Hyperspectral Marine Oil Spill Monitoring Using a Dual-Branch Spatial–Spectral Fusion Model
Abstract
:1. Introduction
2. Proposed Method
2.1. Residual GCN Spectral Feature Extraction Module
2.2. Deep Separable U-Net Spatial Feature Extraction Module
2.3. Feature Fusion
3. Results and Analysis
3.1. Data
3.1.1. Hyperion Spaceborne Hyperspectral Data
3.1.2. AISA+ Airborne Hyperspectral Data
3.1.3. Ground Truth Data
3.2. Experimental Setup
3.3. Experimental Results
4. Discussion
4.1. Impact of Different Proportions of Training Samples on Oil Spill Detection Performance
4.2. Application on Oil Spill Image in the Yellow Sea
4.2.1. Oil Spill Detection Results
4.2.2. Analysis of Different Proportions of Training Samples
4.3. Analysis of Spectral Resolution of Sensor
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kessler, J.D.; Valentine, D.L.; Redmond, M.C.; Du, M.; Chan, E.W.; Mendes, S.D.; Quiroz, E.W.; Villanueva, C.J.; Shusta, S.S.; Werra, L.M.; et al. A persistent oxygen anomaly reveals the fate of spilled methane in the Deep Gulf of Mexico. Science 2011, 331, 312–315. [Google Scholar] [CrossRef]
- Zhong, Z.; You, F. Oil spill response planning with consideration of physicochemical evolution of the oil slick: A multiobjective optimization approach. Comput. Chem. Eng. 2011, 35, 1614–1630. [Google Scholar] [CrossRef]
- Henkel, L.A.; Nevins, H.; Martin, M.; Sugarman, S.; Harvey, J.T.; Ziccardi, M.H. Chronic oiling of marine birds in California by natural petroleum seeps, shipwrecks, and other sources. Mar. Pollut. Bull. 2014, 79, 155–163. [Google Scholar] [CrossRef]
- Berenshtein, I.; Paris, C.B.; Perlin, N.; Alloy, M.M.; Joye, S.B.; Murawski, S. Invisible oil beyond the Deepwater Horizon satellite footprint. Sci. Adv. 2020, 6, 8863. [Google Scholar] [CrossRef]
- Wang, Y.B.; Du, P.P.; Liu, J.Q.; Chen, C.T. Spatial variation of coastal wetland vulnerability to oil spill stress in the Bohai Sea. Front. Mar. Sci. 2022, 9, 1073906. [Google Scholar] [CrossRef]
- Guo, J.; Liu, X.; Xie, Q. Characteristics of the Bohai Sea oil spill and its impact on the Bohai Sea ecosystem. Chin. Sci. Bull. 2013, 58, 2276–2281. [Google Scholar] [CrossRef]
- Li, Y.; Lan, G.X.; Liu, B.X. Oil spill information extraction with texture features HJ-CCD sensors: A case study in PL19-3 oil spill incident. China Environ. Sci. 2012, 32, 1514–1520. [Google Scholar]
- Bao, M.; Zhang, J.; Zhang, X.; Meng, J.M. Oil spill detection from GF-1 images with spectral and textural features. Adv. Mar. Sci. 2020, 38, 504–512. [Google Scholar]
- Huang, K.; Pan, Q.; Zhang, J.Y.; Wang, Y.L.; Yang, G.; Sun, W.W. Quantitative monitoring in oil spill incidents based on GF-1 satellite: Qingdao oil spill accident case. Mar. Sci. Bull. 2020, 39, 266–271. [Google Scholar]
- Cally, C. Unique oil spill in East China Sea frustrates scientists. Nature 2018, 554, 17–18. [Google Scholar]
- Lu, Y.C.; Liu, J.Q.; Ding, J.; Shi, J.; Chen, J.; Ye, X. Optical remote identification of spilled oils from the SANCHI oil tanker collision in the East China Sea. China Sci. Bull. 2019, 6431, 3213–3222. [Google Scholar]
- Shen, Y.F.; Liu, J.Q.; Ding, J.; Jiao, J.N.; Sun, S.J.; Lu, Y.C. HY-1C COCTS and CZI observation of marine oil spills in the South China Sea. J. Remote Sens. 2020, 24, 933–944. [Google Scholar] [CrossRef]
- Dai, Y.X.; Ma, Y.; Jiang, Z.C.; Du, K.; Wang, H.Q. Multi-spectral remote sensing detection of marine oil spill based on multi-kernel SVM decision fusion model. Mari. Sci. 2022, 46, 11–23. [Google Scholar]
- An Average of One Oil Spill Incident Occurring Every Four Days along the Coast of China. Available online: https://www.cnss.com.cn/old/25779.jhtml (accessed on 17 August 2023).
- Leifer, I.; Lehr, W.J.; Simecek-Beatty, D.; Bradley, E.; Clark, R.; Dennison, P.; Hu, Y.X.; Matheson, S.; Jones, C.E.; Holt, B.; et al. State of the art satellite and airborne marine oil spill remote sensing: Application to the BP deepwater horizon oil spill. Remote Sens. Environ. 2012, 1249, 185–209. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, C. Review of oil spill remote sensing. Mar. Pollut. Bull. 2014, 831, 9–23. [Google Scholar] [CrossRef] [PubMed]
- Alpers, W.; Holt, B.; Zeng, K. Oil spill detection by imaging radars: Challenges and pitfalls. Remote Sens. Environ. 2017, 201, 133–147. [Google Scholar] [CrossRef]
- Jatiault, R.; Dhont, D.; Loncke, L.; Dubucq, D. Monitoring of natural oil seepage in the Lower Congo Basin using SAR observations. Remote Sens. Environ. 2017, 191, 258–272. [Google Scholar] [CrossRef]
- Mdakane, L.W.; Kleynhans, W. Feature selection and classification of oil spill from vessels using sentinel-1 wide-swath synthetic aperture radar data. IEEE Geosci. Remote Sens. Lett. 2020, 19, 4002505. [Google Scholar] [CrossRef]
- Guo, G.; Liu, B.X.; Liu, C.Y. Thermal infrared spectral characteristics of bunker fuel oil to determine oil-film thickness and API. J. Mar. Sci. Eng. 2020, 82, 135. [Google Scholar] [CrossRef]
- Hu, C.M.; Lu, Y.C.; Sun, S.J.; Liu, Y.X. Optical remote sensing of oil spills in the ocean: What is really possible? J. Remote Sens. 2021, 2021, 9141902. [Google Scholar] [CrossRef]
- Ma, X.S.; Xu, J.G.; Wu, P.H.; Kong, P. Oil spill detection based on deep convolutional neural networks using polarimetric scattering information from sentinel-1 SAR images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4204713. [Google Scholar] [CrossRef]
- Dong, Y.Z.; Liu, Y.X.; Hu, C.M.; MacDonald, I.R.; Lu, Y.C. Chronic oiling in global oceans. Science 2022, 376, 1300–1304. [Google Scholar] [CrossRef]
- Hu, C.M.; Li, X.F.; Pichel, W.G.; Muller-Karger, F.E. Detection of natural oil slicks in the NW Gulf of Mexico using MODIS imagery. Geophys. Res. Lett. 2009, 36, L01604. [Google Scholar] [CrossRef]
- Jing, Y.; An, J.B.; Liu, Z.X. A novel edge detection algorithm based on global minimization active contour model for oil slick infrared aerial image. IEEE Trans. Geosci. Remote Sens. 2011, 496, 2005–2013. [Google Scholar] [CrossRef]
- Lu, Y.C.; Li, X.; Tian, Q.; Zheng, G.; Sun, S.J.; Liu, Y.X.; Yang, Q. Progress in marine oil spill optical remote sensing: Detected targets, spectral response characteristics, and theories. Mar. Geod. 2013, 363, 334–346. [Google Scholar] [CrossRef]
- Lu, Y.C.; Hu, C.M.; Sun, S.J.; Zhang, M.W.; Zhou, Y.; Shi, J.; Wen, Y.S. Overview of optical remote sensing of marine oil spills and hydrocarbon seepage. J. Remote Sens. 2016, 205, 1259–1269. [Google Scholar]
- Chen, Y.T.; Li, Y.Y.; Wang, J.S. An end-to-end oil-spill monitoring method for multisensory satellite images based on deep semantic segmentation. Sensors 2020, 20, 725. [Google Scholar] [CrossRef]
- Lu, Y.C.; Shi, J.; Hu, C.M.; Zhang, M.W.; Sun, S.J.; Liu, Y.X. Optical interpretation of oil emulsions in the ocean—Part II: Applications to multi-band coarse-resolution imagery. Remote Sens. Environ. 2020, 242, 111778. [Google Scholar] [CrossRef]
- Caillault, K.; Roupioz, L.; Viallefont-Robinet, F. Modelling of the optical signature of oil slicks at sea for the analysis of multi- and hyperspectral VNIR-SWIR images. Opt. Exp. 2021, 29, 18224–18242. [Google Scholar] [CrossRef]
- Cui, Y.Q.; Kong, D.M.; Zhang, X.D.; Kong, D.H.; Yuan, L. A method for estimating thick oil film on sea surface based on fluorescence signal. Spectrosc. Spectr. Anal. 2021, 41, 150–155. [Google Scholar]
- Jiao, J.N.; Lu, Y.C.; Hu, C.M.; Shi, J.; Sun, S.J.; Liu, Y.X. Quantifying ocean surface oil thickness using thermal remote sensing. Remote Sens. Environ. 2021, 2611, 112513. [Google Scholar] [CrossRef]
- Li, Y.C.; Liu, J.N.; Shi, H.D. Research on identification of marine oil spill based on polarization characteristics. Acta Photon. Sin. 2021, 50, 0712001. [Google Scholar]
- Seydi, S.T.; Hasanlou, M.; Amani, M.; Huang, W.M. Oil spill detection based on multi-scale multi-dimensional residual CNN for optical remote sensing imagery. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 10941–10952. [Google Scholar] [CrossRef]
- Suo, Z.Y.; Lu, Y.C.; Liu, J.Q.; Ding, J.; Yin, D.Y.; Xu, F.F.; Jiao, J.N. Ultraviolet remote sensing of marine oil spills: A new approach of HaiYang- 1C satellite. Opt. Exp. 2021, 29, 13486–13495. [Google Scholar] [CrossRef] [PubMed]
- Yuan, L.; Wang, L.B.; Jiao, H.H. Research on estimation of oil-water ratio of light oil emulsion based on fluorescence spectroscopy. Spectrosc. Spectr. Anal. 2021, 41, 1852–1857. [Google Scholar]
- Chen, Y.Q.; Yu, W.; Tang, J.Y.; Sun, Y.H.; Hu, H.S. A novel split-frequency feature fusion framework for processing the dual-optical images of offshore oil spills. Mar. Pollut. Bull. 2023, 190, 114840. [Google Scholar] [CrossRef] [PubMed]
- Suo, Z.Y.; LI, L.; Lu, Y.C.; Liu, J.Q.; Ding, J.; Ju, W.M.; Li, M.C.; Yin, D.Y.; Xu, F.F. Sunglint reflectance facilitates performance of spaceborne UV sensor in oil spill detection. Opt. Exp. 2023, 31, 14651–14658. [Google Scholar] [CrossRef] [PubMed]
- Cui, C.; Li, Y.; Liu, B.X.; Li, G.N.; Salehi, B.; Kainz, W. A new endmember preprocessing method for the hyperspectral unmixing of imagery containing marine oil spills. ISPRS Int. J. Geo-Inf. 2017, 69, 286. [Google Scholar] [CrossRef]
- Zhu, X.; Li, Y.; Zhang, Q.; Liu, B. Oil film classification using deep learning-based hyperspectral remote sensing technology. ISPRS Int. J. Geo-Inf. 2019, 8, 181. [Google Scholar] [CrossRef]
- Li, Y.; Lu, H.M.; Zhang, Z.D.; Liu, P. A novel nonlinear hyperspectral unmixing approach for images of oil spills at sea. Int. J. Remote Sens. 2020, 41, 46824699. [Google Scholar] [CrossRef]
- Dilish, D. Spectral similarity algorithm-based image classification for oil spill mapping of hyperspectral datasets. J. Spectr. Imag. 2020, 9, a14. [Google Scholar]
- Menezes, J.; Poojary, N. A fusion approach to classify hyperspectral oil spill data. Multimed. Tools Appl. 2020, 79, 5399–5418. [Google Scholar] [CrossRef]
- Lu, Y.C.; Shi, J.; Wen, Y.S.; Hu, C.M.; Zhou, Y.; Sun, S.J.; Zhang, M.W.; Mao, Z.H.; Liu, Y.X. Optical interpretation of oil emulsions in the ocean—Part I: Laboratory measurements and proof-of-concept with AVIRIS observations. Remote Sens. Environ. 2019, 230, 111183. [Google Scholar] [CrossRef]
- Yang, J.F.; Wan, J.H.; Ma, Y.; Zhang, J.; Hu, Y.B. Characterization analysis and identification of common marine oil spill types using hyperspectral remote sensing. Int. J. Remote Sens. 2020, 41, 7163–7185. [Google Scholar] [CrossRef]
- Jiang, Z.C.; Zhang, J.; Ma, Y.; Mao, X.P. Hyperspectral remote sensing detection of marine oil spills using an adaptive long-term moment estimation optimizer. Remote Sens. 2021, 141, 157. [Google Scholar] [CrossRef]
- Li, Y.; Yu, Q.; Xie, M.; Zhang, Z.D.; Ma, Z.J.; Cao, K. Identifying oil spill types based on remotely sensed reflectance spectra and multiple machine learning algorithms. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2021, 14, 9071–9078. [Google Scholar] [CrossRef]
- Yang, J.F.; Hu, Y.B.; Zhang, J.; Ma, Y.; Li, Z.W.; Jiang, Z.C. Identification of marine oil spill pollution using hyperspectral combined with thermal infrared remote sensing. Front. Mar. Sci. 2023, 10, 1135356. [Google Scholar] [CrossRef]
- Lu, Y.C.; Tian, Q.J.; Wang, X.Y.; Zheng, G.; Li, X. Determining oil slick thickness using hyperspectral remote sensing in the Bohai Sea of China. Int. J. Dig. Earth 2013, 6, 76–93. [Google Scholar] [CrossRef]
- Ren, G.B.; Guo, J.; Ma, Y.; Luo, X.D. Oil spill detection and slick thickness measurement via UAV hyperspectral imaging. Haiyang Xuebao 2019, 41, 146–158. [Google Scholar]
- Jiang, Z.C.; Ma, Y.; Yang, J.F. Inversion of the thickness of crude oil film based on an OG-CNN model. J. Mar. Sci. Eng. 2020, 89, 653. [Google Scholar] [CrossRef]
- Wang, M.Q.; Yang, J.F.; Liu, S.W.; Zhang, J.; Ma, Y.; Wan, J.H. Quantitative inversion ability analysis of oil film thickness using bright temperature difference based on thermal infrared remote sensing: A ground-based simulation experiment of marine oil spill. Remote Sens. 2023, 15, 2018. [Google Scholar] [CrossRef]
- Yang, J.F.; Ma, Y.; Hu, Y.B.; Jiang, Z.C.; Zhang, J.; Wan, J.H.; Li, Z.W. Decision fusion of deep learning and shallow learning for marine oil spill detection. Remote Sens. 2022, 14, 666. [Google Scholar] [CrossRef]
- Yang, J.F.; Wan, J.H.; Ma, Y.; Zhang, J.; Hu, Y.B.; Jiang, Z.C. Oil spill hyperspectral remote sensing detection based on DCNN with multi-scale features. J. Coast. Res. 2019, 90, 332–339. [Google Scholar] [CrossRef]
- Du, K.; Ma, Y.; Jiang, Z.C.; Lu, X.Q.; Yang, J.F. Detection of Oil Spill based on CBF-CNN using HY-1C CZI Multispectral Images. Acta Oceanol. Sini. 2022, 41, 166–179. [Google Scholar] [CrossRef]
- Zhong, Z.; Li, J.; Luo, Z.; Chapman, M. Spectral–spatial residual network for hyperspectral image classification: A 3-D deep learning framework. IEEE Trans. Geosci. Remote Sens. 2017, 56, 847–858. [Google Scholar] [CrossRef]
- Ma, W.; Yang, Q.; Wu, Y.; Zhao, W.; Zhang, X. Double-branch multi-attention mechanism network for hyperspectral image classification. Remote Sens. 2019, 11, 1307. [Google Scholar] [CrossRef]
- Li, R.; Zheng, S.; Duan, C.; Yang, Y.; Wang, X. Classification of hyperspectral image based on double-branch dual-attention mechanism network. Remote Sens. 2020, 12, 582. [Google Scholar] [CrossRef]
- Shen, Y.; Zhu, S.; Chen, C.; Du, Q.; Xiao, L.; Chen, J.; Pan, D. Efficient deep learning of nonlocal features for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 6029–6043. [Google Scholar] [CrossRef]
- Duan, P.H.; Lai, J.B.; Kang, J.; Kang, X.D.; Ghamisi, P.; Li, S.T. Texture-aware total variation-based removal of sun glint in hyperspectral images. ISPRS J. Photog. Remote Sens. 2020, 166, 359–372. [Google Scholar] [CrossRef]
- Wang, B.; Shao, Q.F.; Song, D.M.; Li, Z.W.; Tang, Y.H.; Yang, C.L.; Wang, M.Y. A spectral-spatial features integrated network for hyperspectral detection of marine oil spill. Remote Sens. 2021, 13, 1568. [Google Scholar] [CrossRef]
- Kang, X.D.; Deng, B.; Duan, P.H.; Wei, X.H.; Li, S.T. Self-supervised spectral-spatial transformer network for hyperspectral oil spill mapping. IEEE Trans. Geosci. Remote Sens. 2023, 61, 5507410. [Google Scholar] [CrossRef]
- Wang, J.; Li, Z.W.; Yang, J.F.; Liu, S.W.; Zhang, J.; Li, S.B. A multilevel spatial and spectral feature extraction network for marine oil spill monitoring using airborne hyperspectral image. Remote Sens. 2023, 15, 1302. [Google Scholar] [CrossRef]
- Qin, A.Y.; Shang, Z.W.; Tian, J.Y.; Wang, Y.L.; Zhang, T.P. Spectral–spatial graph convolutional networks for semisupervised hyperspectral image classification. IEEE Geosci. Remote Sens. Lett. 2019, 16, 241–245. [Google Scholar] [CrossRef]
- Liu, Q.C.; Xiao, L.; Yang, J.X.; Wei, Z.H. CNN-enhanced graph convolutional network with pixel- and superpixel-level feature fusion for hyperspectral image classification. IEEE Trans. Geosci. Remote Sens. 2020, 59, 8657–8671. [Google Scholar] [CrossRef]
Dataset | Class | Training | Validation | Test | Total |
---|---|---|---|---|---|
Hyperion data in Liaodong Bay | Oil slick | 219 | 219 | 3933 | 4371 |
Seawater | 5642 | 5642 | 101,561 | 112,845 | |
Background | 3019 | 3019 | 54,346 | 60,384 | |
AISA+ data in Penglai 19-3 oilfield | Oil slick | 2691 | 2691 | 48,440 | 53,822 |
Seawater | 5083 | 5083 | 91,490 | 101,656 | |
Platform and ships | 307 | 307 | 5524 | 6138 |
Dataset | Class | DUNET | CEGCN | GCN |
---|---|---|---|---|
Hyperion data in Liaodong Bay | Oil slick | 84.02 | 80.97 | 65.69 |
Seawater | 99.39 | 99.33 | 98.99 | |
Background | 99.84 | 99.81 | 99.56 | |
Overall Accuracy (%) | 99.17 | 98.55 | 98.37 | |
Average Accuracy (%) | 94.42 | 93.37 | 88.08 | |
Kappa Coefficient | 0.9826 | 0.9797 | 0.9658 | |
AISA+ data in Penglai 19-3 oilfield | Oil slick | 95.95 | 93.38 | 89.02 |
Seawater | 91.35 | 89.79 | 85.50 | |
Platform and ships | 97.10 | 95.77 | 93.31 | |
Overall Accuracy (%) | 96.50 | 94.52 | 91.58 | |
Average Accuracy (%) | 94.80 | 92.98 | 89.28 | |
Kappa Coefficient | 0.9009 | 0.8890 | 0.8288 |
Dataset | Proportions Training Samples | DUNET | CEGCN | GCN | |||
---|---|---|---|---|---|---|---|
Training Time (s) | Test Time (s) | Training Time (s) | Test Time (s) | Training Time (s) | Test Time (s) | ||
Hyperion data in Liaodong Bay | 1% | 50.64 | 11.15 | 40.79 | 12.23 | 34.79 | 10.67 |
3% | 50.84 | 10.71 | 41.87 | 13.25 | 34.84 | 10.73 | |
5% | 55.57 | 15.56 | 39.65 | 11.09 | 34.84 | 10.87 | |
AISA+ data in Penglai 19-3 oilfield | 1% | 57.43 | 16.87 | 42.42 | 14.47 | 38.5 | 14.36 |
3% | 54.43 | 14.52 | 42.36 | 14.7 | 49.51 | 25.95 | |
5% | 55.38 | 15.82 | 42.41 | 14.41 | 38.42 | 14.63 |
Dataset | Class | Training | Validation | Test | Total |
---|---|---|---|---|---|
AISA+ data in Dalian | Oil slick | 2349 | 2349 | 42,278 | 46,976 |
Seawater | 2566 | 2566 | 46,196 | 51,328 |
Dataset | Class | DUNET | CEGCN | GCN |
---|---|---|---|---|
AISA+ data in Dalian | Oil slick | 98.34 | 97.19 | 91.58 |
Seawater | 98.26 | 97.79 | 87.59 | |
Overall Accuracy (%) | 98.30 | 97.50 | 89.50 | |
Average Accuracy (%) | 98.30 | 97.49 | 89.59 | |
Kappa Coefficient | 0.9659 | 0.9500 | 0.7899 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Wang, J.; Hu, Y.; Ma, Y.; Li, Z.; Zhang, J. Hyperspectral Marine Oil Spill Monitoring Using a Dual-Branch Spatial–Spectral Fusion Model. Remote Sens. 2023, 15, 4170. https://doi.org/10.3390/rs15174170
Yang J, Wang J, Hu Y, Ma Y, Li Z, Zhang J. Hyperspectral Marine Oil Spill Monitoring Using a Dual-Branch Spatial–Spectral Fusion Model. Remote Sensing. 2023; 15(17):4170. https://doi.org/10.3390/rs15174170
Chicago/Turabian StyleYang, Junfang, Jian Wang, Yabin Hu, Yi Ma, Zhongwei Li, and Jie Zhang. 2023. "Hyperspectral Marine Oil Spill Monitoring Using a Dual-Branch Spatial–Spectral Fusion Model" Remote Sensing 15, no. 17: 4170. https://doi.org/10.3390/rs15174170
APA StyleYang, J., Wang, J., Hu, Y., Ma, Y., Li, Z., & Zhang, J. (2023). Hyperspectral Marine Oil Spill Monitoring Using a Dual-Branch Spatial–Spectral Fusion Model. Remote Sensing, 15(17), 4170. https://doi.org/10.3390/rs15174170