Li, Y.; Song, R.; Shi, Y.; Liu, S.; Du, Q. Deep Prototypical Networks with Hybrid Residual Attention for Hyper-spectral Image Classification. IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. 2020, 13, 3683–3700. [Google Scholar] [CrossRef]
- Haut, J.M.; Paoletti, M.E.; Plaza, J.; Plaza, A.; Li, J. Visual Attention-Driven Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2019, 57, 8065–8080. [Google Scholar] [CrossRef]
- Jie, H.; Li, S.; Gang, S. Squeeze-and-excitation networks. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Wang, Q.; Wu, B.; Zhu, P.; Li, P.; Zuo, W.; Hu, Q. ECA-Net: Efficient Channel Attention for Deep Convolutional Neural Networks. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, WA, USA, 14–19 June 2020. [Google Scholar] [CrossRef]
- Hu, J.; Shen, L.; Albanie, S.; Sun, G.; Vedaldi, A. Gather-excite: Exploiting feature context in convolutional neural networks. In Adv. Neural Inform. arXiv 2018, arXiv:1810.12348. [Google Scholar] [CrossRef]
- Tang, X.; Zhang, W.; Yu, Y.; Turner, K.; Derr, T.; Wang, M.; Ntoutsi, E. Interpretable Visual Understanding with Cognitive Attention Network. arXiv 2021, arXiv:2108.02924. [Google Scholar] [CrossRef]
- Park, J.; Woo, S.; Lee, J.-Y.; Kweon, I.S. Bam: Bottleneck attention module. arXiv 2018, arXiv:1807.06514. [Google Scholar]
- Roy, A.G.; Navab, N.; Wachinger, C. Recalibrating Fully Convolutional Networks With Spatial and Channel “Squeeze and Excitation” Blocks. IEEE Trans. Med. Imaging 2018, 38, 540–549. [Google Scholar] [CrossRef]
- Woo, S.; Park, J.; Lee, J.Y.; Kweon, I.S. CBAM: Convolutional block attention module. In Proceedings of the European Conference on Computer Vision, Munich, Germany, 8–14 September 2018. [Google Scholar] [CrossRef] [Green Version]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef] [Green Version]
- Acito, N.; Matteoli, S.; Rossi, A.; Diani, M.; Corsini, G. Hyperspectral Airborne “Viareggio 2013 Trial” Data Collection for Detection Algorithm Assessment. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 2365–2376. [Google Scholar] [CrossRef]
- Zhang, X.; Wang, T.; Yang, Y. Hyperspectral image classification based on multi-scale residual network with attention mechanism. arXiv 2020, arXiv:2004.12381. [Google Scholar] [CrossRef]
- Ahmad, M.; Shabbir, S.; Raza, R.A.; Mazzara, M.; Distefano, S.; Khan, A.M. Hyperspectral Image Classification: Artifacts of Dimension Reduction on Hybrid CNN. arXiv 2021, arXiv:2101.10532. [Google Scholar] [CrossRef]
- Zhu, M.; Jiao, L.; Liu, F.; Yang, S.; Wang, J. Residual Spectral–Spatial Attention Network for Hyperspectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 449–462. [Google Scholar] [CrossRef]
- Gao, H.; Yang, Y.; Li, C.; Gao, L.; Zhang, B. Multiscale Residual Network with Mixed Depthwise Convolution for Hyper-spectral Image Classification. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3396–3408. [Google Scholar] [CrossRef]
No. | Color | Class | Train | Test |
---|---|---|---|---|
1 | Water | 10 | 85 | |
2 | Hippo grass | 27 | 241 | |
3 | Floodplain grasses 1 | 19 | 162 | |
4 | Floodplain grasses 2 | 31 | 274 | |
5 | Reeds | 25 | 223 | |
6 | Riparian | 32 | 282 | |
7 | Fires car | 21 | 182 | |
8 | Island interior | 26 | 233 | |
9 | Acacia woodlands | 27 | 242 | |
10 | Acacia shrub lands | 27 | 242 | |
11 | Acacia grasslands | 22 | 193 | |
12 | short mopane | 26 | 225 | |
13 | Mixed mopane | 11 | 90 | |
14 | Exposed soils | 27 | 243 | |
Total | 331 | 2917 |
No. | Color | Class | Train | Test |
---|---|---|---|---|
1 | Alfalfa | 10 | 36 | |
2 | Corn-notill | 286 | 1142 | |
3 | Corn-mintill | 166 | 664 | |
4 | Corn | 48 | 189 | |
5 | Grass-pasture | 97 | 386 | |
6 | Grass-trees | 146 | 584 | |
7 | Grass-pasture-mowed | 6 | 22 | |
8 | Hay-windrowed | 96 | 382 | |
9 | Oats | 4 | 16 | |
10 | Soybean-notill | 195 | 777 | |
11 | Soybean-mintill | 491 | 1964 | |
12 | Soybean-clean | 119 | 474 | |
13 | Wheat | 41 | 164 | |
14 | Woods | 253 | 1012 | |
15 | Buildings-Grass-Tree | 78 | 308 | |
16 | Stone-Steel-Towers | 19 | 74 | |
Total | 2055 | 8194 |
No. | Color | Class | Train | Test |
---|---|---|---|---|
1 | Healthy grass | 239 | 1125 | |
2 | Stressed grass | 126 | 1128 | |
3 | Synthetic grass | 70 | 627 | |
4 | Trees | 125 | 1119 | |
5 | Soil | 125 | 1117 | |
6 | Water | 33 | 292 | |
7 | Residential | 127 | 1141 | |
8 | Commercial | 125 | 1119 | |
9 | Road | 126 | 1126 | |
10 | Highway | 123 | 1104 | |
11 | Railway | 124 | 1111 | |
12 | Parking Lot 1 | 124 | 1109 | |
13 | Parking Lot 2 | 47 | 422 | |
14 | Tennis Court | 43 | 385 | |
15 | Running Track | 66 | 594 | |
Total | 1510 | 13519 |
No. | SVM | RF | KNN | GaussianNB | HybridSN | MSRN_A | 3D_2D_CNN | RSSAN | MSRN_B | DMCN | MSDAN | MCIANet |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 100.00 | 97.89 | 99.59 | 98.37 | 87.82 | 96.05 | 92.75 | 100.00 | 98.78 | 91.01 | 95.29 | 98.38 |
2 | 98.11 | 98.81 | 92.13 | 67.74 | 100.00 | 100.00 | 96.77 | 100.00 | 100.00 | 88.24 | 100.00 | 100.00 |
3 | 78.65 | 90.25 | 93.62 | 80.58 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 |
4 | 100.00 | 83.64 | 87.25 | 65.02 | 98.47 | 100.00 | 99.47 | 100.00 | 100.00 | 96.48 | 96.41 | 100.00 |
5 | 80.59 | 72.66 | 82.33 | 71.90 | 88.24 | 97.05 | 95.90 | 87.08 | 92.37 | 100.00 | 96.54 | 100.00 |
6 | 50.00 | 76.34 | 60.00 | 57.23 | 97.78 | 100.00 | 97.51 | 93.53 | 100.00 | 100.00 | 97.10 | 100.00 |
7 | 100.00 | 98.67 | 99.55 | 97.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 99.57 | 100.00 | 100.00 |
8 | 84.90 | 88.02 | 77.53 | 82.84 | 99.44 | 100.00 | 100.00 | 100.00 | 91.92 | 94.49 | 100.00 | 100.00 |
9 | 68.48 | 80.14 | 78.23 | 71.43 | 98.26 | 100.00 | 100.00 | 97.45 | 100.00 | 100.00 | 100.00 | 100.00 |
10 | 75.62 | 76.83 | 88.02 | 67.83 | 98.67 | 100.00 | 98.67 | 98.22 | 96.96 | 97.80 | 100.00 | 100.00 |
11 | 86.24 | 89.53 | 91.49 | 88.85 | 97.51 | 96.48 | 99.64 | 99.27 | 100.00 | 99.63 | 100.00 | 100.00 |
12 | 89.60 | 91.57 | 93.49 | 91.61 | 97.59 | 100.00 | 100.00 | 97.44 | 46.55 | 96.41 | 100.00 | 100.00 |
13 | 90.77 | 79.76 | 93.06 | 70.97 | 100.00 | 100.00 | 100.00 | 94.88 | 100.00 | 98.77 | 97.97 | 100.00 |
14 | 100.00 | 98.80 | 97.59 | 93.62 | 100.00 | 97.70 | 100.00 | 95.31 | 83.33 | 97.18 | 100.00 | 100.00 |
OA (%) | 82.05 | 85.98 | 87.04 | 78.83 | 96.95 | 99.01 | 98.53 | 97.15 | 91.50 | 97.57 | 98.66 | 99.86 |
AA (%) | 81.82 | 86.95 | 87.87 | 81.06 | 95.87 | 99.12 | 98.13 | 96.16 | 92.21 | 97.02 | 98.71 | 99.88 |
Kappa × 100 | 80.53 | 84.81 | 85.96 | 77.10 | 96.69 | 98.92 | 98.40 | 96.92 | 90.81 | 97.36 | 98.55 | 99.85 |
No. | SVM | RF | KNN | GaussianNB | HybridSN | MSRN_A | 3D_2D_CNN | RSSAN | MSRN_B | DMCN | MSDAN | MCIANet |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 0.00 | 86.67 | 36.36 | 31.07 | 97.06 | 100.00 | 100.00 | 97.30 | 90.32 | 100.00 | 100.00 | 94.74 |
2 | 61.51 | 82.02 | 50.38 | 45.54 | 98.86 | 99.73 | 95.79 | 98.00 | 97.45 | 97.46 | 98.95 | 99.65 |
3 | 84.04 | 78.66 | 61.95 | 35.92 | 97.04 | 100.00 | 95.99 | 99.54 | 98.74 | 93.50 | 99.54 | 100.00 |
4 | 46.43 | 72.87 | 53.26 | 15.31 | 98.86 | 98.38 | 92.94 | 99.46 | 99.39 | 96.81 | 98.85 | 100.00 |
5 | 88.82 | 90.16 | 84.71 | 3.57 | 98.47 | 97.72 | 99.47 | 98.22 | 92.54 | 98.69 | 98.70 | 99.23 |
6 | 76.72 | 82.61 | 78.08 | 67.87 | 100.00 | 100.00 | 100.00 | 99.83 | 99.65 | 100.00 | 99.49 | 100.00 |
7 | 0.00 | 83.33 | 68.42 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 100.00 | 86.96 | 100.00 |
8 | 83.49 | 87.16 | 88.55 | 83.78 | 96.46 | 100.00 | 100.00 | 99.48 | 80.08 | 98.70 | 99.74 | 100.00 |
9 | 0.00 | 100.00 | 40.00 | 11.02 | 76.19 | 100.00 | 100.00 | 100.00 | 0.00 | 100.00 | 100.00 | 88.89 |
10 | 70.89 | 83.61 | 69.40 | 27.07 | 99.74 | 97.72 | 97.48 | 99.48 | 88.93 | 99.87 | 98.46 | 99.61 |
11 | 58.51 | 75.16 | 69.49 | 60.60 | 98.77 | 98.94 | 97.48 | 99.19 | 97.57 | 99.69 | 99.74 | 99.75 |
12 | 59.38 | 66.74 | 62.13 | 23.95 | 98.34 | 92.40 | 91.19 | 98.13 | 91.52 | 92.74 | 91.30 | 98.34 |
13 | 82.23 | 92.53 | 86.70 | 84.38 | 100.00 | 89.62 | 99.38 | 99.39 | 94.58 | 96.91 | 97.02 | 100.00 |
14 | 87.39 | 89.78 | 91.76 | 75.08 | 99.90 | 99.51 | 97.47 | 99.80 | 100.00 | 99.40 | 99.90 | 100.00 |
15 | 86.30 | 72.00 | 64.127 | 53.17 | 94.12 | 98.09 | 90.88 | 98.72 | 100.00 | 92.92 | 95.00 | 98.40 |
16 | 98.36 | 100.00 | 100.00 | 98.44 | 98.67 | 100.00 | 100.00 | 97.33 | 94.37 | 91.14 | 98.53 | 100.00 |
OA (%) | 70.21 | 89.91 | 70.95 | 50.88 | 98.58 | 98.50 | 96.85 | 99.07 | 95.56 | 97.86 | 98.61 | 99.61 |
AA (%) | 53.06 | 66.77 | 62.39 | 52.65 | 96.87 | 96.56 | 94.34 | 96.53 | 86.25 | 93.47 | 94.85 | 99.69 |
Kappa × 100 | 65.07 | 78.01 | 66.63 | 44.07 | 98.39 | 98.29 | 96.41 | 98.94 | 94.94 | 97.57 | 98.41 | 99.55 |
No. | SVM | RF | KNN | GaussianNB | HybridSN | MSRN_A | 3D_2D_CNN | RSSAN | MSRN_B | DMCN | MSDAN | MCIANet |
---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | 82.38 | 95.64 | 98.29 | 90.78 | 97.64 | 98.85 | 98.16 | 98.75 | 99.11 | 99.01 | 99.20 | 100.00 |
2 | 98.46 | 95.44 | 95.70 | 98.80 | 99.73 | 99.65 | 99.19 | 97.98 | 99.73 | 98.17 | 99.56 | 99.91 |
3 | 97.72 | 100.00 | 97.29 | 93.09 | 99.68 | 100.00 | 99.84 | 99.52 | 100.00 | 98.12 | 100.00 | 100.00 |
4 | 98.76 | 99.55 | 98.11 | 99.01 | 93.25 | 99.91 | 99.82 | 99.29 | 99.46 | 98.89 | 99.28 | 100.00 |
5 | 86.86 | 93.36 | 93.00 | 73.96 | 99.91 | 100.00 | 100.00 | 99.73 | 100.00 | 99.64 | 99.37 | 100.00 |
6 | 100.00 | 100.00 | 100.00 | 31.00 | 100.00 | 100.00 | 100.00 | 98.29 | 100.00 | 100.00 | 100.00 | 100.00 |
7 | 64.91 | 79.15 | 87.83 | 63.06 | 97.77 | 100.00 | 96.32 | 96.96 | 98.79 | 99.43 | 95.66 | 99.56 |
8 | 86.03 | 87.95 | 82.05 | 70.03 | 98.32 | 100.00 | 96.61 | 93.64 | 100.00 | 97.52 | 90.71 | 99.91 |
9 | 61.38 | 75.59 | 76.07 | 42.67 | 93.82 | 99.11 | 95.96 | 89.75 | 95.58 | 92.70 | 91.22 | 98.77 |
10 | 51.36 | 84.43 | 79.24 | 0.00 | 98.57 | 96.76 | 97.68 | 94.35 | 98.22 | 95.76 | 100.00 | 99.01 |
11 | 45.16 | 76.50 | 79.76 | 34.42 | 97.99 | 99.73 | 98.92 | 96.75 | 100.00 | 93.28 | 96.39 | 100.00 |
12 | 60.82 | 72.16 | 70.67 | 21.08 | 98.92 | 99.91 | 98.84 | 90.84 | 99.73 | 91.79 | 98.83 | 100.00 |
13 | 100.00 | 79.72 | 88.89 | 15.61 | 100.00 | 97.32 | 99.20 | 95.55 | 99.01 | 96.50 | 98.41 | 100.00 |
14 | 79.39 | 96.68 | 95.17 | 67.40 | 98.97 | 100.00 | 99.74 | 100.00 | 100.00 | 99.74 | 99.23 | 98.97 |
15 | 99.66 | 99.64 | 99.13 | 99.08 | 99.83 | 99.00 | 100.00 | 100.00 | 99.83 | 100.00 | 99.83 | 99.83 |
OA (%) | 75.17 | 87.47 | 87.51 | 60.82 | 97.91 | 99.36 | 99.41 | 96.31 | 99.17 | 96.82 | 97.33 | 99.73 |
AA (%) | 74.91 | 86.09 | 85.77 | 63.10 | 97.33 | 99.07 | 98.03 | 96.37 | 98.83 | 95.88 | 97.21 | 99.66 |
Kappa × 100 | 73.11 | 86.43 | 86.47 | 57.73 | 97.74 | 99.31 | 98.28 | 96.01 | 99.10 | 96.56 | 97.11 | 99.70 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Wang, Y.; Liu, P.; Li, Q.; Yang, H.; Chen, D.; Liu, Z.; Han, G. A Multiscale Cross Interaction Attention Network for Hyperspectral Image Classification. Remote Sens. 2023, 15, 428. https://doi.org/10.3390/rs15020428
Liu D, Wang Y, Liu P, Li Q, Yang H, Chen D, Liu Z, Han G. A Multiscale Cross Interaction Attention Network for Hyperspectral Image Classification. Remote Sensing. 2023; 15(2):428. https://doi.org/10.3390/rs15020428
Chicago/Turabian StyleLiu, Dongxu, Yirui Wang, Peixun Liu, Qingqing Li, Hang Yang, Dianbing Chen, Zhichao Liu, and Guangliang Han. 2023. "A Multiscale Cross Interaction Attention Network for Hyperspectral Image Classification" Remote Sensing 15, no. 2: 428. https://doi.org/10.3390/rs15020428
APA StyleLiu, D., Wang, Y., Liu, P., Li, Q., Yang, H., Chen, D., Liu, Z., & Han, G. (2023). A Multiscale Cross Interaction Attention Network for Hyperspectral Image Classification. Remote Sensing, 15(2), 428. https://doi.org/10.3390/rs15020428