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Abstract: Precipitation is a major component of the water cycle. Accurate and reliable estimation of
precipitation is essential for various applications. Generally, there are three main types of precipitation
products: satellite based, reanalysis, and ground measurements from rain gauge stations. Each type
has its advantages and disadvantages. Recent efforts have been made to develop various merging
methods to improve precipitation estimates by combining multiple precipitation products. This
study evaluated for the first time the performance of the random forest-based merging procedure
(RF-MEP) method in enhancing the accuracy of daily precipitation estimates in Chongqing city,
China with a complex terrain and sparse observational data. The RF-MEP method was used to
merge three widely used gridded precipitation products (CHIRPS, ERA5-Land, and GPM IMERG)
with ground measurements from a limited number of rain gauge stations to produce the merged
precipitation dataset. Eight stations (approximately 70% of the available stations) were used to train
the RF-MEP approach, while four stations (30%) were used for independent testing. Various statistical
metrics were employed to assess the performance of the merged precipitation dataset and the three
existing precipitation products against the ground measurements. Our results demonstrated that the
RF-MEP approach significantly enhances the accuracy of daily precipitation estimates, surpassing the
performance of the individual precipitation products and two other merging methods (the simple
linear regression model and the simple averaging). Among the three existing products, ERA5-Land
exhibited the best performance in capturing daily precipitation, followed by GPM IMERG, while
CHIRPS performed the worst. Regarding precipitation intensity, all three existing products and the
RF-MEP merged dataset performed well in capturing light precipitation events with an intensity
of less than 1 mm/day, which accounts for the majority (more than 70%) of occurrences. However,
all datasets showed rather poor capability in capturing precipitation events beyond 1 mm/day,
with the worst performance observed for extreme heavy precipitation events exceeding 50 mm/day.
The RF-MEP approach significantly improves the detection ability for all precipitation intensities,
except for the most extreme intensity (>50 mm/day), where only marginal improvement is observed.
Analysis of the spatial pattern of precipitation estimates and the temporal bias of daily precipitation
estimates further confirms the superior performance of the RF-MEP merged precipitation dataset
over the three existing products.
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1. Introduction

Precipitation, a crucial component of the water cycle, is essential for the survival
of living organisms, ecosystem development, agricultural production, and fresh water
supply. Precipitation is characterized by large spatial and temporal variability, and accurate
precipitation data at high spatial and temporal resolution are essential for many applica-
tions such as hydrological modeling and water resources management [1,2]. However, the
representation of precipitation’s spatiotemporal variation remains limited [3]. Traditionally,
rain gauge stations are the most direct and widely used ways to obtain precipitation data.
These rain gauge stations are often sparse, and spatial interpolation methods are often
employed to estimate the spatial distribution of precipitation, and large uncertainty could
be introduced [4]. Satellite remote sensing has emerged as an effective and complemen-
tary method for obtaining precipitation at various spatial and temporal resolutions [5].
Satellite-based precipitation estimates rely on either primarily infrared (IR) data, often
obtained from geostationary satellites, or less frequently collected microwave (MV) data
from low earth orbiting satellites. Some methods utilize a combination of both IR and
MV information. A comprehensive description of the principles and diverse techniques
employed in satellite-based precipitation estimation can be found in the review by Sun et al.
(2018) [6]. In recent decades, significant endeavors have been undertaken to produce grid-
ded precipitation datasets, resulting in the growing availability of precipitation at various
spatial and temporal resolutions on a global or quasi-global scale [1,6]. To mention a few,
the widely used precipitation products include, for example, the Integrated Multi-SatellitE
Retrievals for Global Precipitation Measurement (IMERG), Remotely Sensed Information
using Artificial Neural Networks (PERSIANN), the Tropical Rainfall Measuring Mission
(TRMM), the Climate Prediction Center Morphing technique product (CMORPH), and the
Climate Hazards group Infrared Precipitation with Stations dataset (CHIRPSv2) [7–11].
Evaluation of these available gridded precipitation products showed that their accuracy
could vary from region to region and overall, they still contain large uncertainties compared
to the most accurate measurements from rain gauge stations [6,12].

Considering the fact that an individual precipitation product can have unique advan-
tages and disadvantages, many efforts have been made to merge multiple precipitation
products to obtain the improved precipitation estimates. Different merging methods have
been developed. For example, Chen et al. (2022) used the triple collocation method to
quantify the errors of three satellite precipitation products including the IMERG Final,
PERSIANN-CDR, and SM2RAIN-ASCAT and the reanalysis precipitation product ERA5
and further developed the triple collocation-based method for merging these products
to generate the precipitation dataset with improved accuracy [13]. Wei et al. (2023) ap-
plied the Bayesian model averaging method to fuse gauge-based, reanalysis, and satellite
precipitation products to generate improved precipitation estimates in China [14]. Baez-
Villanueva et al. (2020) developed the random forest-based merging procedure (RF-MEP)
to combine information from ground measurements from rain gauge stations, gridded
precipitation products, and topography-related features [15]. The RF-MEP method was
used to merge several satellite precipitation products to generate a new daily precipitation
dataset, and the evaluation process was performed at multiple temporal scales including
3-day, monthly, seasonal, and annual scales. The RF-MEP method was also compared with
one well-known global merged precipitation product (MSWEP) and three other merging
methods, namely, the simple average, one-outlier-remove average, and inverse error vari-
ance. Overall, the merged precipitation dataset using the RF-MEP method showed better
performance in improving the accuracy of the precipitation estimates. However, very few
studies have explored the applicability of the RF-MEP method in different regions. Nguyen
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et al. (2021) validated the RF-MEP approach in merging multiple satellite precipitation
products and ground measurements from rain gauge stations in South Korea [16]. They also
found that the RF-based merging method performed better than the merged precipitation
product MSWEP and three other merging methods including the simple average, one-
outlier-remove average, and inverse error variance. Besides various satellite precipitation
products, recent efforts have been made to the realm of reanalysis products, resulting in
the increased availability of the reanalysis products with improved accuracy. A prominent
example of this progress is the state-of-the-art reanalysis product ERA5-Land [17]. Notably,
many studies such as [18] have found that the ERA5-Land product has very good accuracy
for precipitation. Nevertheless, it is noteworthy that previous studies, e.g., [15,16], primar-
ily focused on using RF-MEP to merge multiple satellite precipitation products. However,
these studies missed out on including the ERA5-Land product in the merging procedure.

To the best of our knowledge, the application of the RF-MEP approach for merging
multiple satellite and reanalysis precipitation products remains limited. Therefore, this
study aimed to evaluate the RF-MEP method for the first time in Chongqing city, China with
complex terrain and sparse observational data to combine ground-based measurements
with two widely used satellite precipitation products (CHIRPS and GPM) and the reanalysis
product ERA5-Land. The evaluation at spatial and temporal scale was performed and
multiple error metrics were used.

2. Materials and Methods
2.1. Study Area and Ground Precipitation Measurements

Figure 1 shows the location of Chongqing city in Southwest China and the used 12 ground
precipitation station measurements. These meteorological stations are operated by the China
Meteorological Administration (CMA, https://data.cma.cn (accessed on 20 July 2022)) and the
quality of all precipitation measurements is strictly controlled by a series of criteria [14]. In this
study, the ground precipitation measurements are used for merging precipitation data using
the RF-MEP approach. The topography of the study area is displayed using the Shuttle Radar
Topography Mission (SRTM) version 4.1. Chongqing covers an area of 312,812 km2, and its
elevation ranges from 16 m to 2912 m. The annual rainfall varies between 755 mm to 1531 mm.
The majority of rainfall occurs during the southwest monsoon season, which spans from June to
September. Table 1 provides the geographical coordinates and elevation information for each
of the 12 precipitation stations. With consideration of the spatial distribution of the available
rain gauge stations, we strategically chose a subset of stations that represented a diverse
range of elevations, land cover types, and topographic features within the study area. In
order to provide sufficient input sample data to enable the machine learning algorithms
to learn, all 17-year-long (2001–2017) time series of daily rainfall measurements from the
eight stations (the training stations specified in Table 1) were used for training the RF-MEP
model. Then the same 17-year-long (2001–2017) time series of daily rainfall measurements
from the remaining independent four stations (the testing stations specified in Table 1) were
used as the testing set to validate the performance of the RF-MEP model. The available data
were partitioned into two sets: (i) the training set includes precipitation data from eight
stations, namely, Wanzhou, Dazu, Hechuan, Jiangjin, Changshou, Qianjiang, Qijiang, and
Youyang stations, and (ii) the testing set consists of precipitation data from the remaining
four stations, Fengjie, Liangping, Shapingba, and Fengdu stations.

https://data.cma.cn
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Figure 1. The location map of Chongqing city along with the 12 ground-based precipitation stations 
(8 stations as the train stations, and the remaining 4 stations as the test stations; see more details in 
Table 1) in China. 

Table 1. Information of each of the 12 rain gauge station with their geographical location and eleva-
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Testing S57516 Shapingba 106.46 29.58 259.1 
Testing S57523 Fengdu 107.73 29.85 290.5 

Training S57432 Wanzhou 108.40 30.76 186.7 
Training S57502 Dazu 105.70 29.70 394.7 
Training S57512 Hechuan 106.28 29.96 230.6 
Training S57517 Jiangjin 106.25 29.28 261.4 
Training S57520 Changshou 107.06 29.83 377.6 
Training S57536 Qianjiang 108.78 29.53 607.3 
Training S57612 Qijiang 106.65 29.00 474.7 
Training S57633 Youyang 108.76 28.81 826.5 
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(1) CHIRPS 

CHIRPS (Climate Hazards group InfraRed Precipitation with Station data) is a high-
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servations to provide a comprehensive picture of precipitation patterns around the world. 
The dataset is produced by the Climate Hazards Group at the University of California, 
Santa Barbara. The CHIRPS employs a novel approach to integrate satellite-based precip-
itation estimates with in situ station data [11]. This results in a high-resolution global daily 
precipitation product with a spatial resolution of 0.05 degrees (approximately 5 km) for 
the quasi-global coverage of 50°N–50°S from 1981 to present. The CHIRPS product can be 

Figure 1. The location map of Chongqing city along with the 12 ground-based precipitation stations
(8 stations as the train stations, and the remaining 4 stations as the test stations; see more details in
Table 1) in China.

Table 1. Information of each of the 12 rain gauge station with their geographical location
and elevation.

Training/Testing Station Code Station Name Longitude Latitude Elevation (m)

Testing S57348 Fengjie 109.53 31.01 299.8
Testing S57426 Liangping 107.80 30.68 454.5
Testing S57516 Shapingba 106.46 29.58 259.1
Testing S57523 Fengdu 107.73 29.85 290.5

Training S57432 Wanzhou 108.40 30.76 186.7
Training S57502 Dazu 105.70 29.70 394.7
Training S57512 Hechuan 106.28 29.96 230.6
Training S57517 Jiangjin 106.25 29.28 261.4
Training S57520 Changshou 107.06 29.83 377.6
Training S57536 Qianjiang 108.78 29.53 607.3
Training S57612 Qijiang 106.65 29.00 474.7
Training S57633 Youyang 108.76 28.81 826.5

2.2. Satellite and Reanalysis Precipitation Products

(1) CHIRPS

CHIRPS (Climate Hazards group InfraRed Precipitation with Station data) is a high-
resolution global precipitation dataset that combines satellite data with ground-based
observations to provide a comprehensive picture of precipitation patterns around the world.
The dataset is produced by the Climate Hazards Group at the University of California, Santa
Barbara. The CHIRPS employs a novel approach to integrate satellite-based precipitation
estimates with in situ station data [11]. This results in a high-resolution global daily
precipitation product with a spatial resolution of 0.05 degrees (approximately 5 km) for
the quasi-global coverage of 50◦N–50◦S from 1981 to present. The CHIRPS product can
be freely accessed from the Climate Hazards Group website (https://www.chc.ucsb.edu/
data/chirps (accessed on 1 August 2022)).

https://www.chc.ucsb.edu/data/chirps
https://www.chc.ucsb.edu/data/chirps
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(2) ERA5-Land

ERA5-Land (Enhanced Global Dataset for the Land Component of the Fifth Generation
of European ReAnalysis) is a global reanalysis dataset that provides a comprehensive view
of the Earth’s atmosphere, land surface, and oceans. ERA5-Land includes a suite of
variables, including precipitation, that can be used to study climate variability, weather
patterns, and other environmental processes [17]. The precipitation data in ERA5-Land
are based on a combination of satellite data, ground-based observations, and atmospheric
models. The precipitation data in ERA5-Land are derived from a combination of satellite
data, ground-based observations, and atmospheric models, providing hourly estimates of
precipitation on a global 0.1◦ (approximately 10 km) grid from 1981 to the present. The
dataset can be freely accessed from the ECMWF website (https://www.ecmwf.int/en/
forecasts/datasets/reanalysis-datasets/era5-land (accessed on 1 August 2022)).

(3) GPM IMERG

GPM (Global Precipitation Measurement) is a joint mission between NASA and the
Japan Aerospace Exploration Agency (JAXA) to provide global measurements of precipi-
tation from space. The GPM mission utilizes a constellation of satellites to provide high-
resolution precipitation data. The Integrated Multi-SatellitE Retrievals for GPM (IMERG)
precipitation product is a global precipitation estimation product. It combines data from
multiple satellite sources and also ground precipitation measurements, to generate high-
resolution precipitation estimates on a global scale [19,20]. The IMERG precipitation
product provides global precipitation estimates on a 0.1◦ grid every 30 min from 2000
to the present. The IMERG product consists of three different versions: IMERG-Early,
IMERG-Late, and IMERG-Final. The Final IMERG version represents the most refined
and validated precipitation product within the IMERG framework. It incorporates the
latest algorithms, calibration techniques, and data inputs, including ground-based precip-
itation observations, and thus this final version is recommended for research purposes.
The final version was used in this study. The IMERGE precipitation product can be freely
accessed from the NASA Goddard Earth Sciences Data and Information Services Center
(https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGM (accessed on 1 August 2022)). The
product is simply referred to as GPM hereafter for conciseness.

2.3. The STRM DEM Data

The Digital Elevation Model (DEM) data from Shuttle Radar Topography Mission
(SRTM) v4.1 at the spatial resolution of 90 m was used in this study. It is downloaded from
https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/ (accessed
on 1 August 2022). A more detailed description of the SRTM DEM data can be found
in [21].

2.4. The RF-MEP Method

The RF-MEP is a random forest-based merging procedure that merges information
from ground precipitation measurements, gridded precipitation products, and topography-
related features to improve the representation of the spatiotemporal distribution of pre-
cipitation, especially in data-scarce regions [15]. The RF-MEP method relies on three
fundamental assumptions. Firstly, it assumes that ground precipitation measurements
from gauging stations are accurate at the point scale. Secondly, it acknowledges that all
gridded precipitation products (e.g., satellite or reanalysis product), although prone to bias,
still contain valuable information regarding the spatiotemporal patterns of precipitation.
Lastly, it is assumed that combining multiple gridded precipitation products and ground
measurements would yield a better representation of the spatiotemporal variability of
precipitation than any individual product. To predict the spatial distribution of precip-
itation, the RF-MEP employs the random forest technique. This involves merging data
from various gridded products (known as covariates) and ground measurements at the
selected temporal scale (such as daily, monthly, or annual). By utilizing these covariates as

https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5-land
https://www.ecmwf.int/en/forecasts/datasets/reanalysis-datasets/era5-land
https://disc.gsfc.nasa.gov/datasets/GPM_3IMERGM
https://cgiarcsi.community/data/srtm-90m-digital-elevation-database-v4-1/
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predictors, individual predictions are generated through a user-defined number of decision
trees, each based on bootstrap samples. The final prediction is derived by averaging the
individual predictions [15,22,23]. This study used the latest version R package RFmerge
to implement the RF-MEP method. This R package was developed by Baez-Villanueva
et al. [15] and it is available at https://cran.r-project.org/src/contrib/Archive/RFmerge/
(accessed on 1 August 2022) [15]. The implementation of the RF-MEP method involves four
main steps which are described in the following subsections.

2.4.1. Input Data to the RF-MEP Method

Firstly, the required input data to the RF-MEP method include: the ground precipita-
tion measurements from stations (12 stations in this study; Section 2.1), the selected gridded
precipitation products (three products, namely, CHIRPS, ERA5-Land, and IMERG in this
study), the topography-related data, and the Euclidean distances from each precipitation
gauging station to every grid cell in the study area. The used topography-related data are
the SRTM DEM version 4 data that were used to account for the precipitation gradient
related to elevation. The Euclidean distances from each rain gauge station to the centroid
of all grid cells within the study area were also automatically calculated from the RFmerge
package and they are used as input.

2.4.2. Data Processing

The used 12 precipitation stations were divided into 2 groups: a training set with
8 stations (approximately 70% of all stations) and a testing set with 4 stations (30%), which
is detailed in Section 2.1. The training and testing set was used to train the RF-MEP method
and independently assess the performance of the merged product, respectively. The study
focuses on the 2001–2017 and daily scale for which ground measurements and selected
gridded precipitation products are all available. All selected gridded precipitation products
were harmonized to the same spatial (0.10◦) and temporal (daily) scales. Specifically, ERA5-
Land hourly data are summed up to obtain the daily precipitation. The CHIRPS daily
precipitation at 0.05◦ resolution is aggregated to 0.10◦ by pixel averaging. The DEM data at
90 m resolution are also aggregated to 0.10◦ by pixel averaging.

2.4.3. Merging Procedure

One merged daily precipitation product was generated by merging all three gridded
precipitation products, namely CHIRPS, ERA5-Land, and IMERG with other input data as
detailed earlier in Section 2.4.1. First, the covariate values (e.g., three precipitation products
and elevation) at the grid cell locations of the training set were obtained. Subsequently, the
RF-MEP method was trained for each day, employing the ground precipitation measure-
ments as the dependent variable and the corresponding covariate values as predictors. The
trained RF model was then utilized, along with the gridded covariates, to predict the daily
precipitation values for each grid cell within the study area. This procedure was repeated
for each day spanning the period from 2001 to 2017. We used the default settings for the
random forest model included in this R package RFmerge.

2.5. Two Other Merging Methods

In order to show good properties of the RF-MEP method and its superiority over other
methods, we also applied two other merging methods to the same data and compared
them with the RF-MEP method. The two other merging methods which were considered
are the simple averaging (it is referred to as AVG method hereafter for conciseness) and
the simple linear regression model (referred to as LR method hereafter). The AVG method
is simple and does not need ground measurements from rain gauge stations. It works
by simply calculating the mean value of precipitation estimates from the three input
precipitation products for each day during the studied period. The calculated mean value
was the final merged precipitation estimate. The LR method is also straightforward. It
works by establishing a functional relationship (linear regression model in this study)

https://cran.r-project.org/src/contrib/Archive/RFmerge/
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between the rain gauge measurements (as the dependent variable) and the three input
precipitation products (independent variable), and then applying the established regression
model to three input precipitation products to generate the merged precipitation estimates.
To enable the fair comparison with the RF-MEP, we used the same training and testing
dataset to implement the LR method; that means all 17-year-long (2001–2017) time series of
daily rainfall measurements from the eight stations were used for establishing the linear
regression model. Then the same 17-year-long (2001–2017) time series of daily rainfall
measurements from the remaining independent four stations were used as the testing set
to validate the performance of the LR method.

2.6. Evaluation of the Gridded Precipitation Product and the Merged Dataset

We evaluated the merged precipitation dataset from the three merging methods (RF-
MEP, AVG, and LR) and the three input gridded precipitation products against the ground
measurements. This evaluation was carried out using the four stations from the test set to
ensure the strict independent assessment. The point-to-pixel analysis was used to compare
the ground precipitation measurements from point-based stations and the pixel value
from gridded precipitation products. This point-to-pixel analysis suffers from a typical
scale mismatch issue (point vs. grid cell), which will introduce bias in evaluation. Despite
that, this point-to-pixel analysis is still the most feasible and widely used method for the
evaluation of gridded precipitation products [15,24]. Therefore, the study followed the
common practice to use this point-to-pixel analysis. We performed the evaluation at the
daily scale and considered different precipitation amount.

Five commonly used metrics were used for overall evaluation of daily precipitation
estimates. They include Root Mean Square Error (RMSE), Kling–Gupta Efficiency (KGE),
Coefficient of Determination (R2), Mean Absolute Error (MAE), and the ratio of RMSE to
the standard deviation of the observations (RSR). Each of these metrics provides specific in-
formation regarding goodness-of-fit between observed and estimates from the precipitation
products. For instance, RMSE provides an overall measure of the estimation accuracy, with
lower values indicating better agreement between observed and estimates from precipita-
tion products (Equation (1)). It is particularly useful for quantifying the magnitude of errors
and assessing the general fit of the model. KGE is a comprehensive metric that evaluates
three components of model performance: correlation, bias, and variability (Equation (2)).
R2 represents the proportion of the total variance in the observed data that is explained by
the model (Equation (3)). Higher R2 values indicate a better fitness between the observed
and modeled precipitation datasets. MAE quantifies the absolute error between observed
and simulated values (Equation (4)); and it is useful for assessing the general accuracy of
the model predictions. RSR can be used for the comparison of model performance across
different datasets and scales by considering the magnitude of the observed precipitation
values (Equation (5)), and lower RSR values indicate better model performance.

Additionally, four categorical indices were used for evaluating the ability of differ-
ent precipitation products to capture precipitation intensities, namely the probability of
detection (POD), frequency bias (FBI), false alarm ratio (FAR), and critical success index
(CSI) [1,25]. Daily precipitation is categorized into seven classes of intensities based on
the World Meteorological Organization (WMO) standard: 0–1, 1–2, 2–5, 5–10, 10–20, 20–50,
≥50 (mm/day) [1]. The POD quantifies the ratio of the number of events correctly detected
by the precipitation product to the total number of events identified by the rain gauge, and
thus the optimal value would be 1. The FBI compares the number of events detected by the
precipitation product to the number of events identified by the rain gauge. An FBI value
greater than 1 indicates overestimation by the precipitation product, while a value less than
1 indicates underestimation.
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The FAR calculates the percentage of occurrences that are not accurately detected
by the precipitation product. It measures the ratio of false alarms (precipitation events
detected by the product but not observed at the rain gauge) to the total number of events
observed at the rain gauge, and thus 0 would be the optimal FAR value. The CSI combines
the POD and FAR metrics to provide an overall assessment of the precipitation product’s
capability to identify different precipitation intensities. The value of 1 would be the optimal
value for CSI.

RMSE =

√
Σ(OP − EP)2/n (1)

KGE = 1−
√
((r− 1)2 + (α− 1)2 + (β− 1)2) (2)

R2 = 1−
(

Σ(OP− EP)2/Σ(OP−mean OP)2
)

(3)

MAE = Σ|OP− EP|/n (4)

RSR = RMSE/STDEVm (5)

POD =
TP

TP + FN
(6)

FBI =
TP + FP
TP + FN

(7)

FAR =
FP

TP + FP
(8)

CSI =
TP

TP + FP + FN
(9)

where OP, EP, and STDEVm indicate observed precipitation, estimated precipitation from
the evaluated products or generated merged dataset, and standard deviation of observed
precipitation, respectively. r refers to the Pearson correlation coefficient, α is the ratio of
the standard deviation of reproduced precipitation values to the standard deviation of
observed precipitation values, and β is the ratio of the mean reproduced value to the mean
observed precipitation value. TP refers to an event which is recorded by both measured
precipitation and precipitation product, FN indicates to an event which is recorded only
by measured precipitation data, FP is an event which is recorded only by precipitation
product. Figure 2 illustrates a confusion matrix regarding the calculation of POD, FBI, FAR,
and CSI. In Figure 2, we examine the accuracy of estimation based on the following criteria.
(i) True Positives (TP): when the ground measurements of precipitation occur in class X,
and the estimated precipitation (from precipitation products or merged dataset) correctly
classifies it as such; (ii) True Negatives (TN): when measured precipitation is absent in
class X, and the estimated precipitation correctly identifies the absence; (iii) False Negatives
(FN): when measured precipitation occurs in class X, but the estimated precipitation fails to
categorize it correctly; (iv) False Positives (FP): when measured precipitation is not present
in class X, but the estimated precipitation incorrectly assigns it to this class.
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Figure 2. Schematic diagram of the confusion matrix used for evaluating precipitation values by the
categorical measures POD, FBI, FAR, and CSI. C refers to each precipitation dataset and k means the
precipitation class.

3. Results
3.1. Overall Evaluation at the Daily Scale

Figure 3.2 shows the comparison of measured daily precipitation and the estimated
precipitation from the existing satellite/reanalysis products (CHIRPS, ERA5-Land, and
GPM) and the RF-MEP merged dataset for the four stations that are from the test set during
the entire 2001–2017 period. Large scatters and differences from the 1:1 line in Figure 3.2
show the relatively poor agreements between the measured precipitation and estimated
precipitation from all sources for the daily precipitation. The scatterplots clearly illustrate
that the main inaccuracies observed in the study were characterized by underestimations
for events characterized by high precipitation, and overestimations for events with low
or no precipitation. The estimated precipitation from the RF-MEP merged dataset show
consistently better agreement with the measured precipitation than the three existing
gridded products for all four independent test stations, indicating the effectiveness of the
RF-MEP method in this study area.

Table 2 summarizes the evaluation metrics of the estimated daily precipitation from
existing products and the RF-MEP merged precipitation dataset against the measured
precipitation and compared these with the merged precipitation estimates by the linear
regression (LR) and the simple averaging method (AVG) of the three input gridded pre-
cipitation products for each of the four independent test stations. It is clear to see that the
RF-MEP merged precipitation dataset is considerably better than all three input gridded
precipitation products (CHIRPS, ERA5-Land, and GPM) and also the two other merging
methods (LR and AVG) in terms of small values of error metrics (RMSE, MAE, and RSR)
and higher values of R2 and KGE. Among the three existing products, the CHIRPS product
shows the worst performance for all the test stations with the highest error metrics and
lowest values of R2 (0.03 to 0.14) and KGE (−0.02 to 0.32). The ERA5-Land shows the best
performance with RMSE ranging from 8.57 to 9.74 mm/day and MAE 3.29–4.15 mm/day,
R2 0.20–0.25, and KGE 0.32–0.42. The RF-MEP merged precipitation dataset shows much
better evaluation metrics with RMSE 5.56–7.11 mm/day, MAE 1.67–2.85 mm/day, R2

0.41–0.66, and KGE 0.51–0.62. The remarkable improvements in the evaluation metrics
confirm the effectiveness of the RF-MEP method in improving daily precipitation estimates,
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and even using measurements from a very limited number of stations (eight stations in
this study).

Remote Sens. 2023, 15, x FOR PEER REVIEW 10 of 19 
 

 

even using measurements from a very limited number of stations (eight stations in this 
study). 

    

    

    

    

Figure 3. Scatterplots illustrating daily precipitation comparisons between the three original grid-
ded precipitation products (CHIRPS, ERA5Land, and GPM) and merged precipitation products us-
ing the RF-MEP approach against the ground measurements for the four testing stations from 2001 
to 2017. 

Table 2. Compression of statistical indices for daily precipitation data of the three original gridded 
precipitation products (CHIRPS, ERA5Land, and GPM) and merged precipitation estimates by the 
three merging methods (RF-MEP, the linear regression (LR), and the simple averaging method 
(AVG)) against the ground measurements in the four testing stations. 

Station Metrics CHIRPS ERA5-Land GPM RF-MEP LR AVG 

Fengdu 

MAE 5.11 3.61 3.94 1.86 3.17 3.61 
RMSE 13.54 8.57 9.98 5.56 7.21 8.51 
RSR 1.64 1.04 1.21 0.67 0.87 1.03 
R2 0.03 0.20 0.10 0.55 0.25 0.16 

KGE −0.02 0.32 0.29 0.62 0.36 0.31 

Figure 3. Scatterplots illustrating daily precipitation comparisons between the three original gridded
precipitation products (CHIRPS, ERA5Land, and GPM) and merged precipitation products using the
RF-MEP approach against the ground measurements for the four testing stations from 2001 to 2017.

3.2. Evaluation of Different Precipitation Intensities
Figure 4 shows the occurrence frequency of daily precipitation with seven different intensity
ranges for the three existing gridded precipitation products (CHIRPS, ERA5-Land, and
GPM), the merged precipitation estimates from the three methods (RF-MEP, LR, and AVG),
and ground measurements at each of the four test stations (Fengdu, Fengjie, Liangping,
and Shapingba). All four test stations show that more than 70% of daily precipitation
from the ground measurements fall in the intensity of 0–1 mm/day. For this intensity
range, CHIRPS shows consistent overestimation (close to 80%), while all other products
and the merged precipitation datasets from three methods (RF-MEP, LR, and AVG) show
consistent underestimation (all lower than 70%). CHIRPS shows large underestimation for
the intensity ranges (1–5 mm/day), while the opposite is found for the ERA5-Land.



Remote Sens. 2023, 15, 4230 11 of 19

Table 2. Compression of statistical indices for daily precipitation data of the three original gridded
precipitation products (CHIRPS, ERA5Land, and GPM) and merged precipitation estimates by the
three merging methods (RF-MEP, the linear regression (LR), and the simple averaging method (AVG))
against the ground measurements in the four testing stations.

Station Metrics CHIRPS ERA5-Land GPM RF-MEP LR AVG

Fengdu

MAE 5.11 3.61 3.94 1.86 3.17 3.61
RMSE 13.54 8.57 9.98 5.56 7.21 8.51
RSR 1.64 1.04 1.21 0.67 0.87 1.03
R2 0.03 0.20 0.10 0.55 0.25 0.16

KGE −0.02 0.32 0.29 0.62 0.36 0.31

Fengji

MAE 4.21 3.53 3.34 2.85 3.00 3.10
RMSE 11.13 8.85 8.92 7.11 7.15 7.49
RSR 1.24 0.98 0.99 0.79 0.79 0.83
R2 0.14 0.23 0.24 0.41 0.37 0.34

KGE 0.32 0.42 0.48 0.54 0.47 0.49

Liangping

MAE 5.10 4.15 3.96 2.32 3.40 3.68
RMSE 13.67 9.74 10.27 7.01 8.06 8.81
RSR 1.38 0.98 1.04 0.71 0.82 0.89
R2 0.10 0.24 0.18 0.51 0.34 0.28

KGE 0.22 0.35 0.42 0.51 0.43 0.44

Shapingba

MAE 4.64 3.29 4.21 1.67 3.37 3.55
RMSE 12.2 8.93 11.15 5.98 8.51 8.99
RSR 1.22 0.89 1.11 0.60 0.85 0.90
R2 0.07 0.25 0.13 0.66 0.28 0.23

KGE 0.26 0.41 0.35 0.62 0.28 0.38

Table 3 presents the evaluation metrics for all the evaluated precipitation prod-
ucts/datasets in terms of the seven classes of daily precipitation intensity at the Fengdu
station. The evaluation metrics are similar for the other three of the four test stations; thus,
they are not shown and only Table 3 is discussed here for conciseness. All three existing
products obtain a very high POD value for the precipitation with intensity <1 mm/day;
CHIRPS obtains the highest POD of 0.85, followed by GPM with a POD of 0.77 and ERA5-
Land with POD of 0.68. The RF-MEP merged dataset has an even higher POD of 0.86. This
means that all existing products and the merged dataset can capture the light precipitation
events very well with <1 mm/day. However, the ability in capturing the precipitation
events beyond 1 mm/day is considerably lower, particularly the worst performance for the
extreme heavy precipitation event with an intensity >50 mm/day. The POD values range
from 0.03 to 0.20 for CHIRPS, 0.03–0.30 for ERA5-Land, 0.09–0.22 for GPM, and 0.09–0.44
for the RF-MEP merged dataset. Except for the precipitation intensity of >50 mm/day,
the RF-MEP merged dataset displays a considerably higher POD than all three original
gridded products. Overall, similar patterns can be observed for the FBI, FAR, and CSI
values, showing the best performance of the RF-MEP merged dataset. When comparing the
three merging methods, the RF-MEP clearly showed better performance than the LR and
AVG method, with better evaluation metrics for all precipitation classes (Table 3). Therefore,
only the RF-MEP merged precipitation estimates were used for further analysis hereafter.
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Figure 4. Occurrence frequency of daily precipitation with different intensities for the three existing
gridded precipitation products (CHIRPS, ERA5-Land, and GPM), the merged precipitation estimates
from the three methods (RF-MEP, LR, and AVG), and ground measurements at four testing stations.

3.3. Spatial Distribution of Annual Precipitation

Figure 5 presents the average annual precipitation of ground measurements from the
12 stations (8 for training and 4 for testing), the three existing gridded precipitation products
(CHIRPS, ERA5-Land, and GPM) and the RF-MEP merged dataset in Chongqing during
2001–2017. The annual precipitation from the stations exhibits the highest values in the
southern region and the northern part of the western region of the basin. The precipitation
gradually increases from north to south, ranging from 755 to 1531 mm. The minimum
annual precipitation values are 1056.1, 988.4, 1024.9, and 965.4 mm for the CHIRPS, ERA5-
Land, GPM, and RF-MEP approach, respectively. On the other hand, the maximum annual
precipitation values are 1629.5, 2036.5, 1372.1, and 1414.6 mm for the CHIRPS, ERA5-
Land, GPM, and RF-MEP approach, respectively. Large differences can be found in the
spatial pattern of precipitation obtained from the three existing precipitation products
and the RF-MEP merged dataset. This discrepancy suggests large uncertainties of these
products/dataset in representing the large-scale characteristics of the annual precipitation
distribution. All three existing precipitation products seem to overestimate the annual
precipitation. The GPM product exhibits a slight overestimation, while CHIRPS and ERA5-
Land products demonstrate a larger overestimation compared to the measurements at the
rain gauge stations. In contrast, the RF-MEP precipitation dataset is performing much
better in capturing both the magnitude and spatial distribution of annual precipitation. The
large overestimation associated with the three existing products is effectively reduced by
the RF-MEP method, leading to better performance of the merged precipitation dataset.
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Table 3. The statistical metrics for evaluation of three existing gridded precipitation products
(CHIRPS, ERA5Land, and GPM) and the merged precipitation dataset from the three methods
(RF-MEP, LR, and AVG) for different precipitation intensities at the Fengdu station.

Precipitation Class (mm/day) POD FBI FAR CSI

CHIRPS [0, 1) 0.85 1.11 0.23 0.68
CHIRPS [1, 2) 0.03 0.18 0.85 0.02
CHIRPS [2, 5) 0.03 0.36 0.91 0.02

CHIRPS [5, 10) 0.09 0.81 0.89 0.05
CHIRPS [10, 20) 0.12 0.97 0.88 0.06
CHIRPS [20, 50) 0.2 1.33 0.85 0.09
CHIRPS [50, Inf) 0.09 3.11 0.97 0.02

ERA5-Land [0, 1) 0.68 0.73 0.07 0.65
ERA5-Land [1, 2) 0.17 2.02 0.92 0.06
ERA5-Land [2, 5) 0.27 1.86 0.85 0.11
ERA5-Land [5, 10) 0.24 1.78 0.87 0.09

ERA5-Land [10, 20) 0.3 1.72 0.83 0.12
ERA5-Land [20, 50) 0.27 1.08 0.75 0.15
ERA5-Land [50, Inf) 0.03 0.83 0.97 0.02

GPM [0, 1) 0.77 0.92 0.16 0.67
GPM [1, 2) 0.12 1.42 0.92 0.05
GPM [2, 5) 0.14 1.10 0.87 0.07
GPM [5, 10) 0.13 1.21 0.89 0.06

GPM [10, 20) 0.16 1.31 0.87 0.08
GPM [20, 50) 0.22 1.08 0.80 0.12
GPM [50, Inf) 0.09 1.06 0.92 0.04

RF_MEP [0, 1) 0.86 0.90 0.04 0.83
RF-MEP [1, 2) 0.27 1.59 0.83 0.12
RF-MEP [2, 5) 0.39 1.40 0.72 0.19
RF-MEP [5, 10) 0.39 1.37 0.71 0.20

RF-MEP [10, 20) 0.38 1.11 0.66 0.22
RF-MEP [20, 50) 0.44 0.78 0.44 0.33
RF-MEP [50, Inf) 0.09 0.26 0.67 0.07

LR [0, 1) 0.61 0.66 0.07 0.58
LR [1, 2) 0.21 3.32 0.94 0.05
LR [2, 5) 0.32 2.24 0.86 0.11

LR [5, 10) 0.23 1.83 0.88 0.09
LR [10, 20) 0.25 1.2 0.79 0.13
LR [20, 50) 0.21 0.57 0.63 0.15
LR [50, Inf) 0.01 0.14 0.99 0.01

AVG [0, 1) 0.65 0.69 0.05 0.63
AVG [1, 2) 0.19 2.44 0.92 0.06
AVG [2, 5) 0.37 2.14 0.83 0.13

AVG [5, 10) 0.26 1.85 0.86 0.10
AVG [10, 20) 0.25 1.39 0.82 0.12
AVG [20, 50) 0.23 1.07 0.78 0.13
AVG [50, Inf) 0.01 0.51 0.99 0.01
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Figure 5. The spatial pattern distribution of average annual precipitation of ground measurements
from the 12 stations (8 for train and 4 for test), the three existing gridded precipitation products
(CHIRPS, ERA5-Land, and GPM), and the RF-MEP merged dataset in Chongqing during 2001–2017.

3.4. Comparison of the Bias in the Daily Precipitation Time Series

To assess the bias and variation in the merged precipitation data, time series residual
plots for the independent four test stations during the period of 2001–2017 were generated
(Figure 6). The residual errors here means the bias, which is the difference between the
estimated precipitation of the evaluated product/dataset and the measurements at the rain
gauge stations. Four stations show very similar patterns, and to keep concise, only the
results at the Fengdu station are shown in this paper. The range of residuals slightly varies
for each station, with the Fengdu station ranging from −200 to 150 mm/day, the Fengjie
station ranging from −220 to 100 mm/day, the Liangping station ranging from −220 to
100 mm/day, and the Shapingba station ranging from −150 to 250 mm/day. Figure 6
provides a visual representation of the residual errors at the Fengdu station. It is evident
that the existing precipitation products exhibit higher variance compared to the RF-MEP
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merged precipitation dataset. Specifically, the CHIRPS product displays larger errors
(ranging from −150 to 150 mm/day) while the ERA5-Land and GPM show relatively lower
errors. Notably, the RF-MEP merged precipitation consistently exhibits the lowest error
ranging from −50 to 100 mm/day (most within 50 mm/day). These results further prove
that the RF-MEP approach performs very well in improving daily precipitation estimates
compared to each of the input precipitation products.
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tion products (CHIRPS, ERA5-Land, and GPM) and the RF-MEP merged precipitation dataset at the
Fengdu station.

4. Discussion

The analysis revealed that existing gridded precipitation products, such as CHIRPS,
ERA5-Land, and GPM, exhibited relatively poor agreement with measured precipitation for
daily events. These findings align with previous studies that have highlighted the general
low accuracy of gridded precipitation products at the daily scale [1,26]. The discrepancies
observed in this study, characterized by underestimations for high precipitation events and
overestimations for events with low or no precipitation, further underscore the limitations
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of these products. The scatterplots clearly illustrate the main inaccuracies observed in the
study, characterized by underestimations for high precipitation events and overestimations
for events with low or no precipitation. However, the RF-MEP merged dataset consistently
showed better agreement with the measured precipitation compared to the three existing
gridded products for all four independent test stations, indicating the effectiveness of
the RF-MEP method in the study area. The evaluation metrics further supported this
conclusion, with the RF-MEP merged precipitation dataset outperforming the individual
gridded products in terms of statistical metrics (RMSE, MAE, RSR, R2, and KGE). When
comparing the three merging methods, the RF-MEP clearly showed better performance than
the LR and AVG method, with better evaluation metrics for overall assessment (Table 2)
and all precipitation classes (Table 3).

The analysis of precipitation occurrence frequency revealed that all products and
the RF-MEP merged dataset performed well in capturing light precipitation events with
intensity less than 1 mm/day, which accounted for the majority of occurrences. However,
there were limitations in capturing precipitation events beyond 1 mm/day, particularly
for extreme heavy precipitation events exceeding 50 mm/day. This finding is consistent
with previous studies that have reported challenges in accurately estimating precipitation
at higher intensities [1,27]. CHIRPS shows large underestimation for the intensity ranges
(1–5 mm/day), while the opposite is found for the ERA5-Land. The performance of
the CHIRPS product in different precipitation intensities ranges is consistent with other
studies, e.g., Duan et al. (2016) who found similar pattern in Adige Basin in Italy [1].
As previous studies state, the differences in precipitation occurrence frequency observed
among the evaluated products would result in substantial differences in hydrological
modeling as well as sediment and pollutant transport modeling due to the nonlinear
nature of the processes involved [1,27]. While the RF-MEP approach significantly improved
the detection ability for all precipitation intensities except the most extreme intensity
(>50 mm/day), further research is needed to address this limitation and improve the
accuracy of precipitation estimates, especially for extreme events. It is interesting to apply
the RF-MEP approach to individual precipitation intensities in future studies to investigate
if the merged precipitation products could achieve better accuracy.

The spatial pattern analysis of precipitation estimates and the temporal analysis of bias
further supported the superior performance of the RF-MEP merged precipitation dataset
compared to the three existing products. The RF-MEP method effectively reduced the
large overestimation associated with the existing products, resulting in a better represen-
tation of the magnitude and spatial distribution of annual precipitation. These findings
are consistent with the studies [1,27], which also reported discrepancies in precipitation
occurrence frequency and highlighted the implications for hydrological and transport
modeling. In addition, the findings highlight the applicability and effectiveness of the
RF-MEP method in merging multiple gridded precipitation products and limited rain
gauge station measurements to enhance the accuracy of daily precipitation estimates. The
study contributes to the understanding of precipitation estimation in complex terrain and
data-sparse regions. However, it also underscores the need for further research to improve
the accuracy of precipitation estimates, particularly for higher-intensity events, such as
extreme precipitation events. Future studies could focus on enhancing the RF-MEP method
and exploring additional approaches to address the challenges in accurately capturing
extreme precipitation events. Furthermore, expanding the evaluation to other regions with
different climatic and topographic conditions would provide a broader perspective on the
performance of the RF-MEP method and its applicability in various settings.

The assessment of residuals, reflecting the differences between the merged precipita-
tion estimates and the ground measurements from rain gauge stations, provides insights
into the accuracy and potential limitations of the RF-MEP method. These substantial errors
in the residuals can be attributed to a combination of factors, including the complex topog-
raphy of the Chongqing region, the relatively sparse distribution of rain gauge stations,
and the inherent challenges in accurately capturing extreme precipitation events. While
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the RF-MEP method demonstrated effectiveness in improving the overall accuracy of the
precipitation estimates, it might encounter difficulties in accurately estimating precipitation
during severe events (with high precipitation amounts) or in regions with steep terrain
gradients. The variations in residuals underscore the importance of cautious interpretation
of the merged precipitation estimates, particularly in areas where errors are larger. These
findings highlight potential areas for further methodological improvements, such as explor-
ing the incorporation of additional covariates or the development of localized correction
techniques to address the challenges posed by extreme conditions.

5. Conclusions

This study aimed to evaluate the performance of the recently developed random
forest-based merging procedure (RF-MEP) method in improving the accuracy of daily
precipitation estimates, particularly in data-sparse regions, by merging three existing grid-
ded precipitation products with ground measurements from limited available rain gauge
stations. Chongqing city in China, with complex terrain, served as the case study. Daily
precipitation estimates from three widely used gridded precipitation products, namely
CHIRPS, ERA5-Land, and GPM, were merged to obtain the RF-MEP merged precipita-
tion dataset. Eight stations (approximately 70%) were utilized for training the RF-MEP
approach, while four stations (30%) were used for independent testing purposes. Multiple
statistical metrics were employed to assess the performance of the merged precipitation
dataset and the three existing precipitation products against ground measurements. Our
evaluation results showed that the RF-MEP approach significantly improved the accuracy
of daily precipitation estimates, with better performance than each of the three original
gridded precipitation products and also the two other merging methods (the simple linear
regression and simple averaging). Among the three existing precipitation products, overall,
the ERA5-Land showed the best performance in capturing daily precipitation followed by
GPM, while the CHIRPS showed the worst performance. When the performance of the
precipitation products in capturing precipitation at different intensities is concerned, all
three existing products and the RF-MEP merged dataset can capture the light precipitation
events very well with <1 mm/day (this precipitation intensity occurred the most frequent,
accounting for more than 70%). However, all datasets showed poor ability in capturing
the precipitation events beyond 1 mm/day, and particularly, the worst performance was
observed for the extreme heavy precipitation event with intensity >50 mm/day. The RF-
MEP approach considerably improved the detection ability in capturing all precipitation
intensities except only a small improvement was observed for the most extreme intensity
(>50 mm/day). Analysis of the spatial pattern of precipitation estimates also showed the
better performance of the merged precipitation dataset than the three existing precipitation
products. The same is true for the temporal analysis of the bias of daily precipitation esti-
mates. In sum, this study demonstrated the applicability and effectiveness of the RF-MEP
method in generating the merged precipitation dataset with improved accuracy by com-
bining existing gridded precipitation products and measurements from limited available
rain gauge stations. Future studies are advised to focus on improving the accuracy of
precipitation estimates at higher intensities, particularly the extreme events.
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