MTGL40-5: A Multi-Temporal Dataset for Remote Sensing Image Geo-Localization
Abstract
:1. Introduction
- We propose a MTGL40-5 dataset for conducting a satellite-view geo-localization task, which consists of query images and a database featuring RS images acquired from satellites.
- MTGL40-5 not only explores the cross-time challenge by providing images from 40 geographic locations spanning five different years, but also provides precise latitude and longitude coordinates for studying high-accuracy geo-localization tasks.
- A simple yet effective method is proposed to measure the bias of the image center between the query image and its corresponding database image, enhancing the accuracy of the geographic coordinates.
- Extensive experiments demonstrate that current geo-localization methods, including state-of-the-art techniques, find it difficult to generate satisfactory localization results when encountering the cross-time challenge, proving the necessity of studying it.
2. Related Work
2.1. Existing Datasets for Geo-Localization
2.2. Existing Methods for Geo-Localization
3. MTGL40-5 Dataset
3.1. Dataset Description
- Collecting large-scale images: Large-scale images are collected by first searching Wikipedia for numerous ports and airports located in different countries, and their corresponding latitude and longitude coordinates are recorded. Secondly, the historical image data of the selected locations on Google Maps are reviewed to ensure that images spanning at least five years can be obtained. Thirdly, 40 target locations are selected which satisfy this criterion. Finally, based on Google Maps, the images of these locations and their coordinates are collected.
- Splitting large-scale images: Due to the limited memory space of the computation device, each of the collected large-scale original and key images needs to be split into numerous patch images (N being a hyper-parameter specified in Section 4), which also significantly improves the efficiency and availability of geo-localization. Subsequently, all patch images are further resized to the image size of pixels to meet the input size of the model.
- Dividing query images and database: The split patch images from key image are used as query images, while images from original image are used to create the database.
- Multi-temporal: MTGL40-5 is a dataset consisting of multiple geographic locations, where each location includes images captured in different years, enabling the observation of dynamic changes in various landmarks over time. When training models use this dataset, many image pairs taken from the same landmark but in different years allow models to learn about the time-invariant features.
- Large-scale: MTGL40-5 comprises RS images acquired at a spatial resolution of m, with each original image covering an area of around 80 km and containing approximately pixels. Large-scale RS images can provide a wider field of view and can cover larger geographic areas. This is valuable for geo-localization research.
- Accurate labels: MTGL40-5 records the latitude and longitude coordinates for the four vertices and center point of each RS image in the database, which is important for performing accurate geo-localization.
3.2. Additional Tasks
4. Experiment
4.1. Experimental Setting
4.2. Evaluation Protocol
4.3. Comparison Algorithms
4.4. Experimental Results and Comparisons
4.4.1. Results on MTGL40-5
4.4.2. Results on Facing Cross-Time Challenge
4.4.3. Accuracy by Location
4.5. Parametric Analysis of N and GPS Coordinates Calculation
4.6. Visual Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Dai, M.; Hu, J.; Zhuang, J.; Zheng, E. A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 4376–4389. [Google Scholar] [CrossRef]
- Zhu, P.; Zheng, J.; Du, D.; Wen, L.; Sun, Y.; Hu, Q. Multi-drone-based single object tracking with agent sharing network. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 4058–4070. [Google Scholar] [CrossRef]
- Deng, S.; Li, S.; Xie, K.; Song, W.; Liao, X.; Hao, A.; Qin, H. A global-local self-adaptive network for drone-view object detection. IEEE Trans. Image Process. 2020, 30, 1556–1569. [Google Scholar] [CrossRef]
- Lin, J.; Zheng, Z.; Zhong, Z.; Luo, Z.; Li, S.; Yang, Y.; Sebe, N. Joint Representation Learning and Keypoint Detection for Cross-view Geo-localization. IEEE Trans. Image Process. 2022, 31, 3780–3792. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Ma, J.; Tang, X.; Liu, F.; Zhang, X.; Jiao, L. Deep hash learning for remote sensing image retrieval. IEEE Trans. Geosci. Remote Sens. 2021, 59, 3420–3443. [Google Scholar] [CrossRef]
- Tang, X.; Yang, Y.; Ma, J.; Cheung, Y.M.; Liu, C.; Liu, F.; Zhang, X.; Jiao, L. Meta-hashing for remote sensing image retrieval. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5615419. [Google Scholar] [CrossRef]
- Tang, X.; Ma, Q.; Zhang, X.; Liu, F.; Ma, J.; Jiao, L. Attention consistent network for remote sensing scene classification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2030–2045. [Google Scholar] [CrossRef]
- Arandjelovic, R.; Gronat, P.; Torii, A.; Pajdla, T.; Sivic, J. NetVLAD: CNN architecture for weakly supervised place recognition. arXiv 2015, arXiv:1511.07247. [Google Scholar]
- Tian, Y.; Chen, C.; Shah, M. Cross-View Image Matching for Geo-localization in Urban Environments. In Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA, 21–26 July 2017. [Google Scholar]
- Torii, A.; Arandjelovic, R.; Sivic, J.; Okutomi, M.; Pajdla, T. 24/7 place recognition by view synthesis. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1808–1817. [Google Scholar]
- Hu, S.; Feng, M.; Nguyen, R.M.H.; Lee, G.H. CVM-Net: Cross-View Matching Network for Image-Based Ground-to-Aerial Geo-Localization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Salt Lake City, UT, USA, 18–23 June 2018. [Google Scholar]
- Rodrigues, R.; Tani, M. Global assists local: Effective aerial representations for field of view constrained image geo-localization. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2022; pp. 3871–3879. [Google Scholar]
- Hu, W.; Zhang, Y.; Liang, Y.; Yin, Y.; Georgescu, A.; Tran, A.; Kruppa, H.; Ng, S.K.; Zimmermann, R. Beyond Geo-localization: Fine-grained Orientation of Street-view Images by Cross-view Matching with Satellite Imagery. In Proceedings of the 30th ACM International Conference on Multimedia, Lisboa, Portugal, 10–14 October 2022; pp. 6155–6164. [Google Scholar]
- Lin, T.Y.; Cui, Y.; Belongie, S.; Hays, J. Learning deep representations for ground-to-aerial geolocalization. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 5007–5015. [Google Scholar]
- Zhu, S.; Yang, T.; Chen, C. VIGOR: Cross-View Image Geo-Localization Beyond One-to-One Retrieval. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 3640–3649. [Google Scholar]
- Lu, Z.; Pu, T.; Chen, T.; Lin, L. Content-Aware Hierarchical Representation Selection for Cross-View Geo-Localization. In Proceedings of the Asian Conference on Computer Vision (ACCV), Macao, China, 4–8 December 2022; pp. 4211–4224. [Google Scholar]
- Toker, A.; Zhou, Q.; Maximov, M.; Leal-Taixe, L. Coming Down to Earth: Satellite-to-Street View Synthesis for Geo-Localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 6488–6497. [Google Scholar]
- Mughal, M.H.; Khokhar, M.J.; Shahzad, M. Assisting UAV localization via deep contextual image matching. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 2445–2457. [Google Scholar] [CrossRef]
- Zheng, Z.; Wei, Y.; Yang, Y. University-1652: A multi-view multi-source benchmark for drone-based geo-localization. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020; pp. 1395–1403. [Google Scholar]
- Lu, X.; Luo, S.; Zhu, Y. It’s Okay to Be Wrong: Cross-View Geo-Localization with Step-Adaptive Iterative Refinement. IEEE Trans. Geosci. Remote Sens. 2022, 60, 4709313. [Google Scholar] [CrossRef]
- Chen, D.M.; Baatz, G.; Köser, K.; Tsai, S.S.; Vedantham, R.; Pylvänäinen, T.; Roimela, K.; Chen, X.; Bach, J.; Pollefeys, M.; et al. City-scale landmark identification on mobile devices. In Proceedings of the CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011; pp. 737–744. [Google Scholar]
- Philbin, J.; Chum, O.; Isard, M.; Sivic, J.; Zisserman, A. Lost in quantization: Improving particular object retrieval in large scale image databases. In Proceedings of the 2008 IEEE Conference on Computer Vision and Pattern Recognition, Anchorage, AK, USA, 23–28 June 2008; pp. 1–8. [Google Scholar]
- Philbin, J.; Chum, O.; Isard, M.; Sivic, J.; Zisserman, A. Object retrieval with large vocabularies and fast spatial matching. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar]
- Weyand, T.; Leibe, B. Visual landmark recognition from internet photo collections: A large-scale evaluation. Comput. Vis. Image Underst. 2015, 135, 1–15. [Google Scholar] [CrossRef]
- Knopp, J.; Sivic, J.; Pajdla, T. Avoiding confusing features in place recognition. In Proceedings of the European Conference on Computer Vision, Heraklion, Greece, 5–11 September 2010; Springer: Berlin/Heidelberg, Germany, 2010; pp. 748–761. [Google Scholar]
- Yang, H.; Lu, X.; Zhu, Y. Cross-view geo-localization with layer-to-layer transformer. Adv. Neural Inf. Process. Syst. 2021, 34, 29009–29020. [Google Scholar]
- Tian, X.; Shao, J.; Ouyang, D.; Shen, H.T. Uav-satellite view synthesis for cross-view geo-localization. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 4804–4815. [Google Scholar] [CrossRef]
- Dai, M.; Huang, J.; Zhuang, J.; Lan, W.; Cai, Y.; Zheng, E. Vision-Based UAV Localization System in Denial Environments. arXiv 2022, arXiv:2201.09201. [Google Scholar]
- Liu, L.; Li, H. Lending orientation to neural networks for cross-view geo-localization. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 5624–5633. [Google Scholar]
- Workman, S.; Souvenir, R.; Jacobs, N. Wide-area image geolocalization with aerial reference imagery. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3961–3969. [Google Scholar]
- Xia, G.S.; Hu, J.; Hu, F.; Shi, B.; Bai, X.; Zhong, Y.; Zhang, L.; Lu, X. AID: A benchmark data set for performance evaluation of aerial scene classification. IEEE Trans. Geosci. Remote Sens. 2017, 55, 3965–3981. [Google Scholar] [CrossRef]
- Cheng, G.; Han, J.; Lu, X. Remote sensing image scene classification: Benchmark and state of the art. Proc. IEEE 2017, 105, 1865–1883. [Google Scholar] [CrossRef]
- Zhuang, J.; Dai, M.; Chen, X.; Zheng, E. A Faster and More Effective Cross-View Matching Method of UAV and Satellite Images for UAV Geolocalization. Remote Sens. 2021, 13, 3979. [Google Scholar] [CrossRef]
- Guo, Y.; Choi, M.; Li, K.; Boussaid, F.; Bennamoun, M. Soft Exemplar Highlighting for Cross-View Image-Based Geo-Localization. IEEE Trans. Image Process. 2022, 31, 2094–2105. [Google Scholar] [CrossRef]
- Noh, H.; Araujo, A.; Sim, J.; Weyand, T.; Han, B. Large-scale image retrieval with attentive deep local features. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 3456–3465. [Google Scholar]
- Weyand, T.; Araujo, A.; Cao, B.; Sim, J. Google landmarks dataset v2-a large-scale benchmark for instance-level recognition and retrieval. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 2575–2584. [Google Scholar]
- Radenović, F.; Iscen, A.; Tolias, G.; Avrithis, Y.; Chum, O. Revisiting oxford and paris: Large-scale image retrieval benchmarking. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 5706–5715. [Google Scholar]
- Zhuo, X.; Koch, T.; Kurz, F.; Fraundorfer, F.; Reinartz, P. Automatic UAV image geo-registration by matching UAV images to georeferenced image data. Remote Sens. 2017, 9, 376. [Google Scholar] [CrossRef]
- Vo, N.N.; Hays, J. Localizing and orienting street views using overhead imagery. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 494–509. [Google Scholar]
- Yang, Y.; Newsam, S. Comparing SIFT descriptors and Gabor texture features for classification of remote sensed imagery. In Proceedings of the 2008 15th IEEE International Conference on Image Processing, San Diego, CA, USA, 12–15 October 2008; pp. 1852–1855. [Google Scholar]
- Ren, J.; Jiang, X.; Yuan, J. Learning LBP structure by maximizing the conditional mutual information. Pattern Recognit. 2015, 48, 3180–3190. [Google Scholar] [CrossRef]
- Dalal, N.; Triggs, B. Histograms of oriented gradients for human detection. In Proceedings of the 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR’05), San Diego, CA, USA, 20–26 June 2005; Volume 1, pp. 886–893. [Google Scholar]
- Yang, Y.; Tang, X.; Cheung, Y.m.; Zhang, X.; Jiao, L. SAGN: Semantic-Aware Graph Network for Remote Sensing Scene Classification. IEEE Trans. Image Process. 2023, 32, 1011–1025. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Tang, X.; Zhang, X.; Ma, J.; Liu, F.; Jia, X.; Jiao, L. Semi-Supervised Multiscale Dynamic Graph Convolution Network for Hyperspectral Image Classification. IEEE Trans. Neural Netw. Learn. Syst. 2022. [Google Scholar] [CrossRef]
- Tang, X.; Lin, W.; Ma, J.; Zhang, X.; Liu, F.; Jiao, L. Class-level prototype guided multiscale feature learning for remote sensing scene classification with limited labels. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–15. [Google Scholar] [CrossRef]
- Gordo, A.; Almazán, J.; Revaud, J.; Larlus, D. Deep image retrieval: Learning global representations for image search. In Proceedings of the Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, 11–14 October 2016; Springer: Berlin/Heidelberg, Germany, 2016; pp. 241–257. [Google Scholar]
- Lee, S.; Seong, H.; Lee, S.; Kim, E. Correlation verification for image retrieval. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 5374–5384. [Google Scholar]
- Zhu, Y.; Sun, B.; Lu, X.; Jia, S. Geographic Semantic Network for Cross-View Image Geo-Localization. IEEE Trans. Geosci. Remote Sens. 2021, 60, 1–15. [Google Scholar] [CrossRef]
- Wang, T.; Zheng, Z.; Yan, C.; Zhang, J.; Sun, Y.; Zheng, B.; Yang, Y. Each part matters: Local patterns facilitate cross-view geo-localization. IEEE Trans. Circuits Syst. Video Technol. 2021, 32, 867–879. [Google Scholar] [CrossRef]
- Shi, Y.; Liu, L.; Yu, X.; Li, H. Spatial-aware feature aggregation for image based cross-view geo-localization. Adv. Neural Inf. Process. Syst. 2019, 32, 10090–10100. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. Adv. Neural Inf. Process. Syst. 2017, 30, arXiv.1706.03762. [Google Scholar]
- Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556. [Google Scholar]
- Szegedy, C.; Liu, W.; Jia, Y.; Sermanet, P.; Reed, S.; Anguelov, D.; Erhan, D.; Vanhoucke, V.; Rabinovich, A. Going deeper with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 1–9. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708. [Google Scholar]
- Ding, L.; Zhou, J.; Meng, L.; Long, Z. A practical cross-view image matching method between UAV and satellite for UAV-based geo-localization. Remote Sens. 2020, 13, 47. [Google Scholar] [CrossRef]
- Deng, J.; Dong, W.; Socher, R.; Li, L.J.; Li, K.; Fei-Fei, L. Imagenet: A large-scale hierarchical image database. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; IEEE: Piscataway, NJ, USA, 2009; pp. 248–255. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
Datasets | MTGL40-5 | University-1652 [19] | CVUSA [30] | CVACT [29] | Lin et al. [14] | Tian et al. [9] | Vo et al. [39] |
---|---|---|---|---|---|---|---|
Training set size | 66k/17k/4.7k | 50k | 71k | 71k | 75k | 31.4k | 1800k |
Target | Ports and airports | Building | User | User | Building | Building | User |
Multi-temporal | √ | × | × | × | × | × | × |
Large-scale | √ | × | × | × | × | × | × |
GPS coordinates | √ | × | × | × | × | √ | × |
Multi-angle | × | √ | × | × | × | √ | × |
Evaluation | Recall@K | Recall@K and AP | Recall@K | Recall@K | PR curves and AP | PR curves and AP | Recall@K |
Data Partitioning | Temporal Partitioning |
---|---|
Training set | query:0→database:1 |
query:1→database:2 | |
query:2→database:0 | |
Validation set | query:4→database:3 |
Testing set | query:3→database:4 |
Method | Testing Set | |
---|---|---|
R@1-Q (%) | R@1-K (%) | |
VGG16 | 46.92 | 85.00 |
GoogLeNet | 51.41 | 85.00 |
ResNet50 | 54.94 | 85.00 |
DenseNet121 | 55.76 | 87.50 |
LCM | 53.96 | 80.00 |
LPN | 55.50 | 85.00 |
Rk-Net | 46.91 | 80.00 |
FSRA | 49.92 | 77.50 |
DenseNet121 | R@1-Q (%) | R@1-K (%) | |
---|---|---|---|
Training set | query:0→database:1 | 82.33 | 100 |
query:1→database:2 | 82.45 | 97.50 | |
query:2→database:0 | 79.69 | 95.00 | |
Validation set | query:4→database:3 | 58.99 | 92.50 |
Testing set | query:3→database:4 | 55.76 | 87.50 |
Location Indexes | Testing Set | |||||||
---|---|---|---|---|---|---|---|---|
VGG16 | GoogLeNet | ResNet50 | DenseNet121 | LCM | LPN | Rk-Net | FSRA | |
0 | 28.00 | 28.00 | 48.00 | 44.00 | 56.00 | 56.00 | 32.00 | 36.00 |
1 ▲ | 32.65 | 2.04 | 2.04 | 55.10 | 36.73 | 2.04 | 2.04 | 22.45 |
2 ▲ | 23.33 | 3.33 | 3.33 | 3.33 | 56.67 | 40.00 | 3.33 | 3.33 |
3 ★ | 95.83 | 100.00 | 95.83 | 87.50 | 83.33 | 95.83 | 91.67 | 95.83 |
4 ★ | 91.84 | 97.96 | 89.80 | 97.96 | 87.76 | 89.80 | 87.76 | 95.92 |
5 | 51.79 | 53.57 | 58.93 | 66.07 | 71.43 | 66.07 | 64.29 | 58.93 |
6 | 75.00 | 83.33 | 87.50 | 85.42 | 87.50 | 87.50 | 70.83 | 85.42 |
7 | 66.67 | 83.33 | 78.57 | 78.57 | 61.90 | 69.05 | 83.33 | 88.10 |
8 | 47.22 | 52.78 | 63.89 | 58.33 | 36.11 | 52.78 | 58.33 | 63.89 |
9 | 27.78 | 36.11 | 38.89 | 36.11 | 27.78 | 41.67 | 30.56 | 50.00 |
10 | 62.50 | 81.25 | 83.33 | 77.08 | 66.67 | 79.17 | 64.58 | 64.58 |
11 | 36.00 | 36.00 | 56.00 | 48.00 | 52.00 | 48.00 | 32.00 | 72.00 |
12 ▲ | 4.00 | 24.00 | 4.00 | 4.00 | 52.00 | 28.00 | 4.00 | 24.00 |
13 | 23.33 | 36.67 | 53.33 | 40.00 | 66.67 | 46.67 | 40.00 | 43.33 |
14 | 2.78 | 63.89 | 61.11 | 72.22 | 63.89 | 66.67 | 50.00 | 66.67 |
15 ★ | 69.44 | 77.78 | 91.67 | 83.33 | 83.33 | 91.67 | 69.44 | 88.89 |
16 | 50.00 | 75.00 | 87.50 | 50.00 | 75.00 | 75.00 | 68.75 | 68.75 |
17 | 50.00 | 50.00 | 50.00 | 40.00 | 5.00 | 55.00 | 45.00 | 35.00 |
18 ▲ | 25.40 | 1.59 | 1.59 | 1.59 | 1.59 | 1.59 | 22.22 | 1.59 |
19 ▲ | 28.57 | 2.38 | 40.48 | 38.10 | 2.38 | 42.86 | 30.95 | 2.38 |
20 ▲ | 2.08 | 2.08 | 2.08 | 2.08 | 2.08 | 27.08 | 2.08 | 2.08 |
21 | 43.75 | 50.00 | 52.08 | 75.00 | 52.08 | 81.25 | 60.42 | 70.83 |
22 | 90.00 | 70.00 | 70.00 | 75.00 | 50.00 | 80.00 | 45.00 | 10.00 |
23 | 4.00 | 60.00 | 4.00 | 40.00 | 60.00 | 24.00 | 28.00 | 4.00 |
24 ★ | 80.56 | 91.67 | 91.67 | 94.44 | 83.33 | 88.89 | 83.33 | 94.44 |
25 ▲ | 30.61 | 2.04 | 18.37 | 26.53 | 34.69 | 2.04 | 2.04 | 2.04 |
26 ★ | 80.00 | 97.14 | 85.71 | 80.00 | 88.57 | 88.57 | 85.71 | 85.71 |
27 ★ | 83.33 | 93.33 | 93.33 | 86.67 | 90.00 | 96.67 | 73.33 | 63.33 |
28 | 4.00 | 36.00 | 44.00 | 48.00 | 76.00 | 60.00 | 28.00 | 4.00 |
29 ★ | 100.00 | 100.00 | 100.00 | 97.96 | 97.96 | 97.96 | 97.96 | 100.00 |
30 ★ | 60.71 | 87.50 | 64.29 | 76.79 | 96.43 | 85.71 | 26.79 | 85.71 |
31 | 48.00 | 88.00 | 48.00 | 48.00 | 4.00 | 76.00 | 72.00 | 52.00 |
32 | 40.00 | 23.33 | 33.33 | 43.33 | 30.00 | 16.67 | 36.67 | 46.67 |
33 | 68.75 | 68.75 | 70.83 | 66.67 | 66.67 | 64.58 | 41.67 | 56.25 |
34 ★ | 83.33 | 75.00 | 77.78 | 75.00 | 97.22 | 94.44 | 69.44 | 66.67 |
35 | 50.00 | 62.50 | 50.00 | 62.50 | 37.50 | 50.00 | 50.00 | 68.75 |
36 ▲ | 28.00 | 4.00 | 36.00 | 28.00 | 4.00 | 4.00 | 4.00 | 36.00 |
37 ▲ | 5.00 | 5.00 | 5.00 | 5.00 | 45.00 | 5.00 | 5.00 | 5.00 |
38 ★ | 62.86 | 91.43 | 94.29 | 94.29 | 77.14 | 97.14 | 91.43 | 82.86 |
39 ▲ | 20.00 | 3.33 | 3.33 | 3.33 | 30.00 | 3.33 | 3.33 | 3.33 |
Mean | 46.92 | 51.41 | 54.94 | 55.76 | 53.96 | 55.50 | 46.91 | 49.92 |
Dataset | Number of Patch-Wise Images | ||
---|---|---|---|
= 1024 | = 2048 | = 4096 | |
For training | 65,991 | 17,283 | 4713 |
For validation | 27,257 | 7177 | 1987 |
For testing | 27,257 | 7177 | 1987 |
N | 1024 | 2048 | 4096 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Two Samples | ||||||||||
Evaluation | R@1-Q | R@1-K | Average Error () ↓ | R@1-Q | R@1-K | Average Error () ↓ | R@1-Q | R@1-K | Average Error () ↓ | |
Methods | ||||||||||
VGG16 | 34.94 | 60.00 | 3.2991 | 46.92 | 85.00 | 1.9368 | 43.58 | 67.50 | 7.0392 | |
3.6624 | 4.5134 | 6.8489 | ||||||||
GoogLeNet | 44.58 | 77.50 | 2.8284 | 51.41 | 85.00 | 0.4801 | 59.86 | 87.50 | 6.4907 | |
4.0246 | 4.5509 | 5.7409 | ||||||||
ResNet50 | 38.38 | 65.00 | 2.5326 | 54.94 | 85.00 | 5.3444 | 65.4 | 97.50 | 6.2648 | |
3.2292 | 4.2823 | 7.4274 | ||||||||
DenseNet121 | 45.05 | 77.50 | 1.5646 | 55.76 | 87.50 | 2.1003 | 63.27 | 90.00 | 9.6459 | |
4.3762 | 4.4092 | 5.6408 | ||||||||
LCM | 37.84 | 65.00 | 1.9011 | 53.96 | 80.00 | 1.9416 | 64.99 | 92.50 | 9.7468 | |
4.2125 | 4.9594 | 5.8561 | ||||||||
LPN | 41.11 | 67.50 | 4.3029 | 55.50 | 85.00 | 4.0913 | 66.82 | 92.50 | 6.9637 | |
4.5358 | 4.5134 | 6.8025 | ||||||||
Rk-Net | 30.05 | 62.50 | 0.1688 | 46.91 | 80.00 | 2.1611 | 52.07 | 82.50 | 11.1828 | |
3.4346 | 4.9053 | 5.6381 | ||||||||
FSRA | 26.80 | 55.00 | 6.2576 | 49.92 | 77.50 | 3.4635 | 63.72 | 90.00 | 6.1434 | |
5.3527 | 4.7893 | 5.3352 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, J.; Pei, S.; Yang, Y.; Tang, X.; Zhang, X. MTGL40-5: A Multi-Temporal Dataset for Remote Sensing Image Geo-Localization. Remote Sens. 2023, 15, 4229. https://doi.org/10.3390/rs15174229
Ma J, Pei S, Yang Y, Tang X, Zhang X. MTGL40-5: A Multi-Temporal Dataset for Remote Sensing Image Geo-Localization. Remote Sensing. 2023; 15(17):4229. https://doi.org/10.3390/rs15174229
Chicago/Turabian StyleMa, Jingjing, Shiji Pei, Yuqun Yang, Xu Tang, and Xiangrong Zhang. 2023. "MTGL40-5: A Multi-Temporal Dataset for Remote Sensing Image Geo-Localization" Remote Sensing 15, no. 17: 4229. https://doi.org/10.3390/rs15174229
APA StyleMa, J., Pei, S., Yang, Y., Tang, X., & Zhang, X. (2023). MTGL40-5: A Multi-Temporal Dataset for Remote Sensing Image Geo-Localization. Remote Sensing, 15(17), 4229. https://doi.org/10.3390/rs15174229