Evaluation of the RF-MEP Method for Merging Multiple Gridded Precipitation Products in the Chongqing City, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Ground Precipitation Measurements
2.2. Satellite and Reanalysis Precipitation Products
- (1)
- CHIRPS
- (2)
- ERA5-Land
- (3)
- GPM IMERG
2.3. The STRM DEM Data
2.4. The RF-MEP Method
2.4.1. Input Data to the RF-MEP Method
2.4.2. Data Processing
2.4.3. Merging Procedure
2.5. Two Other Merging Methods
2.6. Evaluation of the Gridded Precipitation Product and the Merged Dataset
3. Results
3.1. Overall Evaluation at the Daily Scale
3.2. Evaluation of Different Precipitation Intensities
3.3. Spatial Distribution of Annual Precipitation
3.4. Comparison of the Bias in the Daily Precipitation Time Series
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duan, Z.; Liu, J.; Tuo, Y.; Chiogna, G.; Disse, M. Evaluation of eight high spatial resolution gridded precipitation products in Adige Basin (Italy) at multiple temporal and spatial scales. Sci. Total Environ. 2016, 573, 1536–1553. [Google Scholar] [CrossRef]
- Moges, D.M.; Kmoch, A.; Uuemaa, E. Application of satellite and reanalysis precipitation products for hydrological modeling in the data-scarce Porijogi catchment, Estonia. J. Hydrol. Reg. Stud. 2022, 41, 101070. [Google Scholar] [CrossRef]
- Zambrano-Bigiarini, M.; Nauditt, A.; Birkel, C.; Verbist, K.; Ribbe, L. Temporal and spatial evaluation of satellite-based rainfall estimates across the complex topographical and climatic gradients of Chile. Hydrol. Earth Syst. Sci. 2017, 21, 1295–1320. [Google Scholar] [CrossRef]
- Woldemeskel, F.M.; Sivakumar, B.; Sharma, A. Merging gauge and satellite rainfall with specification of associated uncertainty across Australia. J. Hydrol. 2013, 499, 167–176. [Google Scholar] [CrossRef]
- Baez-Villanueva, O.M.; Zambrano-Bigiarini, M.; Ribbe, L.; Nauditt, A.; Giraldo-Osorio, J.D.; Thinh, N.X. Temporal and spatial evaluation of satellite rainfall estimates over different regions in Latin-America. Atmos. Res. 2018, 213, 34–50. [Google Scholar] [CrossRef]
- Sun, Q.; Miao, C.; Duan, Q.; Ashouri, H.; Sorooshian, S.; Hsu, K.L. A review of global precipitation data sets: Data sources, estimation, and intercomparisons. Rev. Geophys. 2018, 56, 79–107. [Google Scholar] [CrossRef]
- Pradhan, R.K.; Markonis, Y.; Godoy, M.R.V.; Villalba-Pradas, A.; Andreadis, K.M.; Nikolopoulos, E.I.; Papalexiou, S.M.; Rahim, A.; Tapiador, F.J.; Hanel, M. Review of GPM IMERG performance: A global perspective. Remote Sens. Environ. 2022, 268, 112754. [Google Scholar] [CrossRef]
- Sorooshian, S.; Hsu, K.L.; Gao, X.; Gupta, H.V.; Imam, B.; Braithwaite, D. Evaluation of PERSIANN system satellite-based estimates of tropical rainfall. Bull. Am. Meteorol. Soc. 2000, 81, 2035–2046. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Nelkin, E.J.; Wolff, D.B.; Adler, R.F.; Gu, G.; Hong, Y.; Bowman, K.P.; Stocker, E.F. The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales. J. Hydrometeorol. 2007, 8, 38–55. [Google Scholar] [CrossRef]
- Joyce, R.J.; Janowiak, J.E.; Arkin, P.A.; Xie, P. CMORPH: A method that produces global precipitation estimates from passive microwave and infrared data at high spatial and temporal resolution. J. Hydrometeorol. 2004, 5, 487–503. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- Dinku, T.; Ruiz, F.; Connor, S.J.; Ceccato, P. Validation and intercomparison of satellite rainfall estimates over Colombia. J. Appl. Meteorol. Clim. 2010, 49, 1004–1014. [Google Scholar] [CrossRef]
- Chen, C.; He, M.; Chen, Q.; Zhang, J.; Li, Z.; Wang, Z.; Duan, Z. Triple collocation-based error estimation and data fusion of global gridded precipitation products over the Yangtze River basin. J. Hydrol. 2022, 605, 127307. [Google Scholar] [CrossRef]
- Wei, L.; Jiang, S.; Dong, J.; Ren, L.; Liu, Y.; Zhang, L.; Wang, M.; Duan, Z. Fusion of gauge-based, reanalysis, and satellite precipitation products using Bayesian model averaging approach: Determination of the influence of different input sources. J. Hydrol. 2023, 618, 129234. [Google Scholar] [CrossRef]
- Baez-Villanueva, O.M.; Zambrano-Bigiarini, M.; Beck, H.E.; McNamara, I.; Ribbe, L.; Nauditt, A.; Birkel, C.; Verbist, K.; Giraldo-Osorio, J.D.; Thinh, N.X. RF-MEP: A novel Random Forest method for merging gridded precipitation products and ground-based measurements. Remote Sens. Environ. 2020, 239, 111606. [Google Scholar] [CrossRef]
- Nguyen, G.V.; Le, X.H.; Van, L.N.; Jung, S.; Yeon, M.; Lee, G. Application of random forest algorithm for merging multiple satellite precipitation products across South Korea. Remote Sens. 2021, 13, 4033. [Google Scholar] [CrossRef]
- Muñoz-Sabater, J.; Dutra, E.; Agustí-Panareda, A.; Albergel, C.; Arduini, G.; Balsamo, G.; Boussetta, S.; Choulga, M.; Harrigan, S.; Hersbach, H.; et al. ERA5-Land: A state-of-the-art global reanalysis dataset for land applications. Earth Syst. Sci. Data 2021, 13, 4349–4383. [Google Scholar] [CrossRef]
- Gomis-Cebolla, J.; Rattayova, V.; Salazar-Galan, S.; Frances, F. Evaluation of ERA5 and ERA5-Land reanalysis precipitation datasets over Spain (1951–2020). Atmos. Res. 2023, 284, 106606. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The global precipitation measurement mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Huffman, G.J.; Bolvin, D.T.; Braithwaite, D.; Hsu, K.-L.; Joyce, R.J.; Kidd, C.; Nelkin, E.J.; Sorooshian, S.; Stocker, E.F.; Tan, J. Integrated multi-satellite retrievals for the global precipitation measurement (GPM) mission (IMERG). In Satellite Precipitation Measurement: Volume 1; Springer: Berlin/Heidelberg, Germany, 2020; pp. 343–353. [Google Scholar]
- Smith, B.; Sandwell, D. Accuracy and resolution of shuttle radar topography mission data. Geophys. Res. Lett. 2003, 30, 1467. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Hengl, T.; Nussbaum, M.; Wright, M.N.; Heuvelink, G.B.; Gräler, B. Random forest as a generic framework for predictive modeling of spatial and spatio-temporal variables. PeerJ 2018, 6, e5518. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Chen, Q.; Duan, Z.; Zhang, J.; Mo, K.; Li, Z.; Tang, G. Multiscale comparative evaluation of the GPM IMERG v5 and TRMM 3B42 v7 precipitation products from 2015 to 2017 over a climate transition area of China. Remote Sens. 2018, 10, 944. [Google Scholar] [CrossRef]
- Meyer, H.; Drönner, J.; Nauss, T. Satellite-based high-resolution mapping of rainfall over southern Africa. Atmos. Meas. Tech. 2017, 10, 2009–2019. [Google Scholar] [CrossRef]
- Yan, X.; Chen, H.; Tian, B.; Sheng, S.; Wang, J.; Kim, J.S. A downscaling–merging scheme for improving daily spatial precipitation estimates based on random forest and cokriging. Remote Sens. 2021, 13, 2040. [Google Scholar] [CrossRef]
- Tuo, Y.; Duan, Z.; Disse, M.; Chiogna, G. Evaluation of precipitation input for SWAT modeling in Alpine catchment: A case study in the Adige river basin (Italy). Sci. Total Environ. 2016, 573, 66–82. [Google Scholar] [CrossRef]
Training/Testing | Station Code | Station Name | Longitude | Latitude | Elevation (m) |
---|---|---|---|---|---|
Testing | S57348 | Fengjie | 109.53 | 31.01 | 299.8 |
Testing | S57426 | Liangping | 107.80 | 30.68 | 454.5 |
Testing | S57516 | Shapingba | 106.46 | 29.58 | 259.1 |
Testing | S57523 | Fengdu | 107.73 | 29.85 | 290.5 |
Training | S57432 | Wanzhou | 108.40 | 30.76 | 186.7 |
Training | S57502 | Dazu | 105.70 | 29.70 | 394.7 |
Training | S57512 | Hechuan | 106.28 | 29.96 | 230.6 |
Training | S57517 | Jiangjin | 106.25 | 29.28 | 261.4 |
Training | S57520 | Changshou | 107.06 | 29.83 | 377.6 |
Training | S57536 | Qianjiang | 108.78 | 29.53 | 607.3 |
Training | S57612 | Qijiang | 106.65 | 29.00 | 474.7 |
Training | S57633 | Youyang | 108.76 | 28.81 | 826.5 |
Station | Metrics | CHIRPS | ERA5-Land | GPM | RF-MEP | LR | AVG |
---|---|---|---|---|---|---|---|
Fengdu | MAE | 5.11 | 3.61 | 3.94 | 1.86 | 3.17 | 3.61 |
RMSE | 13.54 | 8.57 | 9.98 | 5.56 | 7.21 | 8.51 | |
RSR | 1.64 | 1.04 | 1.21 | 0.67 | 0.87 | 1.03 | |
R2 | 0.03 | 0.20 | 0.10 | 0.55 | 0.25 | 0.16 | |
KGE | −0.02 | 0.32 | 0.29 | 0.62 | 0.36 | 0.31 | |
Fengji | MAE | 4.21 | 3.53 | 3.34 | 2.85 | 3.00 | 3.10 |
RMSE | 11.13 | 8.85 | 8.92 | 7.11 | 7.15 | 7.49 | |
RSR | 1.24 | 0.98 | 0.99 | 0.79 | 0.79 | 0.83 | |
R2 | 0.14 | 0.23 | 0.24 | 0.41 | 0.37 | 0.34 | |
KGE | 0.32 | 0.42 | 0.48 | 0.54 | 0.47 | 0.49 | |
Liangping | MAE | 5.10 | 4.15 | 3.96 | 2.32 | 3.40 | 3.68 |
RMSE | 13.67 | 9.74 | 10.27 | 7.01 | 8.06 | 8.81 | |
RSR | 1.38 | 0.98 | 1.04 | 0.71 | 0.82 | 0.89 | |
R2 | 0.10 | 0.24 | 0.18 | 0.51 | 0.34 | 0.28 | |
KGE | 0.22 | 0.35 | 0.42 | 0.51 | 0.43 | 0.44 | |
Shapingba | MAE | 4.64 | 3.29 | 4.21 | 1.67 | 3.37 | 3.55 |
RMSE | 12.2 | 8.93 | 11.15 | 5.98 | 8.51 | 8.99 | |
RSR | 1.22 | 0.89 | 1.11 | 0.60 | 0.85 | 0.90 | |
R2 | 0.07 | 0.25 | 0.13 | 0.66 | 0.28 | 0.23 | |
KGE | 0.26 | 0.41 | 0.35 | 0.62 | 0.28 | 0.38 |
Precipitation Class (mm/day) | POD | FBI | FAR | CSI |
---|---|---|---|---|
CHIRPS [0, 1) | 0.85 | 1.11 | 0.23 | 0.68 |
CHIRPS [1, 2) | 0.03 | 0.18 | 0.85 | 0.02 |
CHIRPS [2, 5) | 0.03 | 0.36 | 0.91 | 0.02 |
CHIRPS [5, 10) | 0.09 | 0.81 | 0.89 | 0.05 |
CHIRPS [10, 20) | 0.12 | 0.97 | 0.88 | 0.06 |
CHIRPS [20, 50) | 0.2 | 1.33 | 0.85 | 0.09 |
CHIRPS [50, Inf) | 0.09 | 3.11 | 0.97 | 0.02 |
ERA5-Land [0, 1) | 0.68 | 0.73 | 0.07 | 0.65 |
ERA5-Land [1, 2) | 0.17 | 2.02 | 0.92 | 0.06 |
ERA5-Land [2, 5) | 0.27 | 1.86 | 0.85 | 0.11 |
ERA5-Land [5, 10) | 0.24 | 1.78 | 0.87 | 0.09 |
ERA5-Land [10, 20) | 0.3 | 1.72 | 0.83 | 0.12 |
ERA5-Land [20, 50) | 0.27 | 1.08 | 0.75 | 0.15 |
ERA5-Land [50, Inf) | 0.03 | 0.83 | 0.97 | 0.02 |
GPM [0, 1) | 0.77 | 0.92 | 0.16 | 0.67 |
GPM [1, 2) | 0.12 | 1.42 | 0.92 | 0.05 |
GPM [2, 5) | 0.14 | 1.10 | 0.87 | 0.07 |
GPM [5, 10) | 0.13 | 1.21 | 0.89 | 0.06 |
GPM [10, 20) | 0.16 | 1.31 | 0.87 | 0.08 |
GPM [20, 50) | 0.22 | 1.08 | 0.80 | 0.12 |
GPM [50, Inf) | 0.09 | 1.06 | 0.92 | 0.04 |
RF_MEP [0, 1) | 0.86 | 0.90 | 0.04 | 0.83 |
RF-MEP [1, 2) | 0.27 | 1.59 | 0.83 | 0.12 |
RF-MEP [2, 5) | 0.39 | 1.40 | 0.72 | 0.19 |
RF-MEP [5, 10) | 0.39 | 1.37 | 0.71 | 0.20 |
RF-MEP [10, 20) | 0.38 | 1.11 | 0.66 | 0.22 |
RF-MEP [20, 50) | 0.44 | 0.78 | 0.44 | 0.33 |
RF-MEP [50, Inf) | 0.09 | 0.26 | 0.67 | 0.07 |
LR [0, 1) | 0.61 | 0.66 | 0.07 | 0.58 |
LR [1, 2) | 0.21 | 3.32 | 0.94 | 0.05 |
LR [2, 5) | 0.32 | 2.24 | 0.86 | 0.11 |
LR [5, 10) | 0.23 | 1.83 | 0.88 | 0.09 |
LR [10, 20) | 0.25 | 1.2 | 0.79 | 0.13 |
LR [20, 50) | 0.21 | 0.57 | 0.63 | 0.15 |
LR [50, Inf) | 0.01 | 0.14 | 0.99 | 0.01 |
AVG [0, 1) | 0.65 | 0.69 | 0.05 | 0.63 |
AVG [1, 2) | 0.19 | 2.44 | 0.92 | 0.06 |
AVG [2, 5) | 0.37 | 2.14 | 0.83 | 0.13 |
AVG [5, 10) | 0.26 | 1.85 | 0.86 | 0.10 |
AVG [10, 20) | 0.25 | 1.39 | 0.82 | 0.12 |
AVG [20, 50) | 0.23 | 1.07 | 0.78 | 0.13 |
AVG [50, Inf) | 0.01 | 0.51 | 0.99 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Chen, C.; Chen, J.; Mohammadi, B.; Cheraghalizadeh, M.; Abdallah, M.; Mert Katipoğlu, O.; Li, H.; Duan, Z. Evaluation of the RF-MEP Method for Merging Multiple Gridded Precipitation Products in the Chongqing City, China. Remote Sens. 2023, 15, 4230. https://doi.org/10.3390/rs15174230
Shi Y, Chen C, Chen J, Mohammadi B, Cheraghalizadeh M, Abdallah M, Mert Katipoğlu O, Li H, Duan Z. Evaluation of the RF-MEP Method for Merging Multiple Gridded Precipitation Products in the Chongqing City, China. Remote Sensing. 2023; 15(17):4230. https://doi.org/10.3390/rs15174230
Chicago/Turabian StyleShi, Yongming, Cheng Chen, Jun Chen, Babak Mohammadi, Majid Cheraghalizadeh, Mohammed Abdallah, Okan Mert Katipoğlu, Haotian Li, and Zheng Duan. 2023. "Evaluation of the RF-MEP Method for Merging Multiple Gridded Precipitation Products in the Chongqing City, China" Remote Sensing 15, no. 17: 4230. https://doi.org/10.3390/rs15174230
APA StyleShi, Y., Chen, C., Chen, J., Mohammadi, B., Cheraghalizadeh, M., Abdallah, M., Mert Katipoğlu, O., Li, H., & Duan, Z. (2023). Evaluation of the RF-MEP Method for Merging Multiple Gridded Precipitation Products in the Chongqing City, China. Remote Sensing, 15(17), 4230. https://doi.org/10.3390/rs15174230