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Abstract: The Earth rotation parameters (ERPs), including polar motion (PMX and PMY) and uni-
versal time (UT1-UTC), play a central role in functions such as monitoring the Earth’s rotation and
high-precision navigation and positioning. Variations in ERPs reflect not only the overall state of
movement of the Earth, but also the interactions among the atmosphere, ocean, and land on the
spatial and temporal scales. In this paper, we estimated ERP series based on very long baseline
interferometry (VLBI) observations between 2011–2020. The results show that the average root
mean square errors (RMSEs) are 0.187 mas for PMX, 0.205 mas for PMY, and 0.022 ms for UT1-UTC.
Furthermore, to explore the high-frequency variations in more detail, we analyzed the polar motion
time series spectrum based on fast Fourier transform (FFT), and our findings show that the Chandler
motion was approximately 426 days and that the annual motion was about 360 days. In addition,
the results also validate the presence of a weaker retrograde oscillation with an amplitude of about
3.5 mas. This paper proposes a hybrid prediction model that combines convolutional neural network
(CNN) and long short-term memory (LSTM) neural network: the CNN–LSTM model. The advantages
can be attributed to the CNN’s ability to extract and optimize features related to polar motion series,
and the LSTM’s ability to make medium- to long-term predictions based on historical time series.
Compared with Bulletin A, the prediction accuracies of PMX and PMY are improved by 42% and
13%, respectively. Notably, the hybrid CNN–LSTM model can effectively improve the accuracy of
medium- and long-term polar motion prediction.

Keywords: VLBI; ERP; hybrid CNN–LSTM model; polar motion; fast Fourier transform;
Chandler motion

1. Introduction

Earth rotation parameters (ERPs) are the key conversion parameters connecting the
international terrestrial reference frame (ITRF) and international celestial reference frame
(ICRF) and can be divided into two parts: (1) those that describe variations in the Earth’s
rotation rate, i.e., universal time (UT1-UTC) or length of day (LOD); (2) and those that
monitor variations in the position of the Earth’s axis, i.e., polar motion (PMX, PMY) [1,2].
With the rapid development of space geodetic techniques, more techniques are being
applied to monitor variations in the Earth’s rotation, such as the global navigation satellite
system (GNSS (Toulouse, France)), very long baseline interferometry (VLBI (National
Astronomical Observatory of Japan, Tokyo, Japan)), satellite laser ranging (SLR), lunar
laser ranging (LLR), and doppler orbitography and radio positioning integrated by satellite
(DORIS) [3–5].

The Earth’s rotation not only represents the state of its overall movement, but also re-
flects the interactions and mechanical processes between the solid earth and the atmosphere,
ocean, mantle, and crust on the temporal and spatial scale [6]. Therefore, variations in
ERPs indicate variations in various geophysical factors. The highly accurate determination
and estimation of ERPs with high precision and resolution has great reference value for
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exploring not only the activities of the Earth, Sun, and Moon, but also can explore the law
of material movement in the Earth’s interior [7,8]. The research on ERP estimation has
been conducted by many scholars mainly based on GNSS, VLBI, SLR, and other techniques.
For polar motion estimation, the results of this study indicate that GNSS occasionally
has superior accuracy, which is due to the large number of International GNSS Service
(IGS) stations homogeneously distributed around the globe, as discovered by Dow and
Neilan [9]. Böhm et al. [8] proposed a method, operated in time domain, that is easily
applicable to ERP estimation from VLBI. Accurate UT1-UTC results allow detailed studies
of geodynamic phenomena and probing of excitations [10]. Brzezinski et al. [11] reported
that diurnal and semi-diurnal atmospheric effects on ERP, polar motion, and variations in
LOD were below 10 µas and 10 µs, respectively. In addition, the International VLBI Service
for Geodesy and Astrometry (IVS) has organized a 2-week continuous VLBI campaign
(CONT) every third year since 2002 [12]. The observations from these campaigns have
been used in many studies with different objectives, comparing the accuracy of GNSS and
VLBI to estimate Earth orientation parameters (EOP) [13]. Using CONT17 observations,
Puente [14] compared the accuracy of GNSS- and VLBI-estimated troposphere, station
coordinates, zenith total delays (ZTDs), and gradients.

The demand for real-time ERPs is growing due to space navigation and positioning;
however, obtaining real-time ERP is more difficult due to the complex data processing [15];
for example, GPS processing takes about 3 h, while VLBI and SLR take longer to process.
Various prediction methods are applied in ERP research. Table 1 indicates the prediction
accuracy of the latest PM and UT1-UTC over various spans provided by the IERS (IERS
Rapid Service/Prediction Centre). Based on least squares (LS), Kosek et al. [16] proposed
a combined LS and autoregressive (AR) model for ERP prediction. Atmospheric angular
momentum (AAM) prediction data are considered to be beneficial to improve the forecast
accuracy of UT1 and LOD [4]. Schuh et al. [17] reported on incorporating artificial neural
networks (ANN) into PM and UT1-UTC predictions. Furthermore, fuzzy inference sys-
tem [15], multi-channel singular spectrum analysis (MSSA) [18], neural ordinary differential
equations (ODE) differential learning [19], and fuzzy-wavelet [20] have been applied to
ERP prediction.

Table 1. ERP prediction accuracy in various spans.

Days in Future (d) PMX (mas) PMY (mas) UT1-UTC (ms)

1 0.29 0.28 0.08
5 1.86 0.60 0.20
10 3.25 2.62 0.54
20 5.62 4.27 2.40
40 10.03 6.33 5.16
90 17.36 9.26 9.82

Regarding the possible causes of ERP prediction errors, the effect of El Niño on the
prediction of polar motion must be taken into account [21]. Considering the axial compo-
nent of atmospheric angular momentum (AAMX3 ), a combined multivariate autoregressive
(MAR) model forecasting method was proposed by Niedzielski [22]. Chin et al. [23] inves-
tigated the short-term prediction of the polar motion by introducing a prediction model
with an excitation function. It involved incorporating integrations of AAM estimates into
UT1 series, as reported in a study by Gambis [24]. Long-term predictions of polar motion
take into account the instantaneous frequency, phase, and amplitude of the Chandler mo-
tions, prograde, and retrograde annual motions of the Earth, and also the normal wavelet
transform (NTFT), as reported by Su [25].

In addition, hybrid neural networks, which have drawn more attention recently,
combine the advantages of different neural networks. Several previous studies combined
convolutional neural networks and long short-term memory (CNN–LSTM) to address
temporal and spatial relations, respectively [26]. CNN can extract and optimize trend
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features for different time series [27], while LSTM is specifically designed to make long-
term predictions based on historical time series [28]. Augmenting fully CNN–LSTM
sub-modules for time series classification was proposed by Karim [29]. An attention-based
CNN–LSTM model to predict collaborations between different research institutions was
reported by Zhou [30].

The aim of this paper was to estimate ERP based on VLBI observations from 2011
to 2020 and predict polar motion series based on the hybrid CNN–LSTM model, the
experiments of this paper can be described as follows:

• VLBI observations from 2011 to 2020 were estimated by Vienna VLBI Software 3.2
(VieVS 3.2) [31,32] to obtain 10-year ERP time series. Furthermore, in order to com-
pare the difference in ERP accuracy between other VLBI solutions, we estimated the
observations of the CONT08, CONT11, CONT14, and CONT17 campaigns. To further
explore high-frequency variations and investigate long-term series information of
polar motion, fast Fourier transform (FFT) was used for the spectral analysis of polar
motion series;

• The LS + AR model is currently one of the more accurate models for short-term
polar motion series prediction; however, it is less effective in medium- and long-term
prediction. This experiment aims to resolve the problem that the existing methods
are not effective for the medium- and long-term prediction of polar motion series and
the inadequate modelling capabilities of various influencing factors. In this paper, a
hybrid CNN–LSTM model to predict polar motion is proposed by this paper; the CNN
model can effectively extract features that affect polar motion series, and the LSTM
model has natural advantages in the medium- and long-term time series prediction.
To compare the differences in prediction accuracy, we also construct the LS + AR
models for polar motion prediction based on Earth orientation parameters prediction
comparison campaign (EOP PCC) [1,33].

2. The ERP Estimation and Analysis Based on VLBI Observations
2.1. Sources of VLBI Observations

The VLBI observations of this experiment were provided by IVS and are available
at https://cddis.nasa.gov/archive/vlbi/ivsdata/ngs/ (accessed on 30 September 2022).
VLBI observations from 2011 to 2020 were obtained from two regular 24 h observation
sessions organized by IVS every Monday and Thursday, IVS-R1 and IVS-R4 sessions, and
the settlement period was 1 January 2011 to 31 December 2020 (MJD: 55562-59214). In
addition, to compare the different VLBI solutions, we investigated the accuracy of ERPs
by estimating several continuous VLBI campaigns (CONT08, CONT11, CONT14, and
CONT17). The data format is NGS. Table 2 provides the brief information on the stations
participating in the CONT campaigns.

Table 2. Statistics of stations participating in CONT campaigns.

CONT08 CONT11 CONT14 CONT17

Observation Epoch 12–26 August 2008 15–29 September 2011 6–20 May 2014 28 November–12 December 2017
Period (days) 15 15 15 15

Stations Network 11 14 16
Legacy-1 Legacy-2

14 14
Recording Rate (Mbit/s) 512 512 512 512 256

2.2. Error Analysis

Root mean square error (RMSE) was used to evaluate the accuracy of ERP estimations,
and can be expressed as:

RMSEVLBI =

√
∑n

1 (ERPVLBI − ERPIERS)
2

n
(1)

https://cddis.nasa.gov/archive/vlbi/ivsdata/ngs/
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where ERPVLBI is the ERP time series estimated by VieVS software 3.2; ERPIERS represents
the ERP time series provided by the International Earth Rotation and Reference Systems
Service (IERS); and n is the number of observations.

2.3. The ERP Solution Strategies and Analysisas

A flow diagram of VLBI observations from 2011 to 2020 and CONT campaigns esti-
mated by Vienna VLBI and Satellite Software 3.2 (VieVS 3.2) for this experimental data
analysis is shown in Figure 1; the parameter settings of VieVS 3.2 used in this experiment
are shown in Table 3. To make up for the discontinuity of VLBI observations, missing
observations were estimated by the cubic spline interpolation.
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Figure 1. Flow diagram of geodetic VLBI observations analysis.

Table 3. The VieVS parameters settings [34].

Parameters Parameter Settings

Precession–nutation model IAU2006/2000A [35]
ITRF model ITRF2014 [36]
ICRF model ICRF3 [37]

Troposphere model VMF3 [38]
Pressure and temperature NGS file

Ionosphere model NGS file
Ephemeris model JPL421

EOP (IERS14 C04)
A priori offsets for nutation yes

High-frequency ERP yes
Libration yes

Station Corrections

Earth tides yes
Ocean tides yes

Atmospheric tides yes
Atmospheric load yes

Polar tides yes
Thermal antenna deformation yes

The estimated ERP time series were differenced with the EOP 14C04 series and the
RMSE of the experimental results are presented in Table 4. We noted that the average
RMSE based on the IVS-R1/R4 solution was 0.187 mas and 0.205 mas for PMX and PMY
respectively, while the average RMSE for UT1-UTC was 0.022 ms. Comparing the ERP
series from different IVS analysis centers, the accuracy of polar motion and UT1-UTC
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solutions based on the IVS-R1/R4 solution are at the same level. Furthermore, we found
that the average RMSE based on the CONT solution is on the level of 0.03–0.05 mas for
PM and 0.005–0.01 ms for UT1-UTC. One possible explanation for this might be that the
typical IVS-R1/R4 sessions involve fewer stations (5–10 VLBI stations) and use a lower
data recording rate (256 Mbit/s) rather than the faster 512 Mbit/s data recording rate.
Another possible explanation for this is that the accuracy of ERP estimation depends on
epoch continuity and the observations of the surrounding epochs also help to improve the
estimation accuracy.

Table 4. RMSE of ERP estimated from experiments. CONT indicates ERP accuracy based on CONT
solutions, years indicate ERP accuracy based on IVS-R1/R4 solutions. IAA represents the average
accuracy of IVS-R1/R4 based on the institute of applied astronomy (IAA), BKG represents the
average accuracy of IVS-R1/R4 based on the federal agency for cartography and geodesy (BKG),
GSFC represents the average accuracy of IVS-R1/R4 based on the Goddard space flight center (GSFC).

Period PMX (mas) PMY (mas) UT1-UTC (ms)

CONT08 0.048 0.060 0.005
CONT11 0.047 0.050 0.011
CONT14 0.047 0.044 0.013
CONT17 0.028 0.035 0.010

2011 0.181 0.188 0.030
2012 0.194 0.163 0.018
2013 0.178 0.182 0.023
2014 0.248 0.234 0.018
2015 0.135 0.227 0.021
2016 0.157 0.267 0.016
2017 0.212 0.124 0.019
2018 0.245 0.162 0.023
2019 0.182 0.253 0.015
2020 0.135 0.248 0.018
IAA 0.198 0.243 0.017
BKG 0.176 0.196 0.016
GSFC 0.183 0.097 0.018

Figure 2 shows a plot of ERP series estimated VLBI observations from 2011 to 2020
based on IVS-R1/R4 solutions. During 2011–2020, IVS conducted 1030 regular R1/R4
periodic observations. We noted that a small number of residual ERPs show significant
fluctuations, and these results can be attributed to the small number of missing values,
which make the interpolation method unsatisfactory.

2.4. Spectral Analysis Based on FFT

Fast Fourier transform (FFT) is an algorithm based on discrete Fourier transform
(DFT), which is a method of transforming a signal from epoch domain to frequency domain
form and can convert a more complex function into a superposition of several simple
functions [39]. The transformations can be summarized as follows:

F(ω) =
∫ +∞

−∞
f (t) exp(−2iπωt)dt (2)

where f (t) is data signals for polar motion series, which represents the function of epoch,
and F(ω) is the result of the FFT.
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For the FFT of polar motion series xj, the power spectral density estimator can be
expressed as [40]:

Ai =

√√√√(
2
n

n−1

∑
j=1

xj cos
2πij

n
)

2

+ (
2
n

n−1

∑
j=1

xj sin
2πij

n
)

2

(3)

where Ai is the amplitude of the ith harmonic component of the signal.
To investigate the signal components of each cycle in the polar motion series in more

detail, the x and y components of polar motion series are formed as a complex number,
which can be expressed as:

f (t) = x(t) + y(t)i (4)

where x and y denote the x and y components of polar motion series, respectively. Thus,
the amplitude of polar motion can be expressed as follows:

A(t) = | f (t)| = |x(t) + y(t)i| =
√

x(t)2 + y(t)2 (5)

3. Polar Motion Prediction Based on Hybrid CNN–LSTM Model
3.1. Hybrid CNN–LSTM Model
3.1.1. CNN Model

A convolutional neural network (CNN) is a specialized form of deep neural network
used to analyze input data containing some form of spatial structure [41] that contains three
types of layers, convolution, pooling, and fully connected layers. Essentially, CNN attempts
to construct multiple filters capable of extracting hidden features by using layer-by-layer
data from convolutional layers [42]. The CNN network structures can be divided into 1D,
2D, and 3D [43]. Time series processing is solved mainly by 1D CNN [44]. The operation of
the convolutional layer can be described as follows:

xl
k = f (∑ (xl−1

i ⊗ wl
ik + bl

k)) (6)



Remote Sens. 2023, 15, 427 7 of 17

where xl
k is the lth output feature map of the kth layer; f is the activation function; ⊗

represents the convolution operation; wl
ik is the weights between the lth input map and the

kth output map; and bl
k is the bias.

3.1.2. LSTM Model

A deformed structure of recurrent neural networks (RNNs) is long short-term memory
(LSTM), which is mainly used for medium- to long-term series prediction [45]. It can
solve the long-term dependency problem of RNN and the gradient disappearance problem
caused by back-propagation of RNN during training [46]. The information is transmitted
between the cells of the hidden layer via the oblivion, input and output gates of the
LSTM [47]. The LSTM architecture is shown in Figure 3.
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Figure 3. Network architecture of LSTM.

The basic unit of LSTM consists of input gate, output gate, and forget gate; the
forgotten part of the state memory cell in the forget gate is jointly affected by input xt,
state memory cell Ct−1, and mid-output ht−1; and the specific steps of polar motion series
prediction can be summarized as follows:

it = σ(Wi[ht−1, xt] + bi) (7)

ft = σ(W f [ht−1, xt] + b f ) (8)

ot = σ(Wo[ht−1, xt] + bo) (9)

gt = tanh(Wg[ht−1, xt] + bg) (10)

Ct = ft � Ct−1 + it � gt (11)

ht = ot � tanh(Ct) (12)

where it, ft, ot, gt denote the output, which are the input gate, the forget gate, the output
gate, and the activation functiontanh, respectively; σ is the standard logistic function;
Wi, W f , Wo, Wg are the matrix of weights from the input; bi, b f , bo, bg are the bias vectors;
xt is the input polar motion time series; Ct−1 and ht−1 are the previous cell and its output
vector, respectively; ht is the output vector; Ct denotes the activation vectors for each cell;
and ⊗ is the scalar product.
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3.1.3. Hybrid CNN–LSTM Model

CNN and LSTM have unique characteristics in the process of time series prediction.
CNN can extract and optimize features related to polar motion and LSTM can predict future
data based on the long-term historical time series data. This section describes a hybrid CNN–
LSTM model for polar motion prediction to improve the prediction accuracy. The polar
motion prediction processes are divided into three main parts: data pre-processing, data
modeling and prediction, and accuracy evaluation. As shown in Figure 4, the polar motion
time series are entered in the first step and pre-processed by data normalization. Then, the
polar motion time series are divided into two parts: the first part is used as training data
to obtain an optimization model, and the second part is used as prediction data to obtain
the polar motion time series by the optimization model. In the final experiment, accuracy
indicators are used to evaluate the prediction model.
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3.2. LS + AR Model
3.2.1. LS Model

To investigate the accuracy of the LS + AR model for predicting polar motion, it is
necessary to separate the periodic and trend terms based on the LS method, considering
that the polar motion series have mixed periodic and trend terms. The LS model is written
as follows [16]:

X(t) = a + bt +
k

∑
i=1

ci cos(
2πt
pi

+ ωi) + di sin(
2πt
pi

+ ωi) (13)

where X(t) is the polar motion series; a is a constant term; b is a linear term; ci and di are the
coefficients for periodic terms; pi is the corresponding periodic; k is the number of periodic
terms; and ωi is the phase of each periodic term.

The specific solution of the polar motion series of the LS model can be summarized
as follows:

X =
[
a b c1 c2 d1 d2 . . .

]
(14)
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B =


1 t1 cos 2πt1

p1
sin 2πt1

p1
. . .

1 t2 cos 2πt2
p2

sin 2πt2
p2

. . .
. . .

1 tn cos 2πtn
pn

sin 2πtn
pn

. . .

 (15)

X = (BT B)
−1

BT L (16)

where X is the estimated parameter vector; B is the coefficient matrix; and L is the observa-
tion vector.

3.2.2. AR Model

After modeling and predicting the deterministic part of the polar motion series, the
remaining residuals are fitted to the prediction using an AR model, which is a prediction
model based on past patterns of the time series variables themselves. The AR(p) model
equation for the fitted residual term of polar motion can be summarized as follows [48]:

Zt =
p

∑
i=1

ϕiZt−i + at (17)

where ϕi is the model parameters, at is the white noise, Zt is the fitted residual terms, and
p is the order of AR model.

3.3. Error Analysis

For verification of the prediction model, mean absolute error (MAE) and RMSE
were used to evaluate the predictive accuracy and objectivity of the results; they can be
expressed as:

MAE =
1
n

n

∑
i=1
|Xi − Di| (18)

RMSE =

√
∑n

1 (Xi − Di)
2

n
(19)

where Xi is the predicted value of polar motion; Di is the corresponding observation value;
i is the span of time; and n is the number of predictions.

3.4. Strategies for Polar Motion Prediction
3.4.1. Sources of Polar Motion Data

The IERS board of directors released the latest version of EOP 14C04 as an IERS reference se-
ries (United States Naval Observatory, Washington, DC, USA) on 1 February 2017 [49], which is
available at https://hpiers.obspm.fr/eoppc/eop/eopc04/ (accessed on 30 September 2022).
Figure 5 shows the polar motion provided by IERS from 1 January 1962 to the present (MJD:
37665-59793). The time span of this experiment is from 1 January 2009 to 31 December 2021.

3.4.2. Experimental Schemes

In this study, to examine the effects of different base time series on prediction accuracy,
we designed five sets of prediction experiments using the EOP 14C04 series between
1 January 2009 and 31 December 2020. Furthermore, to explore the accuracy of the ERP
series estimated by VLBI observations, we predicted the polar motion series based on
the ERP series estimated from 2011 to 2020 VLBI observations. The prediction span was
360 days with one prediction per day, and the prediction period was from 1 January 2021
to 30 December 2021, for a total 360 predictions until the end of 2021. The following are the
schemes of this experiments:

• Scheme 1: 1 January 2015 to 31 October 2020 was chosen as the 6-year base time series,
with the LS + AR method used for prediction;

https://hpiers.obspm.fr/eoppc/eop/eopc04/
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• Scheme 2: 1 January 2015 to 31 October 2020 was selected as the 6-year base time
series, with the CNN–LSTM method used for prediction;

• Scheme 3: 1 January 2013 to 31 October 2020 was chosen as the 8-year base time series
and the CNN–LSTM method is used for prediction;

• Scheme 4: 1 January 2011 to 31 October 2020 was selected as the 10-year base time
series, with the CNN–LSTM method used prediction;

• Scheme 5: 1 January 2009 to 31 October 2020 was chosen as the 12-year base time
series, with the CNN–LSTM method used for prediction;

• Scheme 6: Prediction of the polar motion series based on the ERP series estimated from
2011 to 2020 VLBI observations, with the CNN–LSTM method used for prediction.
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Figure 5. Polar motion time series from 1 January 1962 to now (MJD: 37665-59793); PMX, PMY
represent the x and y components of polar motion series respectively.

Figure 6 shows the comparison of polar motion prediction in different schemes. The
experiments we performed showed that the 12-year base time series fits the true value
better and the fit becomes closer to the true value with increased base time series length;
unexpectedly, the 6-year base time series was a poor match to the true value. Notably, in
the current study we found that the prediction of polar motion based on the ERP series
estimated from 2011 to 2020 VLBI observations has a better fit. The accuracy statistics of the
prediction results are shown in Table 5. Scheme 2 had the lowest accuracy, which may be
due to the poor training model caused by the short time series. It is notable that the hybrid
CNN–LSTM model with 12-year base time series had the highest polar motion prediction
accuracy; compared with the LS + AR model, especially in medium- to long-term prediction
(90–360 days), and the accuracy of PMX and PMY was improved by about 54% and 31%,
respectively. One unanticipated finding was that the accuracy of the ERP series estimated
from 2011 to 2020 VLBI observations reached the level of the EOP 14C04 series in the
medium- and long-term polar motion prediction for the same period, which also verifies
that the ERP estimation experiment in this paper meets the requirement of high accuracy.
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Table 5. Accuracy statistics of different prediction schemes (RMSE (mas)). Scheme 1 is a 6-year base
time series prediction based on LS + AR model, Schemes 2–5 are base time series prediction based on
hybrid CNN–LSTM model, and Scheme 6 is prediction of estimated polar motion from 2011 to 2020
VLBI observations based on hybrid CNN–LSTM model.

Parameters Schemes
Time Span (d)

1 5 10 20 30 40 60 90 120 180 270 360

PMX

1 0.23 2.16 3.04 6.86 10.37 11.17 19.37 24.67 30.58 32.07 34.63 39.43
2 2.14 2.03 2.30 4.18 7.51 10.87 16.10 23.73 32.44 57.62 100.65 95.11
3 1.93 2.40 3.35 5.31 5.00 4.36 6.96 17.47 32.50 46.41 41.91 37.71
4 0.35 1.55 2.37 3.37 4.13 4.93 6.59 8.43 13.57 31.94 47.10 56.26
5 0.61 1.22 1.37 1.37 1.48 1.43 1.46 4.33 6.35 11.34 19.68 18.01
6 0.04 1.71 2.57 2.08 4.54 8.78 18.69 35.38 46.38 46.65 42.47 38.73

PMY

1 0.61 1.69 2.57 5.05 11.71 14.31 18.64 24.59 31.67 34.05 34.87 40.36
2 0.21 0.39 2.13 5.69 5.54 5.07 6.49 18.03 23.82 22.39 62.25 109.30
3 0.44 0.38 1.06 4.73 8.11 9.99 16.94 23.35 22.90 30.42 35.07 31.52
4 0.86 1.34 2.75 7.71 10.89 12.14 16.42 18.83 17.12 45.05 59.21 60.17
5 2.11 3.24 4.78 4.93 4.59 6.11 7.93 11.60 15.64 26.41 29.94 27.75
6 4.24 5.36 7.28 10.76 14.97 20.57 27.11 31.68 29.76 26.93 22.90 20.39

4. Discussion

The International VLBI Service for Geodesy and Astrometry (IVS) organized IVS-
R1 and IVS-R4 sessions every Monday and Thursday, respectively, and these sessions
usually involve a network of 5–10 VLBI stations for observation [13]. In this paper, the ERP
series were obtained by estimating VLBI observations from 2011 to 2020 for IVS-R1/R4
sessions; furthermore, the CONT08, CONT11, CONT14, and CONT17 observations were
estimated. The results show that the average RMSE based on the IVS-R1/R4 solution is
about 0.19 mas for polar motion and 0.02 ms for UT1-UTC, while the accuracy of the CONT
solutions is about 0.04 mas and 0.01 ms for polar motion and UT1-UTC, respectively. There
may be two reasons for these results: One may be that the IVS-R1/R4 sessions have only
5–10 stations, while CONT campaigns have more globally distributed stations, and the
IVS-R1/R4 sessions have a lower rate of data recording (256 Mbit/s) rather than the faster
512 Mbit/s. Another reason may be the difference in accuracy due to the epoch continuum.

Obviously, polar motion is one of the key parameters of ERP, which is defined as the
motion of the Celestial Intermediate Pole (CIP) relative to the Earth’s surface. It is composed
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of a collection of motions covering a range from secular to sub-daily time scales [50]. The
polar motion series consists of three significant components: long-term trend, Chandler
wobble, and annual wobble. The large-scale secular deformation of Earth causes long-
term drift of the polar motion [51]. The Chandler wobble refers to the motion of the CIP
over the Earth’s surface, which is caused by the rotation axis not being aligned with the
inertia axis [50], and is an excited resonance of the Earth’s rotation over a period of about
14 months [52]. The annual wobble is another important component of the polar motion
and current findings confirm that it consists of two components, retrograde, and prograde
wobble [53,54].

Furthermore, to explore the high-frequency variations in more detail, fast Fourier
transform (FFT), for polar motion time series spectrum analysis, was selected in this paper.
The spectrum of polar motion series is plotted in Figure 7, and the results show that the polar
motion series exhibit extremely significant Chandler and annual wobble of about 426 days
and 360 days, respectively. In addition, the results also showed a weaker retrograde
oscillation with an amplitude of about 3.5 mas, and we enlarged the scale of the amplitude
in order to explore more details of the retrograde wobble. Previous studies have proposed
that the possible causes of excitation for Chandler wobble include variations in submarine,
atmospheric, and groundwater pressure, as well as seismic excitation, and the annual
wobble may be excited by variations in the atmosphere, ocean, and groundwater [55–57].
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Moreover, a hybrid CNN–LSTM model is proposed in this paper, which is used for
polar motion time series of prediction. Table 6 shows the comparison of the MAE of
Bulletin A and the 12-year polar motion prediction based on the hybrid CNN–LSTM model.
Compared with Bulletin A, the results show that the accuracy of the hybrid CNN–LSTM
model is slightly inferior in ultra-short-term polar motion prediction; this is because the
model is being trained in the initial stage when it is less effective. However, the prediction
accuracy gradually improved over time; notably, the prediction accuracy for PMX and PMY
over a time span of 360 days improved by 42% and 13%, respectively. These results support
the conclusion that the hybrid CNN–LSTM model can indeed improve the prediction
accuracy of polar motion.
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Table 6. Comparison of MAE for polar motion prediction based on two schemes. Hybrid CNN–LSTM
model statistics represent the accuracy of the 12-year base time series.

Span (d)
Bulletin A CNN–LSTM Improvement

PMX
(mas)

PMY
(mas)

PMX
(mas)

PMY
(mas) PMX (%) PMY (%)

1 0.19 0.51 0.61 2.11 −221.05 −313.72
5 0.79 1.62 0.91 2.32 −15.19 −43.21

10 1.11 2.03 1.09 2.79 1.80 −37.43
20 1.55 3.45 1.18 4.46 23.87 −29.28
30 3.34 4.34 1.32 4.13 60.48 4.84
40 5.24 6.67 1.25 5.40 76.15 19.63
90 12.80 11.07 2.99 10.19 22.54 7.95
180 11.40 25.84 8.83 22.36 22.56 13.47
270 18.94 29.93 15.85 26.79 16.31 10.50
360 24.45 28.71 14.03 24.99 42.62 12.96

Figures 8 and 9 show the mean absolute error (MAE) of 360-day polar motion pre-
diction using the EOP 14C04 series for the period 1 January 2009 to 31 December 2020.
PMX and PMY with 6-year base time series show large errors, especially for medium- to
long-term prediction (180–360 days), which is mainly due to the poor training effect caused
by the short time series. At the same time, we found that the 12-year base time series had
the highest prediction accuracy, mainly due to the fact that the prediction accuracy can be
optimized when the length of the base time series is sufficient.
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5. Conclusions

Earth rotation parameters play a crucial role in high-precision timing services, precise
orbiting of artificial satellites, etc. Prior studies have noted the importance of estimating
and predicting ERP. We obtained the ERP series by estimating VLBI observations from
2011 to 2020 for IVS-R1/R4 sessions; furthermore, the CONT08, CONT11, CONT14, and
CONT17 observations were estimated. The results show an average RMSE of 0.187 and
0.205 mas for PMX and PMY, respectively, and accuracy of 0.022 ms for UT1-UTC based on
IVS-R1/R4 solutions. The accuracy of polar motion for CONT solutions was in the range of
0.03–0.05 mas, and for UT1-UTC based on the CONT solutions it was 0.005–0.01 ms.

Furthermore, to investigate the high-frequency variations in more detail, we performed
spectral analysis of the polar motion series using fast Fourier transform (FFT). The results
show that the polar motion series exhibit extremely significant Chandler and annual wobble
of about 426 days and 360 days, respectively. In addition, the results also show weaker
retrograde oscillation with an amplitude of about 3.5 mas.

Another important finding is that the hybrid CNN–LSTM model proposed in this
paper is applicable to polar motion prediction. In short term prediction (0–60 days), the
LS + AR model was superior, whereas in medium- to long-term prediction (90–360 days),
the hybrid CNN–LSTM model improved PMX and PMY 54% and 31%, respectively. These
results further support the observation that the hybrid CNN–LSTM model is slightly less
accurate in short-term prediction and more accurate in medium- and long-term prediction.
One possible explanation for these results is that the model may not have been trained
optimally at the beginning. In addition, possible interference of the base time series cannot
be ruled out. We tested the variability of the effect of different base series on the prediction
of polar motion, and the results indicate that the accuracy of the prediction model gradually
improved over time.

One limitation of the methods in this paper is that the training model for the 6-year
base series was not very effective, and this needs to be further explored in our next work. We
also need to consider the effect of numerous excitation sources on the prediction accuracy.
Our future work will be devoted to investigating the effect of different excitation sources
and base time series on prediction accuracy.
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