Honduran Reef Island Shoreline Change and Planform Evolution over the Last 15 Years: Implications for Reef Island Monitoring and Futures
Abstract
:1. Introduction
2. Materials and Methods
2.1. Field Sites
2.2. Island Selection
2.3. Image Georeferencing
2.4. Shoreline Digitisation
2.5. Shoreline Error
2.6. Digital Shoreline Analysis System Data Processing
2.7. Shoreline Change Statistics
3. Results
3.1. Utila Reef Island Shoreline Change
3.2. Cayos Cochinos Reef Island Shoreline Change
3.3. Relationships between Island Shoreline Change Behaviour and Island Size
3.4. Modes of Reef Island Planar Change
3.5. Lateral Change (Spits and Extremities)
3.6. Migration
4. Discussion
4.1. Modes of Change
4.2. Effect of Island Size on Island Evolutionary Behaviour
4.3. Timescales and Island Equilibrium
4.4. Drivers of Reef Island Evolution
4.5. Implications and Considerations
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Woodroffe, C.D.; McLean, R.F. Reef Islands of the Cocos (Keeling) Islands. Atoll Res. Bull. 1994, 403, 399–414. [Google Scholar] [CrossRef]
- Fuentes, M.M.P.B.; Dawson, J.L.; Smithers, S.G.; Hamann, M.; Limpus, C.J. Sedimentological Characteristics of Key Sea Turtle Rookeries: Potential Implications under Projected Climate Change. Mar. Freshw. Res. 2010, 61, 464–473. [Google Scholar] [CrossRef]
- Roy, P.; Connell, J. Climatic Change and the Future of Atoll States. J. Coast. Res. 1991, 7, 1057–1075. [Google Scholar]
- Tuck, M.E. Physical Modelling of the Response of Reef Islands to Sea-Level Rise. Geology 2019, 47, 803–806. [Google Scholar] [CrossRef]
- Storlazzi, C.D.; Elias, E.P.L.; Berkowitz, P. Many Atolls May Be Uninhabitable Within Decades Due to Climate Change. Sci. Rep. 2015, 5, 14546. [Google Scholar] [CrossRef]
- Storlazzi, C.D.; Elias, E.; Field, M.E.; Presto, M.K. Numerical Modeling of the Impact of Sea-Level Rise on Fringing Coral Reef Hydrodynamics and Sediment Transport. Coral Reefs 2011, 30, 83–96. [Google Scholar] [CrossRef]
- Sheppard, C.; Dixon, D.J.; Gourlay, M.; Sheppard, A.; Payet, R. Coral Mortality Increases Wave Energy Reaching Shores Protected by Reef Flats: Examples from the Seychelles. Estuar. Coast. Shelf Sci. 2005, 64, 223–234. [Google Scholar] [CrossRef]
- Sarkar, P. Drowning Island Nations: “This Is How a Pacific Atoll Dies” . Available online: https://www.independent.co.uk/news/ap-tuvalu-pacific-marshall-islands-antonio-guterres-b2172670.html (accessed on 14 October 2022).
- McConnell, T. The Maldives Is Being Swallowed by the Sea. Can It Adapt? Available online: https://www.nationalgeographic.com/environment/article/the-maldives-is-being-swallowed-by-the-sea-can-it-adapt (accessed on 14 October 2022).
- Mclean, R.; Kench, P.S. Destruction or Persistence of Coral Atoll Islands in the Face of 20th and 21st Century Sea-Level Rise? Intergovernmental Panel on Climate Change, Assessment Report 5 View Project. Clim. Chang. 2015, 6, 445–463. [Google Scholar] [CrossRef]
- Duvat, V.K.E. A Global Assessment of Atoll Island Planform Changes over the Past Decades. Wiley Interdiscip. Rev. Clim. Chang. 2019, 10, e557. [Google Scholar] [CrossRef]
- Yamano, H.; Cabioch, G.; Chevillon, C.; Join, J.L. Late Holocene Sea-Level Change and Reef-Island Evolution in New Caledonia. Geomorphology 2014, 222, 39–45. [Google Scholar] [CrossRef]
- Montaggioni, L.F.; Salvat, B.; Aubanel, A.; Pons-Branchu, E.; Martin-Garin, B.; Dapoigny, A.; Goeldner-Gianella, L. New Insights into the Holocene Development History of a Pacific, Low-Lying Coral Reef Island: Takapoto Atoll, French Polynesia. Quat. Sci. Rev. 2019, 223, 105947. [Google Scholar] [CrossRef]
- Dickinson, W.R. Impact of Mid-Holocene Hydro-Isostatic Highstand in Regional Sea Level on Habitability of Islands in Pacific Oceania. J. Coast. Res. 2003, 19, 489–502. [Google Scholar]
- East, H.K.; Perry, C.T.; Kench, P.S.; Liang, Y.; Gulliver, P. Coral Reef Island Initiation and Development Under Higher Than Present Sea Levels. Geophys. Res. Lett. 2018, 45, 11–265. [Google Scholar] [CrossRef]
- Kench, P.S.; Mclean, R.F.; Nichol, S.L. New Model of Reef-Island Evolution: Maldives, Indian Ocean. Geology 2005, 33, 145–148. [Google Scholar] [CrossRef]
- Kench, P.S.; Smithers, S.G.; McLean, R.F.; Nichol, S.L. Holocene Reef Growth in the Maldives: Evidence of a Mid-Holocene Sea-Level Highstand in the Central Indian Ocean. Geology 2009, 37, 455–458. [Google Scholar] [CrossRef]
- Kench, P.S.; Mann, T. Reef Island Evolution and Dynamics: Insights from the Indian and Pacific Oceans and Perspectives for the Spermonde Archipelago. Front. Mar. Sci. 2017, 4, 145. [Google Scholar] [CrossRef]
- McKoy, H.; Kennedy, D.M.; Kench, P.S. Sand Cay Evolution on Reef Platforms, Mamanuca Islands, Fiji. Mar. Geol. 2010, 269, 61–73. [Google Scholar] [CrossRef]
- Hart, D.E.; Kench, P.S. Carbonate Production of an Emergent Reef Platform, Warraber Island, Torres Strait, Australia. Coral Reefs 2007, 26, 53–68. [Google Scholar] [CrossRef]
- Sengupta, M.; Ford, M.R.; Kench, P.S. Shoreline Changes in Coral Reef Islands of the Federated States of Micronesia since the Mid-20th Century. Geomorphology 2021, 377, 107584. [Google Scholar] [CrossRef]
- Kench, P.S.; Chan, J.; Owen, S.D.; McLean, R.F. The Geomorphology, Development and Temporal Dynamics of Tepuka Island, Funafuti Atoll, Tuvalu. Geomorphology 2014, 222, 46–58. [Google Scholar] [CrossRef]
- Webb, A.P.; Kench, P.S. The Dynamic Response of Reef Islands to Sea-Level Rise: Evidence from Multi-Decadal Analysis of Island Change in the Central Pacific. Glob. Planet. Chang. 2010, 72, 234–246. [Google Scholar] [CrossRef]
- Mann, T.; Westphal, H. Multi-Decadal Shoreline Changes on Takú Atoll, Papua New Guinea: Observational Evidence of Early Reef Island Recovery after the Impact of Storm Waves. Geomorphology 2016, 257, 75–84. [Google Scholar] [CrossRef]
- Ford, M.R.; Kench, P.S. Formation and Adjustment of Typhoon-Impacted Reef Islands Interpreted from Remote Imagery: Nadikdik Atoll, Marshall Islands. Geomorphology 2014, 214, 216–222. [Google Scholar] [CrossRef]
- Ford, M.R.; Kench, P.S.; Owen, S.D.; Hua, Q. Active Sediment Generation on Coral Reef Flats Contributes to Recent Reef Island Expansion. Geophys. Res. Lett. 2020, 47, e2020GL088752. [Google Scholar] [CrossRef]
- Ford, M. Shoreline Changes Interpreted from Multi-Temporal Aerial Photographs and High Resolution Satellite Images: Wotje Atoll, Marshall Islands. Remote Sens. Environ. 2013, 135, 130–140. [Google Scholar] [CrossRef]
- Kench, P.S.; Thompson, D.; Ford, M.R.; Ogawa, H.; McLean, R.F. Coral Islands Defy Sea-Level Rise over the Past Century: Records from a Central Pacific Atoll. Geology 2015, 43, 515–518. [Google Scholar] [CrossRef]
- Duvat, V.K.E.; Salvat, B.; Salmon, C. Drivers of Shoreline Change in Atoll Reef Islands of the Tuamotu Archipelago, French Polynesia. Glob. Planet. Chang. 2017, 158, 134–154. [Google Scholar] [CrossRef]
- Torres, R.R.; Tsimplis, M.N. Sea-Level Trends and Interannual Variability in the Caribbean Sea. J. Geophys. Res. Oceans 2013, 118, 2934–2947. [Google Scholar] [CrossRef]
- Toscano, M.A.; Macintyre, I.G. Corrected Western Atlantic Sea-Level Curve for the Last 11,000 Years Based on Calibrated 14 C Dates from Acropora Palmata Framework and Intertidal Mangrove Peat. Coral Reefs 2003, 22, 257–270. [Google Scholar] [CrossRef]
- Harborne, A.R.; Afzal, D.C.; Andrews, M.J. Honduras: Caribbean Coast. Mar. Pollut. Bull. 2001, 42, 1221–1235. [Google Scholar] [CrossRef]
- Hughes, T.P. Catastrophes, Phase Shifts, and Large-Scale Degradation of a Caribbean Coral Reef. Science 1994, 265, 1547–1551. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Filip, L.; Dulvy, N.K.; Gill, J.A.; Cô Té, I.M.; Watkinson, A.R. Flattening of Caribbean Coral Reefs: Region-Wide Declines in Architectural Complexity. Proc. R. Soc. B 2009, 276, 3019–3025. [Google Scholar] [CrossRef] [PubMed]
- Alvarez-Filip, L.; González-Barrios, F.J.; Pérez-Cervantes, E.; Molina-Hernández, A.; Estrada-Saldívar, N. Stony Coral Tissue Loss Disease Decimated Caribbean Coral Populations and Reshaped Reef Functionality. Commun. Biol. 2022, 5, 440. [Google Scholar] [CrossRef] [PubMed]
- Randazzo-Eisemann, Á.; Garza-Pérez, J.R.; Figueroa-Zavala, B. The Role of Coral Diseases in the Flattening of a Caribbean Coral Reef over 23 Years. Mar. Pollut. Bull. 2022, 181, 113855. [Google Scholar] [CrossRef]
- Perry, C.T.; Murphy, G.N.; Kench, P.S.; Smithers, S.G.; Edinger, E.N.; Steneck, R.S.; Mumby, P.J. Caribbean-Wide Decline in Carbonate Production Threatens Coral Reef Growth. Nat. Commun. 2013, 4, 1402. [Google Scholar] [CrossRef] [PubMed]
- Stoddart, D.R.; Fosberg, F.R.; Spellman, D.L. Cays of the Belize Barrier Reef and Lagoon. Atoll Res. Bull. 1982, 256. Available online: https://repository.si.edu/bitstream/handle/10088/5055/00256.pdf (accessed on 20 September 2023). [CrossRef]
- Houser, C.; Dambrosio, T.; Bouchard, C.; Heyman, W.; Darbonne, K.; Kuykendall, S. Erosion and Reorientation of the Sapodilla Cays, Mesoamerican Reef Belize from 1960 to 2012. Phys Geogr 2014, 35, 335–354. [Google Scholar] [CrossRef]
- Stoddart, D.R. Storm Conditions and Vegetation in Equilibrium of Reef Islands. Coast. Eng. 1964, 1964, 893–906. [Google Scholar]
- Oppenheimer, M.; Glavovic, B.; Hinkel, J.; van de Wal, R.; Magnan, A.K.; Abd-Elgawad, A.; Cai, R.; Cifuentes-Jara, M.; DeConto, R.M.; Ghosh, T.; et al. Sea Level Rise and Implications for Low Lying Islands, Coasts and Communities. In IPCC Special Report on the Ocean and Cryosphere in a Changing Climate; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2019; pp. 321–445. ISBN 1095-9203. [Google Scholar]
- Ruiz de Gauna, I.; Markandya, A.; Greno, F.; Warman, J.; Arce, N.; Navarrete, A.; Rivera, M.; Kobelkowsky, R.; Vargas, M.; Hernandez, M. Economic Valuation of the Ecosystem Services of the Mesoamerican Reef, and the Allocation and Distribution of These Values; IDB Working Paper Series No. IDB-WP-01214; Inter-American Development Bank (IDB): Washington, DC, USA, 2021. [Google Scholar] [CrossRef]
- Alvarez-Filip, L.; Dulvy, N.K.; Côté, I.M.; Watkinson, A.R.; Gill, J.A. Coral Identity Underpins Architectural Complexity on Caribbean Reefs. Ecol. Appl. 2011, 21, 2223–2231. [Google Scholar] [CrossRef]
- Stalcup, M.C.; Metcalf, W.G. Current Measurements in the Passages of the Lesser Antilles. J. Geophys. Res. 1972, 77, 1032–1049. [Google Scholar] [CrossRef]
- Johns, W.E.; Townsend, T.L.; Fratantoni, D.M.; Wilson, W.D. On the Atlantic Inflow to the Caribbean Sea. Deep. Sea Res. 1 Oceanogr. Res. Pap. 2002, 49, 211–243. [Google Scholar] [CrossRef]
- Richardson, P.L. Caribbean Current and Eddies as Observed by Surface Drifters. Deep. Sea Res. 2 Top. Stud. Oceanogr. 2005, 52, 429–463. [Google Scholar] [CrossRef]
- Gordon, A.L. Circulation of the Caribbean Sea. J. Geophys. Res. 1967, 72, 6207–6223. [Google Scholar] [CrossRef]
- D’Croz, L.; Jackson, J.B.C.; Best, M.M.R. Siliciclastic-Carbonate Transitions along Shelf Transects through the Cayos Cochinos Archipelago, Honduras. Rev. Biol. Trop. 1998, 46, 57–66. [Google Scholar]
- Brenes, C.L.; Gallegos, A.; Coen, E. Variación Anual de La Temperatura Superficial En El Golfo de Honduras. Rev. Biol. Trop. 1998, 46, 187–197. [Google Scholar]
- Mehrtens, C.J.; Rosenheim, B.; Modley, M.; Young, R.S. Reef Morphology and Sediment Attributes, Roatan, Bay Islands, Honduras. Carbonates Evaporites 2001, 16, 131–140. [Google Scholar] [CrossRef]
- Cahoon, D.R.; Hensel, P. Hurricane Mitch: A Regional Perspective on Mangrove Damage, Recovery, and Sustainability; USGS: Reston, VA, USA, 2002. [Google Scholar]
- World Meteorological Organization (WMO). State of the Climate in Latin America and the Caribbean 2021; WMO: Geneva, Switzerland, 2021. [Google Scholar]
- Palanisamy, H.; Becker, M.; Meyssignac, B.; Henry, O.; Cazenave, A. Regional Sea Level Change and Variability in the Caribbean Sea since 1950. J. Geod. Sci. 2012, 2, 125–133. [Google Scholar] [CrossRef]
- Duvat, V.K.E. Coastal Protection Structures in Tarawa Atoll, Republic of Kiribati. Sustain. Sci. 2013, 8, 363–379. [Google Scholar] [CrossRef]
- Warnasuriya, T.W.S.; Kumara, M.P.; Gunasekara, S.S.; Gunaalan, K.; Jayathilaka, R.M.R.M. An Improved Method to Detect Shoreline Changes in Small-Scale Beaches Using Google Earth Pro. Mar. Geod. 2020, 43, 541–572. [Google Scholar] [CrossRef]
- Warnasuriya, T.W.S.; Gunaalan, K.; Gunasekara, S.S. Google Earth: A New Resource for Shoreline Change Estimation—Case Study from Jaffna Peninsula, Sri Lanka. Mar. Geod. 2018, 41, 546–580. [Google Scholar] [CrossRef]
- Morris, D.E.; Madhu, K. Coastline Change Rate Estimation on the Southern Coastal Districts of Tamil Nadu, India Using the Multi Temporal Google Earth Images and GIS Based Statistical Approach. 2022. Preprint. Available online: https://doi.org/10.21203/rs.3.rs-1916432/v1 (accessed on 20 April 2023).
- Google Earth Pro 2021. Available online: https://earth.google.com/web/ (accessed on 24 September 2023).
- Ford, M.R. Shoreline Changes on an Urban Atoll in the Central Pacific Ocean: Majuro Atoll, Marshall Islands. J. Coast. Res. 2012, 28, 11–22. [Google Scholar] [CrossRef]
- Duvat, V.K.E.; Pillet, V. Shoreline Changes in Reef Islands of the Central Pacific: Takapoto Atoll, Northern Tuamotu, French Polynesia. Geomorphology 2017, 282, 96–118. [Google Scholar] [CrossRef]
- Ford, M.R.; Kench, P.S. Spatiotemporal Variability of Typhoon Impacts and Relaxation Intervals on Jaluit Atoll, Marshall Islands. Geology 2016, 44, 159–162. [Google Scholar] [CrossRef]
- Romine, B.M.; Fletcher, C.H.; Frazer, L.N.; Genz, A.S.; Barbee, M.M.; Lim, S.C. Historical Shoreline Change, Southeast Oahu, Hawaii; Applying Polynomial Models to Calculate Shoreline Change Rates. J. Coast. Res. 2009, 25, 1236–1253. [Google Scholar] [CrossRef]
- Fletcher, C.; Rooney, J.; Barbee, M.; Lim, S.-C.; Richmond, B. Mapping Shoreline Change Using Digital Orthophotogrammetry on Maui, Hawaii. Source J. Coast. Res. 2003, 106–124. Available online: https://www.jstor.org/stable/25736602 (accessed on 20 April 2023).
- Thieler, E.R.; Himmelstoss, E.A.; Zichichi, J.L.; Ergul, A. The Digital Shoreline Analysis System (DSAS) Version 4.0—An ArcGIS Extension for Calculating Shoreline Change; Open File Report; US Geological Survey: Reston, VA, USA, 2009. [Google Scholar] [CrossRef]
- Genz, A.S.; Fletcher, C.H.; Dunn, R.A.; Frazer, L.N.; Rooney, J.J. The Predictive Accuracy of Shoreline Change Rate Methods and Alongshore Beach Variation on Maui, Hawaii. J. Coast. Res. 2007, 23, 87–105. [Google Scholar] [CrossRef]
- Mann, T.; Bayliss-Smith, T.; Westphal, H. A Geomorphic Interpretation of Shoreline Change Rates on Reef Islands. J. Coast. Res. 2016, 32, 500–507. [Google Scholar] [CrossRef]
- Perry, C.T.; Kench, P.S.; Smithers, S.G.; Yamano, H.; O’Leary, M.; Gulliver, P. Time Scales and Modes of Reef Lagoon Infilling in the Maldives and Controls on the Onset of Reef Island Formation. Geology 2013, 41, 1111–1114. [Google Scholar] [CrossRef]
- Aslam, M.; Kench, P.S. Reef Island Dynamics and Mechanisms of Change in Huvadhoo Atoll, Republic of Maldives, Indian Ocean. Anthropocene 2017, 18, 57–68. [Google Scholar] [CrossRef]
- Himmelstoss, E.A.; Henderson, R.E.; Kratzmann, M.G.; Farris, A.S. Digital Shoreline Analysis System (DSAS) Version 5.0 User Guide: U.S. Geol. Surv. Open File Rep. 2018, 104, 1091–2021. [Google Scholar] [CrossRef]
- Kench, P.S.; Ford, M.R.; Owen, S.D. Patterns of Island Change and Persistence Offer Alternate Adaptation Pathways for Atoll Nations. Nat. Commun. 2018, 9, 605. [Google Scholar] [CrossRef] [PubMed]
- Rankey, E.C. Nature and Stability of Atoll Island Shorelines: Gilbert Island Chain, Kiribati, Equatorial Pacific. Sedimentology 2011, 58, 1831–1859. [Google Scholar] [CrossRef]
- Bayliss-smith, T.P. The Role of Hurricanes in the Development of Reef Islands, Ontong Java Atoll, Solomon Islands. Geogr. J. 1988, 154, 377–391. [Google Scholar] [CrossRef]
- Kench, P.S.; Brander, R.W. Response of Reef Island Shorelines to Seasonal Climate Oscillations: South Maalhosmadulu Atoll, Maldives. J. Geophys. Res. 2006, 111, 1001. [Google Scholar] [CrossRef]
- Kench, P.S.; Mclean, R.F.; Brander, R.W.; Nichol, S.L.; Smithers, S.G.; Ford, M.R.; Parnell, K.E. Geological Effects of Tsunami on Mid-Ocean Atoll Islands: The Maldives before and after the Sumatran Tsunami. Geology 2006, 34, 177–180. [Google Scholar] [CrossRef]
- Stoddart, D.R.; Steers, J.A. The Nature and Origin of Coral Reef Islands. Biol. Geol. Coral Reefs 1977, 4, 59–105. [Google Scholar]
- Knapp, K.R.; Diamond, H.J.; Kossin, J.P.; Kruk, M.C.; Schreck, C.J. International Best Track Archive for Climate Stewardship (IBTrACS) Project, Version 4. Available online: https://www.ncei.noaa.gov/access/metadata/landing-page/bin/iso?id=gov.noaa.ncdc:C01552 (accessed on 20 April 2023). [CrossRef]
- Knapp, K.R.; Kruk, M.C.; Levinson, D.H.; Diamond, H.J.; Neumann, C.J. The International Best Track Archive for Climate Stewardship (IBTrACS): Unifying Tropical Cyclone Data. Bull. Am. Meteorol. Soc. 2010, 91, 363–376. [Google Scholar] [CrossRef]
- Kench, P.S.; Owen, S.D.; Ford, M.R. Evidence for Coral Island Formation during Rising Sea Level in the Central Pacific Ocean. Geophys. Res. Lett. 2014, 41, 820–827. [Google Scholar] [CrossRef]
- O’Connell, O. 100-Year-Old Panamanian Community to Move to Mainland as Sea Level Rises over Island. Available online: https://www.independent.co.uk/climate-change/panama-island-sinking-climate-change-b2218961.html (accessed on 27 April 2023).
- Kench, P.S. Compromising Reef Island Shoreline Dynamics: Legacies of the Engineering Paradigm in the Maldives. Coast. Res. Libr. 2012, 3, 165–186. [Google Scholar]
- Mann, T.; Westphal, H. Assessing Long-Term Changes in the Beach Width of Reef Islands Based on Temporally Fragmented Remote Sensing Data. Remote Sens. 2014, 6, 6961–6987. [Google Scholar] [CrossRef]
- Kench, P.S.; Liang, C.; Ford, M.R.; Owen, S.D.; Aslam, M.; Ryan, E.J.; Turner, T.; Beetham, E.; Dickson, M.E.; Stephenson, W.; et al. Reef Islands Have Continually Adjusted to Environmental Change over the Past Two Millennia. Nat. Commun. 2023, 14, 508. [Google Scholar] [CrossRef] [PubMed]
- Testut, L.; Duvat, V.K.E.; Ballu, V.; Fernandes, R.M.S.; Pouget, F.; Salmon, C.; Dyment, J. Shoreline Changes in a Rising Sea Level Context: The Example of Grande Glorieuse, Scattered Islands, Western Indian Ocean. Acta Oecologica 2016, 72, 110–119. [Google Scholar] [CrossRef]
- Chirayath, V.; Instrella, R. Fluid Lensing and Machine Learning for Centimeter-Resolution Airborne Assessment of Coral Reefs in American Samoa. Remote Sens. Environ. 2019, 235, 111475. [Google Scholar] [CrossRef]
Reef Island | Code | Oldest Shoreline | Most Recent Shoreline | Maximum Study Period | Number of Images Analysed |
---|---|---|---|---|---|
Utila | |||||
Sandy | U1 | 06/06/2010 | 23/01/2019 | 8 yrs 7 mths | 5 |
Southwest | U2 | 06/06/2010 | 23/01/2019 | 8 yrs 7 mths | 4 |
Water | U3 | 12/08/2006 | 23/01/2019 | 12 yrs 5 mths | 6 |
Morgans | U4 | 12/08/2006 | 23/01/2019 | 12 yrs 5 mths | 6 |
Diamond | U5 | 12/08/2006 | 30/06/2016 | 9 yrs 9 mths | 5 |
Bells | U6 | 12/08/2006 | 06/07/2013 | 6 yrs 9 mths | 4 |
Little Cay A | U7 | 12/08/2006 | 21/01/2019 | 12 yrs 5 mths | 6 |
Cayos Cochinos | |||||
Palamo | C1 | 31/05/2016 | 17/03/2021 | 4 yrs 9 mths | 4 |
Balfate | C2 | 31/05/2016 | 17/03/2021 | 4 yrs 9 mths | 3 |
Largo Arriba | C3 | 31/05/2016 | 17/03/2021 | 4 yrs 9 mths | 3 |
Borrego | C4 | 17/10/2018 | 17/03/2021 | 2 yrs 5 mths | 2 |
Largo Abajo | C5 | 17/10/2018 | 17/03/2021 | 2 yrs 5 mths | 2 |
Chachauate | C6 | 17/10/2018 | 17/03/2021 | 2 yrs 5 mths | 2 |
Bolanos | C7 | 17/10/2018 | 17/03/2021 | 2 yrs 5 mths | 3 |
Zacate | C8 | 17/10/2018 | 17/03/2021 | 2 yrs 5 mths | 3 |
Timon | C9 | 17/10/2018 | 17/03/2021 | 2 yrs 5 mths | 3 |
Area Percent Change (%) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Utila Reef Island | Study Period | Oldest Area (m2) | Most Recent Area (m2) | Aug 2006–Jun 2010 | Jun 2010–Mar 2013 | Jun 2010–Jul 2013 | Mar 2013–Jul 2013 | Jul 2013–Jun 2016 | Jun 2016–Jan 2019 | Overall Net Change (%) | Overall Island Behaviour * |
U7 | 2006–2019 | 562 | 535 | −3% | 0% | − | −8% | 7% | 0% | −5% | Eroded |
U4 | 2006–2019 | 2225 | 2491 | 4% | 10% | − | −6% | 1% | 4% | 12% | Accreted |
U1 | 2010–2019 | 2551 | 2869 | − | 14% | − | −18% | 18% | 3% | 13% | Accreted |
U2 | 2010–2019 | 4839 | 4813 | − | − | −4% | − | 8% | −5% | −1% | Stable |
U5 | 2006–2016 | 6254 | 7071 | 4% | 9% | − | −1% | 1% | − | 13% | Accreted |
U6 | 2006–2013 | 8695 | 9554 | 3% | 8% | − | −1% | − | − | 10% | Accreted |
U3 | 2006–2019 | 14,491 | 16,018 | 3% | 8% | − | −6% | 1% | 4% | 11% | Accreted |
Net Shoreline Movement | Weighted Linear Regression | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Utila Reef Island | Study Period | Transect Count | Mean ± SD (m) | Mean Positive Distance ± SD (m) | Mean Negative Distance ± SD (m) | Accretionary Transects (%) | Stable Transects (%) | Erosive Transects (%) | Mean ± Error (m/yr) | Mean Positive WLR ± SD (m/yr) | Mean Negative WLR ± SD (m/yr) | Accretionary Transects (%) | Stable Transects (%) | Erosive Transects (%) |
U7 ** | 2006–2019 | 31 | −0.3 ± 1.1 | 0.9 ± 0.6 | −0.9 ± 0.7 | 25.8 | 25.8 | 48.4 | −0.0 ± 0.1 | 0.1 ± 0.0 | −0.1 ± 0.1 | 0.0 | 100.0 | 0.0 |
U4 * | 2006–2019 | 68 | 1.8 ± 4.2 | 3.0 ± 4.3 | −1.6 ± 1.4 | 66.7 | 15.9 | 17.4 | 0.1 ± 0.1 | 0.2 ± 0.4 | −0.1 ± 0.1 | 21.7 | 68.1 | 10.1 |
U1 * | 2010–2019 | 87 | 1.0 ± 5.0 | 4.4 ± 4.0 | −3 ± 2.5 | 51.7 | 4.6 | 43.7 | 0.1 ± 0.3 | 0.4 ± 0.3 | −0.4 ± 0.3 | 35.6 | 39.1 | 25.3 |
U2 | 2010–2019 | 117 | −0.0 ± 3.5 | 3.0 ± 2.0 | −2.8 ± 2.1 | 44.4 | 4.3 | 51.3 | 0.0 ± 0.3 | 0.3 ± 0.2 | −0.3 ± 0.2 | 30.8 | 49.6 | 19.7 |
U5 * | 2006–2016 | 75 | 1.8 ± 2.9 | 2.9 ± 1.6 | −2.7 ± 2.7 | 78.7 | 4.0 | 17.3 | 0.2 ± 0.2 | 0.3 ± 0.2 | −0.3 ± 0.2 | 50.7 | 41.3 | 8.0 |
U6 * | 2006–2013 | 134 | 2.0 ± 4.7 | 4.9 ± 3.5 | −2.3 ± 2.1 | 59.0 | 3.0 | 38.1 | 0.3 ± 0.2 | 0.7 ± 0.4 | −0.3 ± 0.2 | 53.0 | 33.6 | 13.4 |
U3 * | 2006–2019 | 196 | 2.2 ± 4.1 | 4.2 ± 3.3 | −1.9 ± 1.6 | 66.3 | 3.6 | 30.1 | 0.2 ± 0.2 | 0.3 ± 0.3 | −0.2 ± 0.2 | 42.9 | 45.9 | 11.2 |
Cayos Cochinos Cay | Island Area (m2) | Area Percent Change % | Overall Island Behaviour 2018–2021 * | ||||
---|---|---|---|---|---|---|---|
2016 | 2018 | 2021 | 2016–2018 | 2016–2021 | 2018–2021 | ||
C1 | 974 | 1493 | 1255 | 53% | 29% | −16% | Eroded |
C2 | 4646 | 5292 | 5153 | 14% | 11% | −3% | Stable |
C3 | 19,506 | 20,372 | 20,120 | 4% | 3% | −1% | Stable |
C8 | 165 | 39 | −76% | Eroded | |||
C9 | 356 | 253 | −29% | Eroded | |||
C7 | 1050 | 1144 | 9% | Accreted | |||
U6 | 5082 | 4981 | −2% | Stable | |||
C5 | 16,184 | 15,915 | −2% | Stable | |||
C4 | 21,979 | 21,750 | −1% | Stable |
Net Shoreline Movement | End Point Rate | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Cayos Cochinos Cay | Study Period | Transect Count | Mean ± SD (m) | Mean Positive Distance (m) | Mean Negative Distance (m) | Accretionary Transects (%) | Stable Transects (%) | Erosive Transects (%) | Mean ± Error (m) | Mean Positive WLR (m/yr) | Mean Negative WLR (m/yr) | Accretionary Transects (%) | Stable Transects (%) | Erosive Transects (%) |
C1 ** | 2016–2021 | 53 | 2.0 ± 2.18 | 2.6 ± 1.9 | −0.6 ± 0.5 | 77.4 | 9.4 | 13.2 | 0.4 ± 0.07 | 0.5 ± 0.4 | −0.1 ± 0.1 | 54.7 | 41.5 | 3.8 |
C2 ** | 121 | 1.5 ± 2.36 | 2.4 ± 1.7 | −1.8 ± 1.0 | 74.4 | 5.0 | 20.7 | 0.3 ± 0.09 | 0.5 ± 0.4 | −0.4 ± 0.2 | 43.8 | 45.5 | 10.7 | |
C3 ** | 227 | 0.7 ± 4.46 | 3.6 ± 2.7 | −3.3 ± 3.1 | 54.6 | 6.2 | 39.2 | 0.1 ± 0.11 | 0.8 ± 0.6 | −0.7 ± 0.6 | 41.9 | 33.0 | 25.1 | |
C1 * | 2018–2021 | 53 | −1.9 ± 2.02 | 1.0 ± 0.8 | −2.3 ± 1.8 | 9.4 | 9.4 | 81.1 | −0.8 ± 0.14 | 0.4 ± 0.3 | −0.9 ± 0.7 | 7.5 | 24.5 | 67.9 |
C2 | 121 | −0.3 ± 2.8 | 2.5 ± 1.8 | −2.2 ± 1.4 | 36.4 | 9.1 | 54.5 | −0.1 ± 0.22 | 1.1 ± 0.7 | −0.9 ± 0.6 | 30.6 | 21.5 | 47.9 | |
C3 | 227 | −0.2 ± 3.49 | 3.1 ± 2.2 | −2.6 ± 2.0 | 38.3 | 7.5 | 54.2 | −0.1 ± 0.27 | 1.3 ± 0.9 | −1.1 ± 0.8 | 34.8 | 17.2 | 48.0 | |
C8 * | 18 | −3.8 ± 5.32 | 2.3 ± 0.7 | −7.6 ± 2.4 | 38.9 | 0.0 | 61.1 | −1.6 ± 0.15 | 0.9 ± 0.3 | −3.1 ± 1.0 | 38.9 | 0.0 | 61.1 | |
C9 * | 29 | −1.3 ± 2.04 | 0.9 ± 0.9 | −2.3 ± 1.5 | 17.2 | 20.7 | 62.1 | −0.5 ± 0.17 | 0.4 ± 0.3 | −1.0 ± 0.6 | 13.8 | 24.1 | 62.1 | |
C7 ** | 52 | 0.7 ± 1.52 | 1.3 ± 1.0 | −1.5 ± 1.2 | 65.4 | 15.4 | 19.2 | 0.3 ± 0.14 | 0.5 ± 0.4 | −0.6 ± 0.5 | 50.0 | 36.5 | 13.5 | |
C6 | 94 | −0.1 ± 2.14 | 1.3 ± 1.0 | −1.8 ± 1.9 | 46.8 | 14.9 | 38.3 | −0.1 ± 0.18 | 0.6 ± 0.4 | −0.7 ± 0.8 | 36.2 | 33.0 | 30.9 | |
C5 | 185 | −0.2 ± 1.95 | 1.3 ± 1.0 | −1.7 ± 1.5 | 41.6 | 12.4 | 45.9 | −0.1 ± 0.12 | 0.5 ± 0.4 | −0.7 ± 0.6 | 35.1 | 24.3 | 40.5 | |
C4 | 170 | −0.2 ± 2.15 | 1.7 ± 1.6 | −1.5 ± 1.4 | 37.1 | 13.5 | 49.4 | −0.1 ± 0.17 | 0.7 ± 0.7 | −0.6 ± 0.6 | 26.5 | 35.3 | 38.2 |
Utila | Cayos Cochinos | All Islands | ||||||
---|---|---|---|---|---|---|---|---|
Modes | 1st | 2nd | 1st | 2nd | Total | % | Characteristics of Geomorphic Change | |
Accretion | Accretion | 1 | - | 1 | - | 5 | 31.25 | Accretion around entire permieter |
Lagoonwards accretion | 2 | - | - | - | Stability of oceanward shoreline and accretion of lagoonwards shoreline | |||
Oceanward accretion | - | 1 | - | - | Stability of lagoonward shoreline and accretion of oceanward shoreline | |||
Erosion | Contraction | - | - | 3 | - | 5 | 31.25 | Erosion around entire permieter |
Oceanward retreat | 1 | - | - | 1 | Stability of lagoonward shoreline and erosion of oceanward shoreline | |||
Migration | Lagoonwards migration | - | - | 1 | 2 | 6 | 37.50 | Erosion of oceanward shoreline and accretion of lagoonward shoreline |
Oceanward migration | - | - | 1 | - | Erosion of lagoonward shoreline and accretion of oceanward shoreline | |||
Eastwards migration | 1 | - | - | - | Eastwards migration of island along reef platform | |||
Northern migration | - | - | - | 1 | Northern migration of island along reef platform | |||
Extremity change | Lateral extension | 1 | 4 | - | - | 8 | 50.00 | Accretion of island spits of extremities (e.g., tips) |
Lateral contraction | - | - | - | 3 | Erosion of island spits of extremities (e.g., tips) | |||
Rotation | Rotation | - | 1 | - | 1 | 2 | 12.50 | Island rotates around a central pivot position on reef platform |
No mode | Stable | 1 | - | 3 | - | 4 | 25.00 | No evident large scale shift in island footprint on reef platform |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Husband, E.; East, H.K.; Hocking, E.P.; Guest, J. Honduran Reef Island Shoreline Change and Planform Evolution over the Last 15 Years: Implications for Reef Island Monitoring and Futures. Remote Sens. 2023, 15, 4787. https://doi.org/10.3390/rs15194787
Husband E, East HK, Hocking EP, Guest J. Honduran Reef Island Shoreline Change and Planform Evolution over the Last 15 Years: Implications for Reef Island Monitoring and Futures. Remote Sensing. 2023; 15(19):4787. https://doi.org/10.3390/rs15194787
Chicago/Turabian StyleHusband, Emi, Holly K. East, Emma P. Hocking, and James Guest. 2023. "Honduran Reef Island Shoreline Change and Planform Evolution over the Last 15 Years: Implications for Reef Island Monitoring and Futures" Remote Sensing 15, no. 19: 4787. https://doi.org/10.3390/rs15194787
APA StyleHusband, E., East, H. K., Hocking, E. P., & Guest, J. (2023). Honduran Reef Island Shoreline Change and Planform Evolution over the Last 15 Years: Implications for Reef Island Monitoring and Futures. Remote Sensing, 15(19), 4787. https://doi.org/10.3390/rs15194787