IonosphericTotal Electron Content Changes during the 15 February 2018 and 30 April 2022 Solar Eclipses over South America and Antarctica
Abstract
:1. Introduction
2. Materials and Methods
2.1. Brief Information about PSE2018 and PSE2022
2.2. Estimation of the Ionospheric TEC
2.3. Ionospheric Observations and Satellite Measurements
2.4. Geomagnetic and Geophysical Conditions
2.4.1. Geomagnetic and Solar Activity during Other Eclipses
2.4.2. Earthquake Occurrence
2.5. Occurrence of Other Ionospheric Disturbance Sources
3. Results
3.1. TEC Changes and Ionospheric Maps Using GPS Stations
3.2. Ionospheric Changes Using LEO Satellite Measurements
4. Discussion
4.1. F10.7 and TEC
4.2. Ionospheric TEC Behavior
SwA and F18 Measurements
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Afraimovich, E.L.; Astafyeva, E.I.; Demyanov, V.V.; Edemskiy, I.K.; Gavrilyuk, N.S.; Ishin, A.B.; Kosogorov, E.A.; Leonovich, L.A.; Lesyuta, O.S.; Palamartchouk, K.S.; et al. A review of GPS/GLONASS studies of the ionospheric response to natural and anthropogenic processes and phenomena. J. Space Weather Space Clim. 2013, 3, A27. [Google Scholar] [CrossRef]
- Valdés-Abreu, J.C. Degradation of the Global Navigation Satellite System Positioning Accuracy Caused by Ionospheric Disturbance Sources. Ph.D. Thesis, Universidad de Chile, Santiago, Chile, 2023. [Google Scholar]
- Rishbeth, H. Solar eclipses and ionospheric theory. Space Sci. Rev. 1968, 8, 543–554. [Google Scholar] [CrossRef]
- Aa, E.; Zhang, S.R.; Shen, H.; Liu, S.; Li, J. Local and conjugate ionospheric total electron content variation during the 21 June 2020 solar eclipse. Adv. Space Res. 2021, 68, 3435–3454. [Google Scholar] [CrossRef]
- Coster, A.J.; Goncharenko, L.; Zhang, S.R.; Erickson, P.J.; Rideout, W.; Vierinen, J. GNSS Observations of Ionospheric Variations During the 21 August 2017 Solar Eclipse. Geophys. Res. Lett. 2017, 44, 12041–12048. [Google Scholar] [CrossRef]
- Eisenbeis, J.; Occhipinti, G. TEC Depletion Generated by the Total Solar Eclipse of 2 July 2019. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029186. [Google Scholar] [CrossRef]
- He, L.; Heki, K.; Wu, L. Three-Dimensional and Trans-Hemispheric Changes in Ionospheric Electron Density Caused by the Great Solar Eclipse in North America on 21 August 2017. Geophys. Res. Lett. 2018, 45, 10933–10940. [Google Scholar] [CrossRef]
- Le, H.; Liu, L.; Yue, X.; Wan, W. The ionospheric behavior in conjugate hemispheres during the 3 October 2005 solar eclipse. Ann. Geophys. 2009, 27, 179–184. [Google Scholar] [CrossRef]
- Lei, J.; Dang, T.; Wang, W.; Burns, A.; Zhang, B.; Le, H. Long-Lasting Response of the Global Thermosphere and Ionosphere to the 21 August 2017 Solar Eclipse. J. Geophys. Res. Space Phys. 2018, 123, 4309–4316. [Google Scholar] [CrossRef]
- Maurya, A.K.; Shrivastava, M.N.; Kumar, K.N. Ionospheric monitoring with the Chilean GPS eyeball during the South American total solar eclipse on 2nd July 2019. Sci. Rep. 2020, 10, 19380. [Google Scholar] [CrossRef] [PubMed]
- Meza, A.; Eylenstein, B.; Natali, M.P.; Bosch, G.; Moirano, J.; Chalar, E. Analysis of Ionospheric and Geomagnetic Response to the 2020 Patagonian Solar Eclipse. Front. Astron. Space Sci. 2021, 8, 766327. [Google Scholar] [CrossRef]
- Mrak, S.; Semeter, J.; Nishimura, Y.; Hirsch, M.; Sivadas, N. Coincidental TID Production by Tropospheric Weather During the August 2017 Total Solar Eclipse. Geophys. Res. Lett. 2018, 45, 10903–10911. [Google Scholar] [CrossRef]
- Shrivastava, M.N.; Maurya, A.K.; Kumar, K.N. Ionospheric perturbation during the South American total solar eclipse on 14th December 2020 revealed with the Chilean GPS eyeball. Sci. Rep. 2021, 11, 20324. [Google Scholar] [CrossRef] [PubMed]
- Stankov, S.M.; Bergeot, N.; Berghmans, D.; Bolsée, D.; Bruyninx, C.; Chevalier, J.M.; Clette, F.; De Backer, H.; De Keyser, J.; D’Huys, E.; et al. Multi-instrument observations of the solar eclipse on 20 March 2015 and its effects on the ionosphere over Belgium and Europe. J. Space Weather Space Clim. 2017, 7, A19. [Google Scholar] [CrossRef]
- Yan, M.; Dang, T.; Lei, J.; Wang, W.; Zhang, S.R.; Le, H. From Bow Waves to Traveling Atmospheric Disturbances: Thermospheric Perturbations Along Solar Eclipse Trajectory. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028523. [Google Scholar] [CrossRef]
- Zhang, S.R.; Erickson, P.J.; Vierinen, J.; Aa, E.; Rideout, W.; Coster, A.J.; Goncharenko, L.P. Conjugate Ionospheric Perturbation During the 2017 Solar Eclipse. J. Geophys. Res. Space Phys. 2021, 126, e2020JA028531. [Google Scholar] [CrossRef]
- Chen, X.; Dang, T.; Zhang, B.; Lotko, W.; Pham, K.; Wang, W.; Lin, D.; Sorathia, K.; Merkin, V.; Luan, X.; et al. Global Effects of a Polar Solar Eclipse on the Coupled Magnetosphere-Ionosphere System. Geophys. Res. Lett. 2021, 48, e2021GL096471. [Google Scholar] [CrossRef]
- Davis, C.J.; Lockwood, M.; Bell, S.A.; Smith, J.A.; Clarke, E.M. Ionospheric measurements of relative coronal brightness during the total solar eclipses of 11 August, 1999 and 9 July, 1945. Ann. Geophys. 2000, 18, 182–190. [Google Scholar] [CrossRef]
- Krankowski, A.; Shagimuratov, I.; Baran, L.; Yakimova, G. The effect of total solar eclipse of October 3, 2005, on the total electron content over Europe. Adv. Space Res. 2008, 41, 628–638. [Google Scholar] [CrossRef]
- Adekoya, B.; Chukwuma, V. Ionospheric F2 layer responses to total solar eclipses at low and mid-latitude. J. Atmos. Sol. Terr. Phys. 2016, 138–139, 136–160. [Google Scholar] [CrossRef]
- Cheng, K.; Huang, Y.N.; Chen, S.W. Ionospheric effects of the solar eclipse of September 23, 1987, around the equatorial anomaly crest region. J. Geophys. Res. Space Phys. 1992, 97, 103–111. [Google Scholar] [CrossRef]
- Tsai, H.; Liu, J. Ionospheric total electron content response to solar eclipses. J. Geophys. Res. Space Phys. 1999, 104, 12657–12668. [Google Scholar] [CrossRef]
- Mayaud, P. The equatorial counter-electrojet—A review of its geomagnetic aspects. J. Atmos. Terr. Phys. 1977, 39, 1055–1070. [Google Scholar] [CrossRef]
- Bhaskar, A.; Purohit, A.; Hemalatha, M.; Pai, C.; Raghav, A.; Gurada, C.; Radha, S.; Yadav, V.; Desai, V.; Chitnis, A.; et al. A study of secondary cosmic ray flux variation during the annular eclipse of 15 January 2010 at Rameswaram, India. Astropart. Phys. 2011, 35, 223–229. [Google Scholar] [CrossRef]
- St.-Maurice, J.P.; Ambili, K.M.; Choudhary, R.K. Local electrodynamics of a solar eclipse at the magnetic equator in the early afternoon hours. Geophys. Res. Lett. 2011, 38, L04102. [Google Scholar] [CrossRef]
- Panda, S.; Gedam, S.; Rajaram, G.; Sripathi, S.; Bhaskar, A. Impact of the 15 January 2010 annular solar eclipse on the equatorial and low latitude ionosphere over the Indian region. J. Atmos. Sol. Terr. Phys. 2015, 135, 181–191. [Google Scholar] [CrossRef]
- Resende, L.C.A.; Zhu, Y.; Denardini, C.M.; Chen, S.S.; Chagas, R.A.J.; Da Silva, L.A.; Carmo, C.S.; Moro, J.; Barros, D.; Nogueira, P.A.B.; et al. A multi-instrumental and modeling analysis of the ionospheric responses to the solar eclipse on 14 December 2020 over the Brazilian region. Ann. Geophys. 2022, 40, 191–203. [Google Scholar] [CrossRef]
- Aa, E.; Zhang, S.R.; Erickson, P.J.; Goncharenko, L.P.; Coster, A.J.; Jonah, O.F.; Lei, J.; Huang, F.; Dang, T.; Liu, L. Coordinated Ground-Based and Space-Borne Observations of Ionospheric Response to the Annular Solar Eclipse on 26 December 2019. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028296. [Google Scholar] [CrossRef]
- Chen, C.H.; Lin, C.H.C.; Matsuo, T. Ionospheric responses to the 21 August 2017 solar eclipse by using data assimilation approach. Prog. Earth Planet. Sci. 2019, 6, 13. [Google Scholar] [CrossRef]
- Guo, M.; Xu, N.; Feng, J.; Deng, Z. A prolonged pattern of the ionospheric depletion in the south of the 21 August 2017 solar eclipse path. J. Atmos. Sol. Terr. Phys. 2020, 199, 105208. [Google Scholar] [CrossRef]
- Jonah, O.F.; Goncharenko, L.; Erickson, P.J.; Zhang, S.; Coster, A.; Chau, J.L.; de Paula, E.R.; Rideout, W. Anomalous Behavior of the Equatorial Ionization Anomaly During the 2 July 2019 Solar Eclipse. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027909. [Google Scholar] [CrossRef]
- Wang, X.; Berthelier, J.J.; Lebreton, J.P. Ionosphere variations at 700 km altitude observed by the DEMETER satellite during the 29 March 2006 solar eclipse. J. Geophys. Res. Space Phys. 2010, 115, A11312. [Google Scholar] [CrossRef]
- Chen, G.; Zhao, Z.; Ning, B.; Deng, Z.; Yang, G.; Zhou, C.; Yao, M.; Li, S.; Li, N. Latitudinal dependence of the ionospheric response to solar eclipse of 15 January 2010. J. Geophys. Res. Space Phys. 2011, 116, A06301. [Google Scholar] [CrossRef]
- Valdés-Abreu, J.C.; Díaz, M.A.; Bravo, M.; Báez, J.C.; Stable-Sánchez, Y. Ionospheric Behavior during the 10 June 2021 Annular Solar Eclipse and Its Impact on GNSS Precise Point Positioning. Remote Sens. 2022, 14, 3119. [Google Scholar] [CrossRef]
- Verhulst, T.G.W.; Stankov, S.M. Height Dependency of Solar Eclipse Effects: The Ionospheric Perspective. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028088. [Google Scholar] [CrossRef]
- Kundu, S.; Chowdhury, S.; Palit, S.; Mondal, S.K.; Sasmal, S. Variation of ionospheric plasma density during the annular solar eclipse on December 26, 2019. Astrophys. Space Sci. 2022, 367, 44. [Google Scholar] [CrossRef]
- Clilverd, M.A.; Rodger, C.J.; Thomson, N.R.; Lichtenberger, J.; Steinbach, P.; Cannon, P.; Angling, M.J. Total solar eclipse effects on VLF signals: Observations and modeling. Radio Sci. 2001, 36, 773–788. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, A.; Maurya, A.K.; Singh, R. Changes in the D region associated with three recent solar eclipses in the South Pacific region. J. Geophys. Res. Space Phys. 2016, 121, 5930–5943. [Google Scholar] [CrossRef]
- Chakrabarti, S.K.; Sasmal, S.; Chakraborty, S.; Basak, T.; Tucker, R.L. Modeling D-region ionospheric response of the Great American TSE of August 21, 2017 from VLF signal perturbation. Adv. Space Res. 2018, 62, 651–661. [Google Scholar] [CrossRef]
- Ghosh, S.; Chowdhury, S.; Kundu, S.; Biswas, S.; Dawn, A.; Ray, S.; Choudhury, A.K.; Bari, M.W.; Bhowmick, D.; Manna, S.; et al. Observations and modeling of D-region ionospheric response of Annular Solar Eclipse on December 26, 2019, using VLF signal amplitude and phase variation. Astrophys. Space Sci. 2023, 368, 19. [Google Scholar] [CrossRef]
- Aryal, S.; Evans, J.S.; Correira, J.; Burns, A.G.; Wang, W.; Solomon, S.C.; Laskar, F.I.; McClintock, W.E.; Eastes, R.W.; Dang, T.; et al. First Global-Scale Synoptic Imaging of Solar Eclipse Effects in the Thermosphere. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027789. [Google Scholar] [CrossRef]
- Vargas, F.; Liu, A.; Swenson, G.; Segura, C.; Vega, P.; Fuentes, J.; Pautet, D.; Taylor, M.; Zhao, Y.; Morton, Y.; et al. Mesosphere and Lower Thermosphere Changes Associated With the 2 July 2019 Total Eclipse in South America Over the Andes Lidar Observatory, Cerro Pachon, Chile. J. Geophys. Res. Atmos. 2022, 127, e2021JD035064. [Google Scholar] [CrossRef]
- Bravo, M.; Martínez-Ledesma, M.; Foppiano, A.; Urra, B.; Ovalle, E.; Villalobos, C.; Souza, J.; Carrasco, E.; Muñoz, P.R.; Tamblay, L.; et al. First Report of an Eclipse From Chilean Ionosonde Observations: Comparison With Total Electron Content Estimations and the Modeled Maximum Electron Concentration and Its Height. J. Geophys. Res. Space Phys. 2020, 125, e2020JA027923. [Google Scholar] [CrossRef]
- Martínez-Ledesma, M.; Bravo, M.; Urra, B.; Souza, J.; Foppiano, A. Prediction of the Ionospheric Response to the 14 December 2020 Total Solar Eclipse Using SUPIM-INPE. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028625. [Google Scholar] [CrossRef]
- Gómez, D.D. Ionospheric Response to the December 14, 2020 Total Solar Eclipse in South America. J. Geophys. Res. Space Phys. 2021, 126, e2021JA029537. [Google Scholar] [CrossRef]
- De Haro Barbás, B.; Bravo, M.; Elias, A.; Martínez-Ledesma, M.; Molina, G.; Urra, B.; Venchiarutti, J.; Villalobos, C.; Namour, J.; Ovalle, E.; et al. Longitudinal variations of ionospheric parameters near totality during the eclipse of December 14, 2020. Adv. Space Res. 2022, 69, 2158–2167. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, H. The Great Reduction of Equatorial Electrojet During the Solar Eclipse on 14 December 2020. Space Weather 2022, 20, e2022SW003295. [Google Scholar] [CrossRef]
- Bravo, M.; Molina, M.; Martínez-Ledesma, M.; de Haro Barbás, B.; Urra, B.; Elías, A.; Souza, J.; Villalobos, C.; Namour, J.; Ovalle, E.; et al. Ionospheric Response Modeling under Eclipse Conditions: Evaluation of December 14, 2020, Total Solar Eclipse Prediction over the South American sector. Front. Astron. Space Sci. 2022, 9, 1021910. [Google Scholar] [CrossRef]
- Idosa, C.U.; Rikitu, K.S. Effects of Total Solar Eclipse on Ionospheric Total Electron Content over Antarctica on 2021 December 4. Astrophys. J. 2022, 932, 2. [Google Scholar] [CrossRef]
- Coyle, S.; Hartinger, M.D.; Clauer, C.R.; Baker, J.B.H.; Cnossen, I.; Freeman, M.P.; Weygand, J.M. The 2021 Antarctic Total Eclipse: Ground Magnetometer and GNSS Wave Observations From the 40 Degree Magnetic Meridian. J. Geophys. Res. Space Phys. 2023, 128, e2022JA031142. [Google Scholar] [CrossRef]
- Idosa Uga, C.; Beshir Seba, E. Ionospheric response to a moderate geomagnetic storm on 14 April 2022 and a partial solar eclipse 30 April 2022. Indian J. Phys. 2023, 47, 1–11. [Google Scholar] [CrossRef]
- Abidin Abdul Rashid, Z.; Awad Momani, M.; Sulaiman, S.; Alauddin Mohd Ali, M.; Yatim, B.; Fraser, G.; Sato, N. GPS ionospheric TEC measurement during the 23rd November 2003 total solar eclipse at Scott Base Antarctica. J. Atmos. Sol. Terr. Phys. 2006, 68, 1219–1236. [Google Scholar] [CrossRef]
- Chernogor, L.; Garmash, K. Magneto-ionospheric effects of the solar eclipse of March 20, 2015, over Kharkov. Geomagn. Aeron. 2017, 57, 72–83. [Google Scholar] [CrossRef]
- Hoque, M.M.; Wenzel, D.; Jakowski, N.; Gerzen, T.; Berdermann, J.; Wilken, V.; Kriegel, M.; Sato, H.; Borries, C.; Minkwitz, D. Ionospheric response over Europe during the solar eclipse of March 20, 2015. J. Space Weather Space Clim. 2016, 6, A36. [Google Scholar] [CrossRef]
- Panasenko, S.V.; Otsuka, Y.; van de Kamp, M.; Chernogor, L.F.; Shinbori, A.; Tsugawa, T.; Nishioka, M. Observation and characterization of traveling ionospheric disturbances induced by solar eclipse of 20 March 2015 using incoherent scatter radars and GPS networks. J. Atmos. Sol. Terr. Phys. 2019, 191, 105051. [Google Scholar] [CrossRef]
- Verhulst, T.G.W.; Sapundjiev, D.; Stankov, S.M. High-resolution ionospheric observations and modeling over Belgium during the solar eclipse of 20 March 2015 including first results of ionospheric tilt and plasma drift measurements. Adv. Space Res. 2016, 57, 2407–2419. [Google Scholar] [CrossRef]
- Valdés-Abreu, J.C.; Díaz, M.A.; Báez, J.C.; Stable-Sánchez, Y. Effects of the 12 May 2021 Geomagnetic Storm on Georeferencing Precision. Remote Sens. 2022, 14, 38. [Google Scholar] [CrossRef]
- Seemala, G.K.; Valladares, C.E. Statistics of total electron content depletions observed over the South American continent for the year 2008. Radio Sci. 2011, 46, RS5019. [Google Scholar] [CrossRef]
- Estey, L.H.; Meertens, C.M. TEQC: The multi-purpose toolkit for GPS/GLONASS data. GPS Solut. 1999, 3, 42–49. [Google Scholar] [CrossRef]
- Piñón, D.; Gomez, D.; Smalley, B.; Cimbaro, S.; Lauría, E.; Bevis, M. The History, State, and Future of the Argentine Continuous Satellite Monitoring Network and Its Contributions to Geodesy in Latin America. Seismol. Res. Lett. 2018, 89, 475–482. [Google Scholar] [CrossRef]
- Tsidu, G.M.; Abraha, G. Moderate geomagnetic storms of January 22–25, 2012 and their influences on the wave components in ionosphere and upper stratosphere-mesosphere regions. Adv. Space Res. 2014, 54, 1793–1812. [Google Scholar] [CrossRef]
- Nose, M.; Iyemori, T.; Sugiura, M.; Kamei, T. Geomagnetic Dst index. World Data Cent. Geomagn. Kyoto 2015, 10, 15–31. [Google Scholar] [CrossRef]
- Cai, X.; Burns, A.G.; Wang, W.; Qian, L.; Pedatella, N.; Coster, A.; Zhang, S.; Solomon, S.C.; Eastes, R.W.; Daniell, R.E.; et al. Variations in Thermosphere Composition and Ionosphere Total Electron Content Under “Geomagnetically Quiet” Conditions at Solar-Minimum. Geophys. Res. Lett. 2021, 48, e2021GL093300. [Google Scholar] [CrossRef]
- Easton, G.; González-Alfaro, J.; Villalobos, A.; Álvarez, G.; Melgar, D.; Ruiz, S.; Sepúlveda, B.; Escobar, M.; León, T.; Carlos Báez, J.; et al. Complex Rupture of the 2015 Mw 8.3 Illapel Earthquake and Prehistoric Events in the Central Chile Tsunami Gap. Seismol. Res. Lett. 2022, 93, 1479–1496. [Google Scholar] [CrossRef]
- Liu, T.; Yu, Z.; Ding, Z.; Nie, W.; Xu, G. Observation of Ionospheric Gravity Waves Introduced by Thunderstorms in Low Latitudes China by GNSS. Remote Sens. 2021, 13, 4131. [Google Scholar] [CrossRef]
- Osei-Poku, L.; Tang, L.; Chen, W.; Mingli, C. Evaluating Total Electron Content (TEC) Detrending Techniques in Determining Ionospheric Disturbances during Lightning Events in A Low Latitude Region. Remote Sens. 2021, 13, 4753. [Google Scholar] [CrossRef]
- Chakraborty, S.K.; Hajra, R. Solar control of ambient ionization of the ionosphere near the crest of the equatorial anomaly in the Indian zone. Ann. Geophys. 2008, 26, 47–57. [Google Scholar] [CrossRef]
- Mansoori, A.; Khan, P.; Ahmad, R.; Atulkar, R.; Aslam, A.; Bhardwaj, S.; Malvi, B.; Purohit, P.; Gwal, A. Evaluation of long term solar activity effects on GPS derived TEC. J. Phys. Conf. Ser. 2016, 759, 012069. [Google Scholar] [CrossRef]
- Huang, F.; Li, Q.; Shen, X.; Xiong, C.; Yan, R.; Zhang, S.R.; Wang, W.; Aa, E.; Zhong, J.; Dang, T.; et al. Ionospheric Responses at Low Latitudes to the Annular Solar Eclipse on 21 June 2020. J. Geophys. Res. Space Phys. 2020, 125, e2020JA028483. [Google Scholar] [CrossRef]
- Dang, T.; Lei, J.; Wang, W.; Zhang, B.; Burns, A.; Le, H.; Wu, Q.; Ruan, H.; Dou, X.; Wan, W. Global Responses of the Coupled Thermosphere and Ionosphere System to the August 2017 Great American Solar Eclipse. J. Geophys. Res. Space Phys. 2018, 123, 7040–7050. [Google Scholar] [CrossRef]
- Choudhary, R.K.; St.-Maurice, J.P.; Ambili, K.M.; Sunda, S.; Pathan, B.M. The impact of the January 15, 2010, annular solar eclipse on the equatorial and low latitude ionospheric densities. J. Geophys. Res. Space Phys. 2011, 116, A09309. [Google Scholar] [CrossRef]
- Titheridge, J. Winds in the ionosphere—A review. J. Atmos. Terr. Phys. 1995, 57, 1681–1714. [Google Scholar] [CrossRef]
- Balan, N.; Bailey, G.J. Equatorial plasma fountain and its effects: Possibility of an additional layer. J. Geophys. Res. Space Phys. 1995, 100, 21421–21432. [Google Scholar] [CrossRef]
- Chou, M.Y.; Wu, Q.; Pedatella, N.M.; Cherniak, I.; Schreiner, W.S.; Braun, J. Climatology of the Equatorial Plasma Bubbles Captured by FORMOSAT-3/COSMIC. J. Geophys. Res. Space Phys. 2020, 125, e2019JA027680. [Google Scholar] [CrossRef]
- Cherniak, I.; Zakharenkova, I. Ionospheric Total Electron Content Response to the Great American Solar Eclipse of 21 August 2017. Geophys. Res. Lett. 2018, 45, 1199–1208. [Google Scholar] [CrossRef]
- Goncharenko, L.P.; Erickson, P.J.; Zhang, S.R.; Galkin, I.; Coster, A.J.; Jonah, O.F. Ionospheric Response to the Solar Eclipse of 21 August 2017 in Millstone Hill (42N) Observations. Geophys. Res. Lett. 2018, 45, 4601–4609. [Google Scholar] [CrossRef]
- Hairston, M.R.; Mrak, S.; Coley, W.R.; Burrell, A.; Holt, B.; Perdue, M.; Depew, M.; Power, R. Topside ionospheric electron temperature observations of the 21 August 2017 eclipse by DMSP spacecraft. Geophys. Res. Lett. 2018, 45, 7242–7247. [Google Scholar] [CrossRef]
- Hussien, F.; Ghamry, E.; Fathy, A.; Mahrous, S. Swarm satellite observations of the 21 August 2017 solar eclipse. J. Astron. Space Sci. 2020, 37, 29–34. [Google Scholar] [CrossRef]
GPS Station | PSE2018 | PSE2022 | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Code | Lat | Lon | MPO | C1 | MOT | C4 | DVTEC | MPO | C1 | MOT | C4 | DVTEC | ||||
[°S] | [°W] | [%] | [UT] | [UT] | [UT] | [min] | [%] | [TECu] | [%] | [UT] | [UT] | [UT] | [min] | [%] | [TECu] | |
CHYT | 18.37 | 70.34 | 0 | 0 | 0 | 0 | 12 a | −28 | −6 | 8 | 21.38 | 22.07 | 22.70 | N.O. b | N.O. b | N.O. b |
LSCH | 29.91 | 71.25 | 3 | 22.00 | 22.45 | 22.87 | 7 | −29 | −4.5 | 30 | 20.70 | 21.77 | 22.73 | 29 | 9 | 1 |
RCSD | 33.65 | 71.61 | 6 | 21.73 | 22.33 | 22.90 | 17 | −20 | −2.7 | 38 | 20.52 | 21.67 | 22.68 | 1 | −28 | −2.8 |
IMCH | 38.41 | 73.89 | 11 | 21.43 | 22.18 | 22.88 | 35 | −12 | −1.3 | 47 | 20.25 | 21.48 | 22.58 | 20 | −37 | −2.8 |
QLLN | 43.11 | 73.66 | 17 | 21.15 | 22.02 | 22.82 | 43 | −4 | −0.4 | 53 | 20.07 | 21.33 | 22.47 | 17 | −50 | −3.6 |
CSOM | 52.78 | 69.22 | 32 | 20.67 | 21.68 | 22.63 | 8 | −2 | −0.1 | 62 | 19.78 | 21.05 | 22.18 | 45 | −56 | −3.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valdés-Abreu, J.C.; Díaz, M.; Bravo, M.; Stable-Sánchez, Y. IonosphericTotal Electron Content Changes during the 15 February 2018 and 30 April 2022 Solar Eclipses over South America and Antarctica. Remote Sens. 2023, 15, 4810. https://doi.org/10.3390/rs15194810
Valdés-Abreu JC, Díaz M, Bravo M, Stable-Sánchez Y. IonosphericTotal Electron Content Changes during the 15 February 2018 and 30 April 2022 Solar Eclipses over South America and Antarctica. Remote Sensing. 2023; 15(19):4810. https://doi.org/10.3390/rs15194810
Chicago/Turabian StyleValdés-Abreu, Juan Carlos, Marcos Díaz, Manuel Bravo, and Yohadne Stable-Sánchez. 2023. "IonosphericTotal Electron Content Changes during the 15 February 2018 and 30 April 2022 Solar Eclipses over South America and Antarctica" Remote Sensing 15, no. 19: 4810. https://doi.org/10.3390/rs15194810
APA StyleValdés-Abreu, J. C., Díaz, M., Bravo, M., & Stable-Sánchez, Y. (2023). IonosphericTotal Electron Content Changes during the 15 February 2018 and 30 April 2022 Solar Eclipses over South America and Antarctica. Remote Sensing, 15(19), 4810. https://doi.org/10.3390/rs15194810