Mapping of Ecological Environment Based on Google Earth Engine Cloud Computing Platform and Landsat Long-Term Data: A Case Study of the Zhoushan Archipelago
Abstract
:1. Introduction
2. Methods
2.1. Data Pre-Processing
2.2. Calculation of Remote Sensing-Based Ecological Index
2.2.1. Calculation of Ecological Index
- (1)
- Greenness index
- (2)
- Humidity index
- (3)
- Dryness index
- (4)
- Heat index
2.2.2. Construction of RSEI
2.3. Analysis of Spatiotemporal Patterns of Ecological Environment Based on RSEI
2.3.1. Analysis of Ecological Environment Grading and Conversion Based on RSEI
2.3.2. Analysis of Ecological Environment Change Trend
2.3.3. Analysis of Ecological Environmental Change Sustainability
2.3.4. Temporal Stability Analysis of the Ecological Environment
3. Study Area and Data Sources
3.1. Study Area
3.2. Data Sources
4. Results and Analysis
4.1. RSEI Calculation for the Zhoushan Archipelago
4.2. Spatial Pattern Analysis of the Ecological Environmental Evolution
4.2.1. Rank Division of Ecological Environment
4.2.2. Level of Conversion of Ecological Environment
4.3. Temporal Trend Analysis of Ecological Environmental Evolution
4.3.1. Change Trend of Ecological Environment
4.3.2. Sustainability Analysis of Ecological Environment
4.4. Time-Series Stability Analysis of Ecological Environmental Evolution
5. Discussion
5.1. Rationality of Mapping of Ecological Environment of Islands Using Remote Sensing Images
5.2. Uncertainties of Mapping of Ecological Environment of Islands Using Remote Sensing Images
5.3. Prospects of Remote Sensing Technology for Ecological Environmental Monitoring
6. Conclusions
- (1)
- The average RSEI values for the eight time periods (at five-year intervals) from 1985 to 2020 were 0.7719, 0.7532, 0.7657, 0.7566, 0.7293, 0.6682, 0.6250, and 0.5817. Except for 2020, the RSEI values for all years were within the range 0.6–0.8. During the entire study period, the average RSEI value in the Zhoushan Archipelago decreased from 0.7719 to 0.5817, indicating an overall declining trend regarding the ecological environment in the study area.
- (2)
- The area change in each ecological environment level was obvious in the Zhoushan Archipelago during the study period. From 1985 to 2020, the proportion of areas with an ecological environment grade of excellent decreased by 38.83%, while the proportion of areas with ecological environment grades of poor and relatively poor increased by a total of 20.03%. The proportions of areas with ecological environment grades of good and general increased by 10.56% and 8.24%, respectively. Based on the results of the ecological environment grade conversion, the transition between each pair of adjacent grades was relatively drastic. The transition between the excellent and good grades was dominant, with the largest area of transition from the excellent to the good grade occurring from 2010 to 2015, covering an area of 131.3087 km2. The largest area of transition from good to excellent grade was 186.8389 km2, occurring from 2005 to 2010. The good and general grades exhibited the second largest transition areas. During the study period, the largest area of transition from general to good grade was 79.0286 km2, occurring from 2010 to 2015.
- (3)
- The ecological environment in the Zhoushan Archipelago exhibited co-existing degradation and partial improvement, with the areas with a degraded ecological environment accounting for 84.35% of the total area and the areas with an improved ecological environment accounting for 12.61% of the total area. The proportion of the areas with a significantly improved ecological environment was the smallest, accounting for only 0.84% of the total area. The proportion of the areas with a heavily degraded ecological environment was significant, accounting for 34.10% of the total area. These areas were mainly distributed in the southern part of Zhoushan Island, the southwestern part of Jintang Island, the northwestern area of Zhujiajian Island, the northern area of Taohua Island, the central part of Liuheng Island, and the western parts of Qushan Island, Shengsi Island, and Yangshan Island. The decline in the ecological environment in these areas was related to urbanization and the development of tourism resources in the Zhoushan Archipelago.
- (4)
- The results of the Hurst exponent analysis indicate that the change trend of the ecological environment in most regions of the Zhoushan Archipelago is sustainable. The proportion of the areas with degraded sustainably was 73.40%, and these areas were extensively distributed on the major islands in the Zhoushan Archipelago. The proportion of the areas with stable sustainably was 2.65%, and these areas were scattered in the central part of Zhoushan Island and the western part of Taohua Island. The proportion of the areas with improved sustainably was 10.56%, and these areas were mainly located in the eastern and northeastern parts of Zhoushan Island; the northern, northwestern, and southern parts of Zhujiajian Island; the southern part of Taohuajian Island; the southwestern part of Liuheng Island; and the northern part of Yangshan Island. The proportion of the unsustainable areas was 13.39%, and these areas were scattered within the central areas of the islands. In conclusion, the ecological environment in the areas with degraded sustainably requires particular attention.
- (5)
- The coefficient of variation in the RSEI sequence from 1985 to 2020 was mainly concentrated within the range 0–0.4, and its average value was 0.1627, indicating that the overall variations in the RSEI value in the Zhoushan Archipelago during the study period were relatively small, having a stable temporal trend. The regions with a high coefficient of variation were mainly concentrated in the northeastern part of Zhoushan Island, the northern part of Daishan Island, the edges of Liuheng Island, the western side of Zhujiajian Island, and the northwestern and southwestern parts of Jintang Island, indicating that the RSEI values in these areas fluctuated considerably over time.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fan, Y.; Fang, C.; Zhang, Q. Coupling coordinated development between social economy and ecological environment in Chinese provincial capital cities-assessment and policy implications. J. Clean. Prod. 2019, 229, 289–298. [Google Scholar] [CrossRef]
- Zhang, Q.; Yin, Z.; Lu, X.; Gong, J.; Lei, Y.; Cai, B.; Cai, C.; Chai, Q.; Chen, H.; Dai, H.; et al. Synergetic roadmap of carbon neutrality and clean air for China. Environ. Sci. Ecotechnol. 2023, 16, 100280. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Liang, J.; Yang, G.; Sun, W. Spatio-temporal distribution of harmful algal blooms and their correlations with marine hydrological elements in offshore areas, China. Ocean Coast. Manag. 2023, 238, 106554. [Google Scholar] [CrossRef]
- Wang, J.; Wei, X.; Guo, Q. A three-dimensional evaluation model for regional carrying capacity of ecological environment to social economic development: Model development and a case study in China. Ecol. Indic. 2018, 89, 348–355. [Google Scholar] [CrossRef]
- Zhang, W.; Chang, W.J.; Zhu, Z.C.; Hui, Z. Landscape ecological risk assessment of Chinese coastal cities based on land use change. Appl. Geogr. 2020, 117, 102174. [Google Scholar] [CrossRef]
- Yang, T.; Xie, J.; Song, P.; Li, G.; Mou, N.; Gao, X.; Zhao, J. Monitoring Ecological Conditions by Remote Sensing and Social Media Data—Sanya City (China) as Case Study. Remote Sens. 2022, 14, 2824. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Y.; Wu, J.; Wang, T. Index system of urban resource and environment carrying capacity based on ecological civilization. Environ. Impact Assess. Rev. 2018, 68, 90–97. [Google Scholar] [CrossRef]
- Yang, C.; Zeng, W.; Yang, X. Coupling coordination evaluation and sustainable development pattern of geo-ecological environment and urbanization in Chongqing municipality, China. Sustain. Cities Soc. 2020, 61, 102271. [Google Scholar] [CrossRef]
- Shao, Z.; Ding, L.; Li, D.; Altan, O.; Huq, M.; Li, C. Exploring the relationship between urbanization and ecological environment using remote sensing images and statistical data: A case study in the Yangtze River Delta, China. Sustainability 2020, 12, 5620. [Google Scholar] [CrossRef]
- Zheng, Z.; Wu, Z.; Chen, Y.; Guo, C.; Marinello, F. Instability of remote sensing based ecological index (RSEI) and its improvement for time series analysis. Sci. Total Environ. 2022, 814, 152595. [Google Scholar] [CrossRef]
- Sun, C.; Li, J.; Liu, Y.; Cao, L.; Zheng, J.; Yang, Z.; Ye, J.; Li, Y. Ecological quality assessment and monitoring using a time-series remote sensing-based ecological index (ts-RSEI). GISci. Remote Sens. 2022, 59, 1793–1816. [Google Scholar] [CrossRef]
- Li, J.; Pei, Y.; Zhao, S.; Xiao, R.; Sang, X.; Zhang, C. A review of remote sensing for environmental monitoring in China. Remote Sens. 2020, 12, 1130. [Google Scholar] [CrossRef]
- Cao, H.; Li, M.; Qin, F.; Xu, Y.; Zhang, L.; Zhang, Z. Economic Development, Fiscal Ecological Compensation, and Ecological Environment Quality. Int. J. Environ. Res. Public Health 2022, 19, 4725. [Google Scholar] [CrossRef] [PubMed]
- Xu, J.; Zhao, H.; Yin, P.; Wu, L.; Li, G. Landscape ecological quality assessment and its dynamic change in coal mining area: A case study of Peixian. Environ. Earth Sci. 2019, 78, 708. [Google Scholar] [CrossRef]
- Song, W.; Song, W.; Gu, H.; Li, F. Progress in the remote sensing monitoring of the ecological environment in mining areas. Int. J. Environ. Res. Public Health 2020, 17, 1846. [Google Scholar] [CrossRef]
- Ding, Q.; Wang, L.; Fu, M.; Huang, N. An integrated system for rapid assessment of ecological quality based on remote sensing data. Environ. Sci. Pollut. Res. 2020, 27, 32779–32795. [Google Scholar] [CrossRef]
- Hossain, M.S.; Hashim, M. Potential of Earth Observation (EO) technologies for seagrass ecosystem service assessments. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 15–29. [Google Scholar] [CrossRef]
- Mahan, C.G.; Young, J.A.; Miller, B.J.; Saunders, M.C. Using ecological indicators and a decision support system for integrated ecological assessment at two national park units in the mid-Atlantic region, USA. Environ. Manag. 2015, 55, 508–522. [Google Scholar] [CrossRef]
- Ahmed, N.; Howlader, N.; Hoque, M.A.A.; Pradhan, B. Coastal erosion vulnerability assessment along the eastern coast of Bangladesh using geospatial techniques. Ocean Coast. Manag. 2021, 199, 105408. [Google Scholar] [CrossRef]
- Hu, X.; Ma, C.; Huang, P.; Guo, X. Ecological vulnerability assessment based on AHP-PSR method and analysis of its single parameter sensitivity and spatial autocorrelation for ecological protection—A case of Weifang City, China. Ecol. Indic. 2021, 125, 107464. [Google Scholar] [CrossRef]
- Wu, X.; Tang, S. Comprehensive evaluation of ecological vulnerability based on the AHP-CV method and SOM model: A case study of Badong County, China. Ecol. Indic. 2022, 137, 108758. [Google Scholar] [CrossRef]
- He, L.; Shen, J.; Zhang, Y. Ecological vulnerability assessment for ecological conservation and environmental management. J. Environ. Manag. 2018, 206, 1115–1125. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Ji, G.; Tian, Y.; Chen, Y.; Wang, Z. Environmental vulnerability assessment for mainland China based on entropy method. Ecol. Indic. 2018, 91, 410–422. [Google Scholar] [CrossRef]
- Alizadeh, M.; Ngah, I.; Hashim, M.; Pradhan, B.; Pour, A.B. A hybrid analytic network process and artificial neural network (ANP-ANN) model for urban earthquake vulnerability assessment. Remote Sens. 2018, 10, 975. [Google Scholar] [CrossRef]
- Wu, X.; Liu, S.; Sun, Y.; An, Y.; Dong, S.; Liu, G. Ecological security evaluation based on entropy matter-element model: A case study of Kunming city, southwest China. Ecol. Indic. 2019, 102, 469–478. [Google Scholar] [CrossRef]
- Goffin, B.D.; Thakur, R.; Carlos, S.D.C.; Srsic, D.; Williams, C.; Ross, K.; Neira-Román, F.; Cortés-Monroy, C.C.; Lakshmi, V. Leveraging remotely-sensed vegetation indices to evaluate crop coefficients and actual irrigation requirements in the water-stressed Maipo River Basin of Central Chile. Sustain. Horiz. 2022, 4, 100039. [Google Scholar] [CrossRef]
- Jiang, L.; Liu, Y.; Wu, S.; Yang, C. Analyzing ecological environment change and associated driving factors in China based on NDVI time series data. Ecol. Indic. 2021, 129, 107933. [Google Scholar] [CrossRef]
- Chen, Z.; Chen, J.; Zhou, C.; Li, Y. An ecological assessment process based on integrated remote sensing model: A case from Kaikukang-Walagan District, Greater Khingan Range, China. Ecol. Inform. 2022, 70, 101699. [Google Scholar] [CrossRef]
- Nie, X.; Hu, Z.; Ruan, M.; Zhu, Q.; Sun, H. Remote-Sensing Evaluation and Temporal and Spatial Change Detection of Ecological Environment Quality in Coal-Mining Areas. Remote Sens. 2022, 14, 345. [Google Scholar] [CrossRef]
- Yue, H.; Liu, Y.; Li, Y.; Lu, Y. Eco-environmental quality assessment in China’s 35 major cities based on remote sensing ecological index. IEEE Access 2019, 7, 51295–51311. [Google Scholar] [CrossRef]
- Fang, Z.; Wang, H.; Xue, S.; Zhang, F.; Wang, Y.; Yang, S.; Zhou, Q.; Cheng, C.; Zhong, Y.; Yang, Y.; et al. A comprehensive framework for detecting economic growth expenses under ecological economics principles in China. Sustain. Horiz. 2022, 4, 100035. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, X.; Wang, T.; Chen, G.; Zhu, K.; Wang, Q.; Wang, J. Detection of vegetation coverage changes in the Yellow River Basin from 2003 to 2020. Ecol. Indic. 2022, 138, 108818. [Google Scholar] [CrossRef]
- Liu, X.; Fu, J.; Jiang, D.; Luo, J.; Sun, C.; Liu, H.; Wen, R.; Wang, X. Improvement of ecological footprint model in national nature reserve based on net primary production (NPP). Sustainability 2018, 11, 2. [Google Scholar] [CrossRef]
- Algretawee, H.; Rayburg, S.; Neave, M. Estimating the effect of park proximity to the central of Melbourne city on Urban Heat Island (UHI) relative to Land Surface Temperature (LST). Ecol. Eng. 2019, 138, 374–390. [Google Scholar] [CrossRef]
- Yin, C.; Yuan, M.; Lu, Y.; Huang, Y.; Liu, Y. Effects of urban form on the urban heat island effect based on spatial regression model. Sci. Total Environ. 2018, 634, 696–704. [Google Scholar] [CrossRef]
- Khellouk, R.; Barakat, A.; Boudhar, A.; Hadria, R.; Lionboui, H.; El Jazouli, A.; Rais, J.; El Baghdadi, M.; Benabdelouahab, T. Spatiotemporal monitoring of surface soil moisture using optical remote sensing data: A case study in a semi-arid area. J. Spat. Sci. 2020, 65, 481–499. [Google Scholar] [CrossRef]
- Kim, J.; Song, C.; Lee, S.; Jo, H.; Park, E.; Yu, H.; Cha, S.; An, J.; Son, Y.; Khamzina, A.; et al. Identifying potential vegetation establishment areas on the dried Aral Sea floor using satellite images. Land Degrad. Dev. 2020, 31, 2749–2762. [Google Scholar] [CrossRef]
- Yang, J.; Chang, J.; Wang, Y.; Li, Y.; Hu, H.; Chen, Y.; Huang, Q.; Yao, J. Comprehensive drought characteristics analysis based on a nonlinear multivariate drought index. J. Hydrol. 2018, 557, 651–667. [Google Scholar] [CrossRef]
- Zhang, S.; Yang, P.; Xia, J.; Qi, K.; Wang, W.; Cai, W.; Chen, N. Research and analysis of ecological environment quality in the Middle Reaches of the Yangtze River Basin between 2000 and 2019. Remote Sens. 2021, 13, 4475. [Google Scholar] [CrossRef]
- Wang, J.; Liu, D.; Ma, J.; Cheng, Y.; Wang, L. Development of a large-scale remote sensing ecological index in arid areas and its application in the Aral Sea Basin. J. Arid Land 2021, 13, 40–55. [Google Scholar] [CrossRef]
- Chiabai, A.; Quiroga, S.; Martinez-Juarez, P.; Higgins, S.; Taylor, T. The nexus between climate change, ecosystem services and human health: Towards a conceptual framework. Sci. Total Environ. 2018, 635, 1191–1204. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Shang, J.; Ali, R.; Rehman, R.U. The coupling coordinated relationship between new-type urbanization, eco-environment and its driving mechanism: A case of Guanzhong, China. Front. Environ. Sci. 2021, 9, 638891. [Google Scholar] [CrossRef]
- Fu, S.; Zhuo, H.; Song, H.; Wang, J.; Ren, L. Examination of a coupling coordination relationship between urbanization and the eco-environment: A case study in Qingdao, China. Environ. Sci. Pollut. Res. 2020, 27, 23981–23993. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Cabral-Pinto, M.; Kumar, A.; Kumar, M.; Dinis, P.A. Estimation of risk to the eco-environment and human health of using heavy metals in the Uttarakhand Himalaya, India. Appl. Sci. 2020, 10, 7078. [Google Scholar] [CrossRef]
- Hu, X.; Xu, H. A new remote sensing index for assessing the spatial heterogeneity in urban ecological quality: A case from Fuzhou City, China. Ecol. Indic. 2018, 89, 11–21. [Google Scholar] [CrossRef]
- Xu, H.; Wang, Y.; Guan, H.; Shi, T.; Hu, X. Detecting ecological changes with a remote sensing based ecological index (RSEI) produced time series and change vector analysis. Remote Sens. 2019, 11, 2345. [Google Scholar] [CrossRef]
- Zhu, X.; Wang, X.; Yan, D.; Liu, Z.; Zhou, Y. Analysis of remotely-sensed ecological indexes’ influence on urban thermal environment dynamic using an integrated ecological index: A case study of Xi’an, China. Int. J. Remote Sens. 2019, 40, 3421–3447. [Google Scholar] [CrossRef]
- Li, J.; Gong, J.; Guldmann, J.M.; Yang, J. Assessment of urban ecological quality and spatial heterogeneity based on remote sensing: A case study of the rapid urbanization of Wuhan City. Remote Sens. 2021, 13, 4440. [Google Scholar] [CrossRef]
- Liao, W.; Jiang, W. Evaluation of the spatiotemporal variations in the eco-environmental quality in China based on the remote sensing ecological index. Remote Sens. 2020, 12, 2462. [Google Scholar] [CrossRef]
- Xu, H.; Wang, M.; Shi, T.; Guan, H.; Fang, C.; Lin, Z. Prediction of ecological effects of potential population and impervious surface increases using a remote sensing based ecological index (RSEI). Ecol. Indic. 2018, 93, 730–740. [Google Scholar] [CrossRef]
- Zhu, D.; Chen, T.; Wang, Z.; Niu, R. Detecting ecological spatial-temporal changes by remote sensing ecological index with local adaptability. J. Environ. Manag. 2021, 299, 113655. [Google Scholar] [CrossRef] [PubMed]
- Jia, H.; Yan, C.; Xing, X. Evaluation of Eco-Environmental Quality in Qaidam Basin Based on the Ecological Index (MRSEI) and GEE. Remote Sens. 2021, 13, 4543. [Google Scholar] [CrossRef]
- Xiong, Y.; Xu, W.; Lu, N.; Huang, S.; Wu, C.; Wang, L.; Dai, F.; Kou, W. Assessment of spatial–temporal changes of ecological environment quality based on RSEI and GEE: A case study in Erhai Lake Basin, Yunnan province, China. Ecol. Indic. 2021, 125, 107518. [Google Scholar] [CrossRef]
- Ariken, M.; Zhang, F.; Liu, K.; Fang, C.; Kung, H.T. Coupling coordination analysis of urbanization and eco-environment in Yanqi Basin based on multi-source remote sensing data. Ecol. Indic. 2020, 114, 106331. [Google Scholar] [CrossRef]
- Firozjaei, M.K.; Kiavarz, M.; Homaee, M.; Arsanjani, J.J.; Alavipanah, S.K. A novel method to quantify urban surface ecological poorness zone: A case study of several European cities. Sci. Total Environ. 2021, 757, 143755. [Google Scholar] [CrossRef]
- Musse, M.A.; Barona, D.A.; Rodriguez, L.M.S. Urban environmental quality assessment using remote sensing and census data. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 95–108. [Google Scholar] [CrossRef]
- Wen, X.; Ming, Y.; Gao, Y.; Hu, X. Dynamic monitoring and analysis of ecological quality of pingtan comprehensive experimental zone, a new type of sea island city, based on RSEI. Sustainability 2019, 12, 21. [Google Scholar] [CrossRef]
- Feng, S.; Fan, F. Developing an Enhanced Ecological Evaluation Index (EEEI) Based on Remotely Sensed Data and Assessing Spatiotemporal Ecological Quality in Guangdong–Hong Kong–Macau Greater Bay Area, China. Remote Sens. 2022, 14, 2852. [Google Scholar] [CrossRef]
- Sun, R.; Wu, Z.; Chen, B.; Yang, C.; Qi, D.; Lan, G.; Fraedrich, K. Effects of land-use change on eco-environmental quality in Hainan Island, China. Ecol. Indic. 2020, 109, 105777. [Google Scholar] [CrossRef]
- Xie, Z.; Li, X.; Jiang, D.; Lin, S.; Yang, B.; Chen, S. Threshold of island anthropogenic disturbance based on ecological vulnerability Assessment—A case study of Zhujiajian Island. Ocean Coast. Manag. 2019, 167, 127–136. [Google Scholar] [CrossRef]
- Chen, C.; Bu, J.; Zhang, Y.; Zhuang, Y.; Chu, Y.; Hu, J.; Guo, B. The application of the tasseled cap transformation and feature knowledge for the extraction of coastline information from remote sensing images. Adv. Space Res. 2019, 64, 1780–1791. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Liao, W.; Sui, X.; Wang, L.; Chen, J.; Chu, Y. Dynamic monitoring and analysis of land-use and land-cover change using Landsat multitemporal data in the Zhoushan Archipelago, China. IEEE Access 2020, 8, 210360–210369. [Google Scholar] [CrossRef]
- Wang, L.; Chen, C.; Xie, F.; Hu, Z.; Zhang, Z.; Chen, H.; He, X.; Chu, Y. Estimation of the value of regional ecosystem services of an archipelago using satellite remote sensing technology: A case study of Zhoushan Archipelago, China. Int. J. Appl. Earth Obs. Geoinf. 2021, 105, 102616. [Google Scholar] [CrossRef]
- Chen, C.; He, X.; Lu, Y.; Chu, Y. Application of Landsat time-series data in island ecological environment monitoring: A case study of Zhoushan Islands, China. J. Coast. Res. 2020, 108, 193–199. [Google Scholar] [CrossRef]
- Yu, X.; Dong, Y. Local practice of marine protected areas legislation in China: The case of Zhoushan. Mar. Policy 2022, 141, 105084. [Google Scholar] [CrossRef]
- Chen, C.; Chen, H.; Liang, J.; Huang, W.; Xu, W.; Li, B.; Wang, J. Extraction of Water Body Information from Remote Sensing Imagery While Considering Greenness and Wetness Based on Tasseled Cap Transformation. Remote Sens. 2022, 14, 3001. [Google Scholar] [CrossRef]
- Chen, C.; Fu, J.; Zhang, S.; Zhao, X. Coastline information extraction based on the tasseled cap transformation of Landsat-8 OLI images. Estuar. Coast. Shelf Sci. 2019, 217, 281–291. [Google Scholar] [CrossRef]
- Mostafiz, C.; Chang, N.B. Tasseled cap transformation for assessing hurricane landfall impact on a coastal watershed. Int. J. Appl. Earth Obs. Geoinf. 2018, 73, 736–745. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, C.; Li, Q.; Liu, H.; Gao, W.; Shi, T.; Liu, X.; Wu, G. Rapid urbanization and policy variation greatly drive ecological quality evolution in Guangdong-Hong Kong-Macau Greater Bay Area of China: A remote sensing perspective. Ecol. Indic. 2020, 115, 106373. [Google Scholar] [CrossRef]
- Sekertekin, A.; Bonafoni, S. Land surface temperature retrieval from Landsat 5, 7, and 8 over rural areas: Assessment of different retrieval algorithms and emissivity models and toolbox implementation. Remote Sens. 2020, 12, 294. [Google Scholar] [CrossRef]
- Cristóbal, J.; Jiménez-Muñoz, J.C.; Prakash, A.; Mattar, C.; Skoković, D.; Sobrino, J.A. An improved single-channel method to retrieve land surface temperature from the Landsat-8 thermal band. Remote Sens. 2018, 10, 431. [Google Scholar] [CrossRef]
- Sobrino, J.A.; Jiménez-Muñoz, J.C.; Paolini, L. Land surface temperature retrieval from LANDSAT TM 5. Remote Sens. Environ. 2004, 90, 434–440. [Google Scholar] [CrossRef]
- Sekertekin, A.; Bonafoni, S. Sensitivity analysis and validation of daytime and nighttime land surface temperature retrievals from Landsat 8 using different algorithms and emissivity models. Remote Sens. 2020, 12, 2776. [Google Scholar] [CrossRef]
- Hasan, B.M.S.; Abdulazeez, A.M. A review of principal component analysis algorithm for dimensionality reduction. J. Soft Comput. Data Min. 2021, 2, 20–30. [Google Scholar]
- Uddin, N.; Islam, A.S.; Bala, S.K.; Islam, G.T.; Adhikary, S.; Saha, D.; Haque, S.; Fahad, G.R.; Akter, R. Mapping of climate vulnerability of the coastal region of Bangladesh using principal component analysis. Appl. Geogr. 2019, 102, 47–57. [Google Scholar] [CrossRef]
- Fu, B.; Li, S.; Lao, Z.; Yuan, B.; Liang, Y.; He, W.; Sun, W.; He, H. Multi-sensor and multi-platform retrieval of water chlorophyll a concentration in karst wetlands using transfer learning frameworks with ASD, UAV, and Planet CubeSate reflectance data. Sci. Total Environ. 2023, 901, 165963. [Google Scholar] [CrossRef] [PubMed]
- Yang, G.; Huang, K.; Sun, W.; Meng, X.; Mao, D.; Ge, Y. Enhanced mangrove vegetation index based on hyperspectral images for mapping mangrove. ISPRS J. Photogramm. Remote Sens. 2022, 189, 236–254. [Google Scholar] [CrossRef]
- Ziyu, S.; Junbang, W. The 30m-NDVI-Based Alpine Grassland Changes and Climate Impacts in the Three-River Headwaters Region on the Qinghai-Tibet Plateau from 1990 to 2018. J. Resour. Ecol. 2022, 13, 186–195. [Google Scholar] [CrossRef]
- Bagheri, R.; Ranjbar-Fordoei, A.; Mousavi, S.H.; Tahmasebi, P. Assessment of MODIS-Derived NDVI and EVI for Different Vegetation Types in Arid Region: A Study in Sirjan Plain Catchment of Kerman Province, Iran. J. Rangel. Sci. 2021, 11, 54–75. [Google Scholar]
- Gao, X.; Huang, X.; Lo, K.; Dang, Q.; Wen, R. Vegetation responses to climate change in the Qilian Mountain Nature Reserve, Northwest China. Glob. Ecol. Conserv. 2021, 28, e01698. [Google Scholar] [CrossRef]
- Prasai, R. Using Google Earth Engine for the Complete Pipeline of Temporal Analysis of NDVI in Chitwan National Park of Nepal. 2022. Available online: https://www.researchsquare.com/article/rs-1633994/v3 (accessed on 9 July 2023).
- Tran, T.V.; Tran, D.X.; Nguyen, H.; Latorre-Carmona, P.; Myint, S.W. Characterising spatiotemporal vegetation variations using LANDSAT time-series and Hurst exponent index in the Mekong River Delta. Land Degrad. Dev. 2021, 32, 3507–3523. [Google Scholar] [CrossRef]
- Zhang, Y.; He, Y.; Li, Y.; Jia, L. Spatiotemporal variation and driving forces of NDVI from 1982 to 2015 in the Qinba Mountains, China. Environ. Sci. Pollut. Res. 2022, 29, 52277–52288. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Cheng, C.; Yang, X.; Yan, L.; Lai, Y. Analysis of the efficiency of Hong Kong REITs market based on Hurst exponent. Phys. A Stat. Mech. Its Appl. 2019, 534, 122035. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Chen, J.; Liu, Z.; Liu, Y.; Chu, Y. A seamless economical feature extraction method using Landsat time series data. Earth Sci. Inform. 2021, 14, 321–332. [Google Scholar] [CrossRef]
- Chen, H.; Chen, C.; Zhang, Z.; Lu, C.; Wang, L.; He, X.; Chu, Y.; Chen, J. Changes of the spatial and temporal characteristics of land-use landscape patterns using multi-temporal Landsat satellite data: A case study of Zhoushan Island, China. Ocean Coast. Manag. 2021, 213, 105842. [Google Scholar] [CrossRef]
- Chen, C.; Wang, L.; Zhang, Z.; Lu, C.; Chen, H.; Chen, J. Construction and application of quality evaluation index system for remote-sensing image fusion. J. Appl. Remote Sens. 2021, 16, 012006. [Google Scholar] [CrossRef]
- Chen, C.; Liang, J.; Xie, F.; Hu, Z.; Sun, W.; Yang, G.; Yu, J.; Chen, L.; Wang, L.; Wang, L.; et al. Temporal and spatial variation of coastline using remote sensing images for Zhoushan archipelago, China. Int. J. Appl. Earth Obs. Geoinf. 2022, 107, 102711. [Google Scholar] [CrossRef]
- Du, Y.; Lin, H.; He, S.; Wang, D.; Wang, Y.P.; Zhang, J. Tide-Induced Variability and Mechanisms of Surface Suspended Sediment in the Zhoushan Archipelago along the Southeastern Coast of China Based on GOCI Data. Remote Sens. 2021, 13, 929. [Google Scholar] [CrossRef]
- Bennett, J.; French, C.; McLaughlin, R.; Stoddart, S.; Malone, C. From fragility to sustainability: Geoarchaeological investigations within the Maltese Archipelago. Quat. Int. 2022, 635, 20–30. [Google Scholar] [CrossRef]
- Wulder, M.A.; Loveland, T.R.; Roy, D.P.; Crawford, C.J.; Masek, J.G.; Woodcock, C.E.; Allen, R.G.; Anderson, M.C.; Belward, A.S.; Cohen, W.B.; et al. Current status of Landsat program, science, and applications. Remote Sens. Environ. 2019, 225, 127–147. [Google Scholar] [CrossRef]
- Zhao, C.; Jia, M.; Wang, Z.; Mao, D.; Wang, Y. Toward a better understanding of coastal salt marsh mapping: A case from China using dual-temporal images. Remote Sens. Environ. 2023, 295, 113664. [Google Scholar] [CrossRef]
- Young, N.E.; Anderson, R.S.; Chignell, S.M.; Vorster, A.G.; Lawrence, R.; Evangelista, P.H. A survival guide to Landsat preprocessing. Ecology 2017, 98, 920–932. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Dong, R.; Fu, H.; Wang, J.; Yu, L.; Gong, P. Integrating Google Earth imagery with Landsat data to improve 30-m resolution land cover mapping. Remote Sens. Environ. 2020, 237, 111563. [Google Scholar] [CrossRef]
- Li, H.; Mao, D.; Li, X.; Wang, Z.; Jia, M.; Huang, X.; Xiao, Y.; Xiang, H. Understanding the contrasting effects of policy-driven ecosystem conservation projects in northeastern China. Ecol. Indic. 2022, 135, 108578. [Google Scholar] [CrossRef]
- Hemati, M.; Hasanlou, M.; Mahdianpari, M.; Mohammadimanesh, F. A systematic review of landsat data for change detection applications: 50 years of monitoring the earth. Remote Sens. 2021, 13, 2869. [Google Scholar] [CrossRef]
- Montanaro, M.; McCorkel, J.; Tveekrem, J.; Stauder, J.; Mentzell, E.; Lunsford, A.; Hair, J.; Reuter, D. Landsat 9 Thermal Infrared Sensor 2 (TIRS-2) Stray Light Mitigation and Assessment. IEEE Trans. Geosci. Remote Sens. 2022, 60, 5002408. [Google Scholar] [CrossRef]
- Pearlman, A.; Efremova, B.; Montanaro, M.; Lunsford, A.; Reuter, D.; McCorkel, J. Landsat 9 Thermal Infrared Sensor 2 On-Orbit Calibration and Initial Performance. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1002608. [Google Scholar] [CrossRef]
- Lulla, K.; Nellis, M.D.; Rundquist, B.; Srivastava, P.K.; Szabo, S. Mission to earth: LANDSAT 9 will continue to view the world. Geocarto Int. 2021, 36, 2261–2263. [Google Scholar] [CrossRef]
- Showstack, R. Landsat 9 Satellite Continues Half-Century of Earth Observations: Eyes in the sky serve as a valuable tool for stewardship. BioScience 2022, 72, 226–232. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, D.; Wang, X.; Zhang, Z.; Nawaz, Z. Testing accuracy of land cover classification algorithms in the qilian mountains based on gee cloud platform. Remote Sens. 2021, 13, 5064. [Google Scholar] [CrossRef]
- Huang, S.; Tang, L.; Hupy, J.P.; Wang, Y.; Shao, G. A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. J. For. Res. 2021, 32, 1–6. [Google Scholar] [CrossRef]
- Tong, S.; Zhang, J.; Bao, Y.; Lai, Q.; Lian, X.; Li, N.; Bao, Y. Analyzing vegetation dynamic trend on the Mongolian Plateau based on the Hurst exponent and influencing factors from 1982–2013. J. Geogr. Sci. 2018, 28, 595–610. [Google Scholar] [CrossRef]
- Asfaw, A.; Simane, B.; Hassen, A.; Bantider, A. Variability and time series trend analysis of rainfall and temperature in northcentral Ethiopia: A case study in Woleka sub-basin. Weather Clim. Extrem. 2018, 19, 29–41. [Google Scholar] [CrossRef]
- Jenks, G.F.; Caspall, F.C. Error on choroplethic maps: Definition, measurement, reduction. Ann. Assoc. Am. Geogr. 1971, 61, 217–244. [Google Scholar] [CrossRef]
- Temitope Yekeen, S.; Balogun, A.L. Advances in remote sensing technology, machine learning and deep learning for marine oil spill detection, prediction and vulnerability assessment. Remote Sens. 2020, 12, 3416. [Google Scholar] [CrossRef]
- Yasir, M.; Jianhua, W.; Shanwei, L.; Sheng, H.; Mingming, X.; Hossain, M. Coupling of deep learning and remote sensing: A comprehensive systematic literature review. Int. J. Remote Sens. 2023, 44, 157–193. [Google Scholar] [CrossRef]
- Hou, T.; Sun, W.; Chen, C.; Yang, G.; Meng, X.; Peng, J. Marine floating raft aquaculture extraction of hyperspectral remote sensing images based decision tree algorithm. Int. J. Appl. Earth Obs. Geoinf. 2022, 111, 102846. [Google Scholar] [CrossRef]
- Avtar, R.; Komolafe, A.A.; Kouser, A.; Singh, D.; Yunus, A.P.; Dou, J.; Kumar, P.; Gupta, R.D.; Johnson, B.A.; Minh, H.V.; et al. Assessing sustainable development prospects through remote sensing: A review. Remote Sens. Appl. Soc. Environ. 2020, 20, 100402. [Google Scholar] [CrossRef]
- Sun, W.; Liu, K.; Ren, G.; Liu, W.; Yang, G.; Meng, X.; Peng, J. A simple and effective spectral-spatial method for mapping large-scale coastal wetlands using China ZY1-02D satellite hyperspectral images. Int. J. Appl. Earth Obs. Geoinf. 2021, 104, 102572. [Google Scholar] [CrossRef]
- Jia, M.; Wang, Z.; Mao, D.; Ren, C.; Wang, C.; Wang, Y. Rapid, robust, and automated mapping of tidal flats in China using time series Sentinel-2 images and Google Earth Engine. Remote Sens. Environ. 2021, 255, 112285. [Google Scholar] [CrossRef]
- Nietupski, T.C.; Kennedy, R.E.; Temesgen, H.; Kerns, B.K. Spatiotemporal image fusion in Google Earth Engine for annual estimates of land surface phenology in a heterogenous landscape. Int. J. Appl. Earth Obs. Geoinf. 2021, 99, 102323. [Google Scholar] [CrossRef]
- Yang, X.; Qiu, S.; Zhu, Z.; Rittenhouse, C.; Riordan, D.; Cullerton, M. Mapping understory plant communities in deciduous forests from Sentinel-2 time series. Remote Sens. Environ. 2023, 293, 113601. [Google Scholar] [CrossRef]
- Yang, X.; Zhu, Z.; Qiu, S.; Kroeger, K.D.; Zhu, Z.; Covington, S. Detection and characterization of coastal tidal wetland change in the northeastern US using Landsat time series. Remote Sens. Environ. 2022, 276, 113047. [Google Scholar] [CrossRef]
- Wang, Z.; Ma, Y.; Zhang, Y.; Shang, J. Review of Remote Sensing Applications in Grassland Monitoring. Remote Sens. 2022, 14, 2903. [Google Scholar] [CrossRef]
- Abowarda, A.S.; Bai, L.; Zhang, C.; Long, D.; Li, X.; Huang, Q.; Sun, Z. Generating surface soil moisture at 30 m spatial resolution using both data fusion and machine learning toward better water resources management at the field scale. Remote Sens. Environ. 2021, 255, 112301. [Google Scholar] [CrossRef]
- Asokan, A.; Anitha, J.; Patrut, B.; Danciulescu, D.; Hemanth, D.J. Deep feature extraction and feature fusion for bi-temporal satellite image classification. Comput. Mater. Contin. 2021, 66, 373–388. [Google Scholar] [CrossRef]
- Chen, S.; Woodcock, C.E.; Bullock, E.L.; Arévalo, P.; Torchinava, P.; Peng, S.; Olofsson, P. Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis. Remote Sens. Environ. 2021, 265, 112648. [Google Scholar] [CrossRef]
- Dong, T.; Liu, J.; Shang, J.; Qian, B.; Ma, B.; Kovacs, J.M.; Walters, D.; Jiao, X.; Geng, X.; Shi, Y. Assessment of red-edge vegetation indices for crop leaf area index estimation. Remote Sens. Environ. 2019, 222, 133–143. [Google Scholar] [CrossRef]
- Liang, J.; Chen, C.; Song, Y.; Sun, W.; Yang, G. Long-term mapping of land use and cover changes using Landsat images on the Google Earth Engine Cloud Platform in bay area-A case study of Hangzhou Bay, China. Sustain. Horiz. 2023, 7, 100061. [Google Scholar] [CrossRef]
- Chen, C.; Chen, Y.; Jin, H.; Chen, L.; Liu, Z.; Sun, H.; Hong, J.; Wang, H.; Fang, S.; Zhang, X. 3D model construction and ecological environment investigation on a regional scale using UAV remote sensing. Intell. Autom. Soft Comput 2023, 37, 1655–1672. [Google Scholar] [CrossRef]
- Fan, X.; Nie, G.; Xia, C.; Zhou, J. Estimation of pixel-level seismic vulnerability of the building environment based on mid-resolution optical remote sensing images. Int. J. Appl. Earth Obs. Geoinf. 2021, 101, 102339. [Google Scholar] [CrossRef]
- Chen, J.; Yang, K.; Chen, S.; Yang, C.; Zhang, S.; He, L. Enhanced normalized difference index for impervious surface area estimation at the plateau basin scale. J. Appl. Remote Sens. 2019, 13, 016502. [Google Scholar] [CrossRef]
- Qin, W.; Liu, Y.; Wang, L.; Lin, A.; Xia, X.; Che, H.; Bilal, M.; Zhang, M. Characteristic and driving factors of aerosol optical depth over mainland China during 1980–2017. Remote Sens. 2018, 10, 1064. [Google Scholar] [CrossRef]
- Wang, Q.; Atkinson, P.M. Spatio-temporal fusion for daily Sentinel-2 images. Remote Sens. Environ. 2018, 204, 31–42. [Google Scholar] [CrossRef]
- Sun, Z.; Geng, H.; Lu, Z.; Scherer, R.; Woźniak, M. Review of road segmentation for SAR images. Remote Sens. 2021, 13, 1011. [Google Scholar] [CrossRef]
- Yasir, M.; Sheng, H.; Fan, H.; Nazir, S.; Niang, A.J.; Salauddin, M.; Khan, S. Automatic coastline extraction and changes analysis using remote sensing and GIS technology. IEEE Access 2020, 8, 180156–180170. [Google Scholar] [CrossRef]
- Duan, W.; Maskey, S.; Chaffe, P.L.; Luo, P.; He, B.; Wu, Y.; Hou, J. Recent advancement in remote sensing technology for hydrology analysis and water resources management. Remote Sens. 2021, 13, 1097. [Google Scholar] [CrossRef]
- Nandy, A.; Farkas, D.; Pepió-Tárrega, B.; Martinez-Crespiera, S.; Borràs, E.; Avignone-Rossa, C.; Di Lorenzo, M. Influence of carbon-based cathodes on biofilm composition and electrochemical performance in soil microbial fuel cells. Environ. Sci. Ecotechnol. 2023, 16, 100276. [Google Scholar] [CrossRef]
- Liu, J.; Chen, H.; Wang, Y. Multi-Source Remote Sensing Image Fusion for Ship Target Detection and Recognition. Remote Sens. 2021, 13, 4852. [Google Scholar] [CrossRef]
- Sun, W.; Chen, C.; Liu, W.; Yang, G.; Meng, X.; Wang, L.; Ren, K. Coastline extraction using remote sensing: A review. GISci. Remote Sens. 2023, 60, 2243671. [Google Scholar] [CrossRef]
Year | Satellite | Landsat Collection | Sensor | Spatial Resolution | Bands |
---|---|---|---|---|---|
1985 1990 1995 | Landsat 5 | Landsat 5 Surface Reflectance Tier 1 | Thematic Mapper | 30-meter reflective resolution 120-meter thermal resolution | Blue: 0.45–0.52 μm Green: 0.52–0.60 μm Red: 0.63–0.69 μm Near-Infrared1: 0.76–0.90 μm Near-Infrared2: 1.55–1.75 μm Thermal: 10.40–12.50 μm Mid-Infrared: 2.08–2.35 μm |
2000 | |||||
2005 | |||||
2010 | |||||
2015 | Landsat 8 | Landsat 8 Surface Reflectance Tier 1 | Operational Land Imager (OLI) | 30-meter multispectral resolution 15-meter panchromatic resolution | Coastal aerosol: 0.43–0.45 μm Blue: 0.45–0.51 μm Green: 0.53–0.59 μm Red: 0.64–0.67 μm Near-Infrared: 0.85–0.88 μm SWIR1 1.57–1.65 μm SWIR2: 2.11–2.29 μm Panchromatic: 0.50–0.68 μm Cirrus: 1.36–1.38 μm |
2020 | |||||
Thermal Infrared Sensor (TIRS) | 100-meter resolution | TIR 1: 10.6–11.19 μm TIR 2: 11.50–12.51 μm |
Year | Index | PC1 | PC2 | PC3 | PC4 |
---|---|---|---|---|---|
1985 | Eigenvalue | 0.0807 | 0.0304 | 0.0060 | 0.0017 |
Percent eigenvalue | 67.95% | 25.56% | 5.06% | 1.43% | |
1990 | Eigenvalue | 0.0698 | 0.0293 | 0.0045 | 0.0012 |
Percent eigenvalue | 66.54% | 27.97% | 4.31% | 1.18% | |
1995 | Eigenvalue | 0.0730 | 0.0297 | 0.0055 | 0.0014 |
Percent eigenvalue | 66.61% | 27.11% | 5.03% | 1.25% | |
2000 | Eigenvalue | 0.0749 | 0.0211 | 0.0044 | 0.0007 |
Percent eigenvalue | 74.10% | 20.81% | 4.37% | 0.72% | |
2005 | Eigenvalue | 0.0819 | 0.0232 | 0.0047 | 0.0007 |
Percent eigenvalue | 74.14% | 20.97% | 4.29% | 0.60% | |
2010 | Eigenvalue | 0.0627 | 0.0120 | 0.0059 | 0.0001 |
Percent eigenvalue | 77.71% | 14.84% | 7.31% | 0.15% | |
2015 | Eigenvalue | 0.0717 | 0.0059 | 0.0021 | 0.00002 |
Percent eigenvalue | 89.94% | 7.37% | 2.67% | 0.02% | |
2020 | Eigenvalue | 0.0735 | 0.0085 | 0.0012 | 0 |
Percent eigenvalue | 88.25% | 10.25% | 1.50% | 0.00% |
1985 | 1990 | 1995 | 2000 | 2005 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
Average | Std | Average | Std | Average | Std | Average | Std | Average | Std | |
NDVI | 0.5218 | 0.2774 | 0.4749 | 0.2527 | 0.4924 | 0.2629 | 0.5088 | 0.2701 | 0.5005 | 0.2843 |
WET | 0.6076 | 0.1354 | 0.5787 | 0.1404 | 0.6030 | 0.1359 | 0.6496 | 0.1069 | 0.6961 | 0.0964 |
NDBSI | 0.4811 | 0.1436 | 0.4673 | 01457 | 0.5204 | 0.1419 | 0.5394 | 0.1165 | 0.4691 | 0.1199 |
LST | 0.4197 | 0.0946 | 0.6623 | 0.0716 | 0.5943 | 0.0847 | 0.4730 | 0.0880 | 0.3779 | 0.1022 |
RSEI | 0.7719 | 0.1936 | 0.7532 | 0.1942 | 0.7657 | 0.1870 | 0.7566 | 0.1871 | 0.7293 | 0.2029 |
2010 | 2015 | 2020 | ||||||||
Average | Std | Average | Std | Average | Std | |||||
NDVI | 0.4770 | 0.2388 | 0.5841 | 0.2708 | 0.5676 | 0.2740 | ||||
WET | 0.8973 | 0.0301 | 0.6130 | 0.0584 | 0.6839 | 0.0439 | ||||
NDBSI | 0.4083 | 0.1205 | 0.2727 | 0.0204 | 0.8856 | 0.0012 | ||||
LST | 0.5452 | 0.1069 | 0.5048 | 0.0790 | 0.5605 | 0.1000 | ||||
RSEI | 0.6682 | 0.2025 | 0.6250 | 0.2712 | 0.5817 | 0.2583 |
RSEI | 1985 | 1990 | 1995 | |||
---|---|---|---|---|---|---|
Area (km2) | Scale (%) | Area (km2) | Scale (%) | Area (km2) | Scale (%) | |
Poor (0–0.2] | 47.9052 km2 | 3.80% | 39.1488 km2 | 3.11% | 33.2631 km2 | 2.64% |
Fair (0.2–0.4] | 48.3586 km2 | 3.84% | 76.9924 km2 | 6.11% | 64.4624 km2 | 5.12% |
Moderate (0.4–0.6] | 106.2847 km2 | 8.44% | 91.3340 km2 | 7.25% | 104.6577 km2 | 8.31% |
Good (0.6–0.8] | 207.3997 km2 | 16.46% | 314.6015 km2 | 24.98% | 266.0274 km2 | 21.12% |
Excellent (0.8–1] | 850.0737 km2 | 67.46% | 737.2577 km2 | 58.54% | 791.4330 km2 | 62.82% |
RSEI | 2000 | 2005 | 2010 | |||
Area (km2) | Scale (%) | Area (km2) | Scale (%) | Area (km2) | Scale (%) | |
Poor (0–0.2] | 9.9180 km2 | 0.79% | 9.9754 km2 | 0.79% | 19.8861 km2 | 1.58% |
Fair (0.2–0.4] | 86.0458 km2 | 6.83% | 118.9365 km2 | 9.44% | 173.2290 km2 | 13.75% |
Moderate (0.4–0.6] | 149.1874 km2 | 11.84% | 185.6070 km2 | 14.73% | 204.6716 km2 | 16.24% |
Good (0.6–0.8] | 306.8136 km2 | 24.36% | 325.6663 km2 | 25.85% | 424.9797 km2 | 33.73% |
Excellent (0.8–1] | 707.5451 km2 | 56.18% | 619.8297 km2 | 49.19% | 437.2329 km2 | 34.70% |
RSEI | 2015 | 2020 | ||||
Area (km2) | Scale (%) | Area (km2) | Scale (%) | |||
Poor (0–0.2] | 148.2637 km2 | 11.78% | 157.0072 km2 | 12.33% | ||
Fair (0.2–0.4] | 167.6234 km2 | 13.31% | 195.3946 km2 | 15.34% | ||
Moderate (0.4–0.6] | 174.2904 km2 | 13.84% | 212.3815 km2 | 16.68% | ||
Good (0.6–0.8] | 253.8551 km2 | 20.16% | 344.0534 km2 | 27.02% | ||
Excellent (0.8–1] | 514.9355 km2 | 40.90% | 364.5735 km2 | 28.63% |
SRSEI | Z Value | Trend of RSEI | Percentage |
---|---|---|---|
SRSEI > 0.0005 | Z > 1.96 | Significantly improved | 0.83 |
SRSEI > 0.0005 | −1.96 ≤ Z ≤ 1.96 | Slightly improved | 11.77 |
−0.0005 ≤ SRSEI ≤ 0.0005 | −1.96 ≤ Z ≤ 1.96 | Stable | 3.05 |
SRSEI < −0.0005 | −1.96 ≤ Z ≤ 1.96 | Slightly degraded | 50.25 |
SRSEI < −0.0005 | Z < −1.96 | Severely degraded | 34.10 |
SRSEI | Hurst Value | Sustainability of the Change in the RSEI | Percentage |
---|---|---|---|
SRSEI > 0.0005 | 0.5 < H < 1 | Improved sustainability | 10.56 |
−0.0005 ≤ SRSEI ≤ 0.0005 | 0.5 < H < 1 | Stable sustainability | 2.65 |
SRSEI < −0.0005 | 0.5 < H < 1 | Degraded sustainability | 73.40 |
SRSEI > 0.0005 | 0 < H < 0.5 | Unsustainability | 13.39 |
−0.0005 ≤ SRSEI ≤ 0.0005 | |||
SRSEI < −0.0005 |
CV Value | Temporal Stability | Percentage (%) |
---|---|---|
(0, 0.10] | Very stable | 49.40% |
(0.10, 0.21] | Relatively stable | 19.25% |
(0.21, 0.33] | Slightly variable | 15.61% |
(0.33, 0.48] | Moderately variable | 11.22% |
(0.48, 1.0] | Highly variable | 4.52% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.; Wang, L.; Yang, G.; Sun, W.; Song, Y. Mapping of Ecological Environment Based on Google Earth Engine Cloud Computing Platform and Landsat Long-Term Data: A Case Study of the Zhoushan Archipelago. Remote Sens. 2023, 15, 4072. https://doi.org/10.3390/rs15164072
Chen C, Wang L, Yang G, Sun W, Song Y. Mapping of Ecological Environment Based on Google Earth Engine Cloud Computing Platform and Landsat Long-Term Data: A Case Study of the Zhoushan Archipelago. Remote Sensing. 2023; 15(16):4072. https://doi.org/10.3390/rs15164072
Chicago/Turabian StyleChen, Chao, Liyan Wang, Gang Yang, Weiwei Sun, and Yongze Song. 2023. "Mapping of Ecological Environment Based on Google Earth Engine Cloud Computing Platform and Landsat Long-Term Data: A Case Study of the Zhoushan Archipelago" Remote Sensing 15, no. 16: 4072. https://doi.org/10.3390/rs15164072
APA StyleChen, C., Wang, L., Yang, G., Sun, W., & Song, Y. (2023). Mapping of Ecological Environment Based on Google Earth Engine Cloud Computing Platform and Landsat Long-Term Data: A Case Study of the Zhoushan Archipelago. Remote Sensing, 15(16), 4072. https://doi.org/10.3390/rs15164072