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Abstract: In recent years, with the rapid advancement of China’s urbanization, the contradiction
between urban development and the ecological environment has become increasingly prominent,
and the urban ecological system now faces severe challenges. In this study, we proposed an eco-
logical index-based approach to monitor and evaluate the ecological environment using a Google
Earth Engine cloud-based platform and Landsat time series. Firstly, a long-term series of Landsat
images was obtained to construct and calculate the remote sensing-based ecological index (RSEI).
Then, the Theil–Sen median estimation and the Mann–Kendall test were used to evaluate the trend
and significance of the RSEI time series and combined with the Hurst index to predict the future
development trend of the ecological environment in the study area. Finally, the coefficient of variation
method was used to determine the temporal stability of the ecological environment. Taking Zhoushan
Archipelago, China, as the study area, we mapped the distribution of the ecological environment
using a spatial resolution of 30 m and evaluated the ecological environment from 1985 to 2020. The
results show that (1) from 1985 to 2020, the average RSEI in the Zhoushan Archipelago decreased
from 0.7719 to 0.5817, increasing at a rate of −24.64%. (2) The changes in the areas of each level of
ecological environmental quality show that the ecological environment in the Zhoushan Archipelago
generally exhibited a decreasing trend. During the study period, the proportion of the areas with
excellent ecological environmental quality decreased by 38.83%, while the proportion of areas with
poor and relatively poor ecological environmental quality increased by 20.03%. (3) Based on the
overall change trend, the degradation in the ecological environment in the Zhoushan Archipelago
was greater than the improvement, with the degradation area accounting for 84.35% of the total area,
the improvement area accounting for 12.61% of the total area, and the stable area accounting for
3.05% of the total area. (4) From the perspective of the sustainability of the changes, in 86.61% of the
study area, the RSEI exhibited positive sustainability, indicating that the sustainability of the RSEI
was relatively strong. (5) The coefficient of variation in the RSEI was concentrated in the range of
0–0.40, having an average value of 0.1627 and a standard deviation of 0.1467, indicating that the RSEI
values in the Zhoushan Archipelago during the study period were concentrated, the interannual
fluctuations of the data were small, and the time series was relatively stable. The results of this study
provide theoretical methods and a decision-making basis for the dynamic monitoring and regional
governance of the ecological environment in island areas.

Keywords: ecological environment; ecological index; Google Earth Engine; Theil–Sen median trend
analysis; Mann–Kendall test; Hurst index; Zhoushan Archipelago
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1. Introduction

The ecological environment refers to the sum of the various ecological factors that
affect human production, life, and ecosystem development, and it is closely related to social
sustainable development [1–3]. In recent years, human activities have had an increasingly
strong impact on the global ecological environment, leading to a continuous decline in the
ability of the ecosystem to recover and self-purify, as well as the destruction of the environ-
ment in which humans depend on for survival [4–6]. With the transformation of China’s
economy from high-speed development to high-quality development and urbanization
in the new era, China is attaching increasing importance to the ecological environment’s
protection [7,8]. Therefore, rapid and accurate monitoring and evaluation of the ecological
environment can provide a reliable scientific basis for regional environmental governance
and sustainable development [9–11].

Before the rise of remote sensing technology, monitoring the ecological environment
mainly relied on traditional methods such as fixed-point monitoring and on-site investiga-
tion [12]. These monitoring methods can obtain real-time data for a region with targeted
accuracy, but they are expensive, inefficient, lack long-term observational data, and have
difficulty obtaining data for a large area and a long-term series of ecological environment
monitoring [13,14]. Compared to traditional methods, satellite-based remote sensing tech-
nology can provide large-area, long-term, and continuous observations, thereby quickly
and efficiently obtaining the spectral characteristics of the spatially distributed land features;
thus, it has become an important means of monitoring changes in land surface morphology
and human activity impacts.

Numerous scholars have constructed assessment models and selected evaluation
indicators derived from different perspectives based on mathematical models to conduct
ecological environment evaluations [15–19]. The most common evaluation methods include
comprehensive evaluation, index evaluation, fuzzy evaluation, artificial neural networks,
and matter–element analysis evaluation [20–26]. Among these options, index evaluation
methods have been the most extensively applied and can be mainly divided into the three
categories outlined below [27–30].

The first category is the single-index evaluation method, which evaluates a specific
ecosystem, such as forest, urban, and arid areas, using a single remote sensing index, such
as normalized difference vegetation index (NDVI) [31], vegetation cover fraction (PVF) [32],
net primary productivity (NPP) [33], land surface temperature (LST) [34], normalized
difference impervious surface index (NDISI) [35], normalized multi-band drought index
(NMDI) [36], and normalized difference drought index (NDDI) [37,38]. Although this
method is simple and easy to implement, the ecological environment is a comprehensive
and dynamic system, and a single indicator cannot fully reflect its changes. Therefore,
using a single remote sensing index to characterize the state of the ecological environment
is a one-sided approach [39]. The second category is based on the Ecological Environment
Condition Evaluation Technical Specification (HJ/T 192-2015) published by the Chinese
Ministry of Environmental Protection. Using this method, the ecological environment
evaluation indicator system is constructed by comprehensively considering the biological
abundance index, vegetation coverage index, water network density index, land degra-
dation index, and environmental quality index [40–42]. Most of the indicators used in
this index system are derived from annual environmental statistical data regarding the
study area, which have difficulty reflecting the spatial changes in the ecological envi-
ronment [43,44]. The third category is the remote sensing-based ecological index (RSEI)
proposed by Hanqiu Xu [45]. This index is based on four important indicators that reflect
the natural ecological environment—greenness, wetness, heat, and dryness—which are
used to construct an ecological environment evaluation model [46]. The model is based
on remote sensing data and can objectively and quickly evaluate the urban ecological
environment. It has been widely used in the evaluation of ecological environments in
various regions [47–49]. For example, Xu [50] used an improved RSEI to investigate the
land cover types and ecological conditions in the Xiongan New Area and predict the impact
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of population growth on the average ecological conditions. Zhu [51] took the Wuhan
Urban Development Zone as an example and proposed a locally adaptive RSEI (RSEILA)
based on the remote sensing-based ecological index to evaluate the ecological environment
status of the Wuhan Urban Development Zone from 2013 to 2019. This method restricts
the geographic scope of the study area by setting a window, which makes the evaluation
results more accurate. Jia [52] used the Google Earth Engine (GEE) platform to invert
a modified remote sensing-based ecological index (MRSEI) to study the changes in the
ecological environmental quality of the Qaidam Basin from 1986 to 2019. In addition,
through the assistance of meteorology and socio-economic auxiliary data, the main factors
affecting the changes in the ecological environment were explored. Xiong [53] constructed
an RSEI based on the GEE platform to study the spatiotemporal changes in the ecological
environment in the Erhai Lake area, which provided a valuable reference for the study of
the interactions between human activities and ecosystem services in a watershed system.
Firozjaei provided a new method based on the RSEI-impervious surface percentage (ISP)
feature space to comprehensively evaluate the social and economic poverty levels in Bu-
dapest and the surrounding rural areas in Europe [54,55]. Musse combined remote sensing
data and census data, referred to some indicators of the RSEI, and proposed a quantitative
method to evaluate the urban environmental quality index (UEQI) in Cali, Colombia [56].
In summary, many studies have focused on the evaluation of the ecological environments
of large- and medium-sized cities, while studies of island ecological environments are
relatively scarce [57–60]. An island is a land area surrounded by water on all sides that
is located above the water level during high tide periods [61,62]. Due to their unique
characteristics, the ecological environments of islands are extremely sensitive to the dual
impacts of high-intensity human activities and global change [63–65].

In this study, we aimed to map an ecological environment based on the Google Earth
Engine cloud computing platform and Landsat long-term data and analyze the spatial
variations and temporal evolution characteristics of the Zhoushan Archipelago’s ecological
environment from 1985 to 2020. This study can provide scientific evidence and technical
support for the dynamic monitoring of the ecological environment and the formulation of
regional sustainable development policies.

The paper is organized as follows: Section 1 gives an overview of research into the
monitoring of the ecological environment using remote sensing technology; Section 2
describes the methodology used; Section 3 discusses the study area and data sources;
Section 5 discusses three aspects: rationality, uncertainty, and prospect; and Section 6 is the
conclusion, summarizing the results and analyzing the future work.

2. Methods

In this study, the RSEI proposed by Xu [44] was utilized to conduct remote sensing
monitoring and evaluation of the ecological environment in the Zhoushan Archipelago
using the GEE cloud-based platform. Firstly, the surface reflectance Landsat data for the
period 1985–2020 were obtained using the GEE cloud-based platform, and the images
for each year from May to October were selected and synthetized, clouds and shadows
were removed, and vector cropping was conducted to obtain an image covering the entire
study area. Then, the ecological indicators of greenness, humidity, heat, and dryness were
calculated based on the NDVI, Wet, LST, and NDBSI. The results were standardized, and
principal component analysis was conducted on each index to select the first principal
component required to calculate the RSEI. A spatial distribution map of the RSEI with
a resolution of 30 m for the Zhoushan Archipelago from 1985 to 2020 was then drawn
to study the changes in the mean value of the RSEI and the conversion of the ecological
environment grades. Finally, the Theil–Sen median trend analysis, Mann–Kendall test,
and Hurst index were used to identify the spatiotemporal change characteristics of the
ecological environment of the Zhoushan Archipelago. The time-series stability of the RSEI
was tested using the coefficient of variation method. The technical route used in this study
is illustrated in Figure 1.
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Figure 1. Flowchart of the study. Figure 1. Flowchart of the study.
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2.1. Data Pre-Processing

In this study, the remote sensing data pre-processing was conducted using the GEE
platform. Firstly, the surface reflectance data from Landsat 5 for the period 1985–2010 and
Landsat 8 for 2015–2020 were selected, and images for each year from May to October
were chosen. Then, the cloud and shadow related pixels were masked using the cloud-
masking technique [66] to extract the cloud shadow and cloud cover fields from the quality
assurance (QA) band and establish a masking function. This step was taken to remove the
cloud-covered areas in each image and obtain a minimum cloud cover image dataset for
the target year that covered the entire study area. The images were further overlaid using
the median composite method, through which the median function in the GEE calculated
the median of each pixel in the image stack to generate a new image.

2.2. Calculation of Remote Sensing-Based Ecological Index
2.2.1. Calculation of Ecological Index

Xu Hanqiu [45] combined four parameters closely related to the natural ecological
environment to construct a remote sensing-based ecological index, namely greenness,
humidity, heat, and dryness. The meanings and methods of calculating of each ecological
factor used in the index are described below.

(1) Greenness index

Vegetation is an extremely important factor that reflects the quality of the ecological
environment in a region. The greenness indicator was expressed by the normalized dif-
ference vegetation index (NDVI), which could represent the growth status of plants, the
distribution of the vegetation density, and the coverage of vegetation [67]. The formula
was defined as follows:

NDVI = (ρNIR − ρR)/(ρNIR + ρR) (1)

where ρNIR is the reflectance of the near-infrared band in remote sensing data, and ρR
is the reflectance of the infrared band in remote sensing data. In Landsat 8 data, they
corresponded to the 5th and 4th bands, respectively. In Landsat 5 data, they corresponded
to the 4th and 3rd bands, respectively.

(2) Humidity index

The humidity can reflect the moisture content of vegetation and soil [68–70]. In this
study, the humidity component in the tasseled cap transformation was used instead of the
humidity index, being denoted as tasseled cap wet. The formulas used to calculate the
humidity index based on Landsat TM/OLI images was as follows:

WetTM = 0.0315ρB + 0.2021ρG + 0.3102ρR + 0.1594ρNIR − 0.6806ρSWIR1 − 0.6109ρSWIR2 (2)

WetOLI = 0.1511ρB + 0.1972ρG + 0.3283ρR + 0.3407ρNIR − 0.7117ρSWIR1 − 0.4559ρSWIR2 (3)

where WetTM is the humidity result obtained using the Landsat 5 satellite data, and WETOLI
is the humidity result obtained using Landsat 8 satellite data. ρB, ρG, ρR, ρNIR, ρSWR1, and
ρSWR2 are the reflectances of the blue, green, red, near-infrared, shortwave infrared 1, and
shortwave infrared 2 bands, respectively.

(3) Dryness index

Soil drying caused by developed land and bare soil can seriously harm the ecological
environment in a region. In this study, the NDBSI, which reflected the degree of soil drying,
was calculated by combining an index-based built-up index (IBI) and a normalized bare
soil index (SI) [71]. The formula used was as follows:

NDBSI = (IBI + SI)/2 (4)
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where IBI and SI are the index-based built-up index and normalized bare soil index,
respectively. The specific formulas used to calculate these indices were as follows:

IBI =

{
2ρSWIR1/(ρSWIR1 + ρNIR)−

[
ρNIR/

(
ρNIR+ρR

)
+ ρG/

(
ρSWIR1+ρG

)]}{
2ρSWIR1/(ρSWIR1 + ρNIR) +

[
ρNIR/(ρNIR + ρR) + ρG/

(
ρSWIR1+ρG

)]} (5)

SI = [(ρSWIR1 + ρR)− (ρNIR + ρB)]/[(ρSWIR1 + ρR) + (ρNIR + ρB)] (6)

where ρB, ρG, ρR, ρNIR, ρSWR1, and ρSWR2 are the reflectances of the blue, green, red, near-
infrared, shortwave infrared 1, and shortwave infrared 2 bands, respectively.

(4) Heat index

The LST is an important component of the Earth’s energy budget and an important
parameter representing the surface environment. In this study, the obtained LST was used
to represent the heat index. Regarding the Landsat series of satellites, Landsat 5 has one
thermal infrared band (band 6, 10.40–12.50 µm), and the TIRS sensor on the Landsat 8 has
two thermal infrared bands (band 10, 10.60–11.19 µm; band 11, 11.50–12.51 µm). Band
10 is located in a lower atmospheric absorption region than band 11 and has a higher
atmospheric transmission accuracy. Therefore, band 6 of Landsat 5 and band 10 of Landsat
8 were selected as the channels used to perform the LST inversion.

The statistical mono-window model (SWM) was used to invert the LST [72]. The
calculation of the land surface emissivity adopted the vegetation cover method [73], and
the fractional vegetation cover was calculated using the NDVI. The specific formulas used
to calculate the SWM were as follows:

L6 = gain× DN + bias (7)

Tb = K2/ln(K1/L6 + 1) (8)

pv = [(NDVI − NDVImin)/(NDVImax − NDVImin)]
2 (9)

ε = 0.004× pv + 0.986 (10)

LST = Tb/[1 + ((λTb)/ρ) ln(ε)]− 273.15 (11)

where L6 is the radiance-calibrated thermal infrared band reflectance, and Tb is the tem-
perature value at the sensor. DN is the gray value of the data pixel, and gain and bias are
the band gain value and bias values, respectively, which can be obtained using the image
header. K1 and K2 are calibration parameters, which can be obtained by referring to the
user manual (for Landsat 5, K1 = 607.76 W × m−2 × um−1 × sr−1 and K2 = 1260.56 K;
for Landsat 8, K1 = 774.89 W × m−2 × um−1 × sr−1 and K2 = 1321.08 K). ε is the land
surface emissivity, which was calculated by applying a threshold to the NDVI according to
Sobrino’s method [74]. pv is the fractional vegetation cover, NDVI is the normalized differ-
ence vegetation index, and NDVImin is the minimum value of the NDVI, which represents
the NDVI value of completely bare soil or areas with no vegetation cover. NDVImax is the
maximum value of the NDVI, which represents the NDVI value of pure vegetation pixels.
LST is the land surface temperature, and ρ = 1.438 × 10−2 mK. λ is the center wavelength
of the thermal infrared band, where λTM = 11.435 µm and λTIR1 = 10.900 µm [75].

2.2.2. Construction of RSEI

Using remote sensing technology to calculate the vegetation index, humidity com-
ponent, LSY, and NDBSI, which represent the greenness, humidity, heat, and dryness,
respectively, and are closely related to the surface ecological environment, the RSEI was
constructed. The specific formula used to calculate the RSEI was as follows:

RSEI = f (NDVI, Wet, LST, NDBSI) (12)



Remote Sens. 2023, 15, 4072 7 of 30

where NDVI, Wet, LST, and NDBSI represent the normalized difference vegetation index,
humidity component obtained via the tasseled cap transformation, the land surface temper-
ature, and the normalized difference bare soil index, respectively. f is the RSEI as a function
of these four indexes, and in this paper, principal component analysis (PCA) was used to
integrate these four ecological indexes.

PCA is a multidimensional data compression technique that uses orthogonally rotated
coordinate axes and linear transformations to condense information derived from multiple
variables into a few characteristic components [76]. Using this method to synthesize multi-
ple indicators can avoid the bias caused by subjective factors in the weighting process and
ensure the representativeness of the obtained principal components [77]. To avoid imbal-
ance in weights caused by non-standardized units, the ecological factors were normalized
to the range of (0–1) before performing PCA, and the formula used in normalization iwass
as follows:

NIi = (Ii − Imin)/(Imax − Imin) (13)

where NIi is the result of normalized processing of the index, and Ii, Imin, and Imax are
the values of the ith pixel of the index, the minimum value, and the maximum value,
respectively.

Based on the results of the PCA, the first component, i.e., PC1, integrated the various
ecological factors and contained information about the vast majority of the ecological
indexes, meaning that it could be used to characterize the quality of the ecological en-
vironment of the ground corresponding to the pixel. To ensure that a higher PC1 value
represented a better ecological condition, we could obtain the initial ecological index
RSEI0 [78] by subtracting PC1 from Equation (1). The formula is as follows:

RSEI0 = 1− {PC1[ f (NDVI, Wet, LST, NDBSI)]} (14)

To facilitate measurement and comparison of the indices, RSEI0 was normalized
as follows:

RSEI f = (RSEI0 − RSEI0_min)/(RSEI0_max − RSEI0_min) (15)

where RSEIf is the remote sensing-based ecological index constructed, and its value ranges
from 0 to 1. The closer the RSEI value was to 1, the better the ecological condition; the
closer the value was to 0, the worse the ecological condition [79].

2.3. Analysis of Spatiotemporal Patterns of Ecological Environment Based on RSEI
2.3.1. Analysis of Ecological Environment Grading and Conversion Based on RSEI

In this study, the RSEI was divided into five levels with an interval of 0.2 based on the
Technical Guidelines for Ecological Environment Evaluation (HJ/T 192-2015) published in
2015: poor (0–0.2], relatively poor (0.2–0.4], general (0.4–0.6], good (0.6–0.8], and excellent
(0.8–1]. The ecological environmental quality of the Zhoushan Archipelago was analyzed
at five-year intervals from 1985 to 2020. The ArcGIS raster reclassification tool was used to
classify the ecological environmental quality of the study area into five levels, creating a spa-
tial distribution map of the ecological environmental quality in the Zhoushan Archipelago.
The proportion of the areas occupied by each level of ecological environmental quality and
the total area were then calculated. Finally, two RSEI grading maps at five-year intervals
were overlain to generate the ecological environment grading transition matrix. Based on
this matrix, the ecological environment grading transition Sankey diagram was generated.

2.3.2. Analysis of Ecological Environment Change Trend

Trend analysis compared the same indicators or ratios recorded in different time
periods, directly observed their changes and magnitudes, examined their development
trends, and predicted their future development prospects [80]. In the time-series trend
analysis, the Mann–Kendall (M–K) test was combined with the Theil–Sen median trend
analysis method to analyze the change trend of the ecological environment in the study
area from 1985 to 2020.
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The Mann–Kendall test is a non-parametric statistical test method used to determine
the significance of trends. It does not require the sample to follow a certain distribution
and is not affected by a few outliers [81]. The computational formula used to perform the
Mann–Kendall test was as follows:

Set {RSEIi}, i = 1985, 1990,. . . , 2015, 2020.
The Z statistic was defined as follows:

Z =


S−1√

s(S)
, S > 0

0, S = 0
S+1√

s(S)
, S < 0

, S =
n−1

∑
j=1

n

∑
i=j+1

sgn
(

RSEI j − RSEIi
)

(16)

sgn
(

RSEI j − RSEIi
)
=


1, RSEI j − RSEIi > 0
0, RSEI j − RSEIi = 0
−1, RSEI j − RSEIi < 0

, s(S) =
n(n− 1)(2n + 5)

18
(17)

where RSEIi and RSEIj are the RSEI values of pixel i in year i and year j, respectively; n is
the length of the time series; and sgn is the sign function. The value range of the Z statistic
is the real set R. At the given significance level α, when |Z| > µ1− ∂

2
, there was a significant

change in the research sequence at level α [82]. In this paper, α was set at 0.05 to determine
the significance of the RSEI time-series trend at a confidence level of 0.05.

Theil–Sen median trend analysis is a robust non-parametric method used to calculate
trends that can reduce the influence of data outliers [83]. The Theil–Sen median trend
analysis method calculates the median of the slope of n(n − 1)/2 combinations of data. The
computational formula used was defined as follows:

SRSEI = Median
(RSEI j − RSEIi

j− i

)
, 1985 ≤ i < j ≤ 2020 (18)

when SRSEI > 0, the RSEI time series exhibited an increasing trend, and when SRSEI < 0, the
RSEI time series exhibited a decreasing trend.

2.3.3. Analysis of Ecological Environmental Change Sustainability

Sustainability analysis predicts future trends based on existing changes. In this study,
the sustainability of the ecological environment time-series change was analyzed based on
the Hurst index. The Hurst index, which is also known as the index dependency or index
long-term dependence, can quantify the relative trend of a time series. Rescaled range (R/S)
analysis was first proposed by Hurst (1951) for the analysis of hydrological data for the Nile
and has subsequently been developed. Among the many algorithms used to estimating
the Hurst index, the most famous example is the R/S method used by Mandelbrot and
Wallis based on Hurst’s hydraulic research results [84]. The R/S method is used to analyze
long-term time-series correlations and has wide applications in hydrology, economics,
climatology, geology, and geochemistry [85]. Its basic principle is as follows [86].

For a time series {RSEI(t)}, t = 1, 2, . . . , n, the mean series was defined as follows:

RSEI(τ) =
1
τ

τ

∑
t=1

RSEI(τ), τ = 1, 2, . . . , n. (19)

The formula for cumulative deviation was

X(t,τ) =
t

∑
t=1

(
RSEI(t) − RSEI(τ)

)
, 1 ≤ t ≤ τ (20)

The formula for the range sequence was

R(τ) = max1stsτX(t,τ) −min1stsτX(t,τ), τ = 1, 2, . . . , n (21)
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The formula for the standard deviation sequence was

S(τ) =

[
1
τ

τ

∑
t=1

(
RSEI(t) − RSEI(τ)

)2
] 1

2

, τ = 1, 2, . . . , n (22)

By taking the ratio of R(τ) to S(τ), we obtained

R/S = R(τ)/S(τ) (23)

R/S ∝
(τ

2

)H
(24)

The Hurst exponent, which was denoted as H, ranged from 0 to 1 and characterized the
existence of the Hurst phenomenon in a time series. The value of H was used to determine
whether the RSEI sequence was completely random or exhibited persistence based on the
following three scenarios: (1) When H > 0.5, the process exhibits sustainable properties,
that is, the future trend is consistent with the past trend, and the stronger the persistence is,
the closer H is to 1. (2) When H = 0.5, the RSEI time series is a random sequence, without
long-term correlation. (3) When H < 0.5, the time series exhibits non-sustainability, and the
stronger the non-sustainability, the closer H is to 0 [87].

2.3.4. Temporal Stability Analysis of the Ecological Environment

The coefficient of variation is the ratio of the standard deviation to the mean of the
original data, reflecting the absolute degree of dispersion of the data. A larger value indi-
cates a more dispersed data distribution and greater inter-annual fluctuations. Conversely,
a smaller value indicates a more concentrated data distribution, smaller inter-annual fluctu-
ations, and a greater temporal stability in the time series. By calculating the coefficient of
variation in the RSEI in the Zhoushan Archipelago, we determined the degree of dispersion
of the RSEI values in the study area and the stability of the long-term RSEI time series. The
calculation formula used was as follows [88]:

CV =

√
1
n

n
∑

i=1

(
RSEIi − 1

n

n
∑

i=1
RSEIi

)
1
n

n
∑

i=1
RSEIi

(25)

where CV is the coefficient of variation, n is the number of years, i is the year index, and
RSEIi is the remote sensing-based ecological index of the ith year.

3. Study Area and Data Sources
3.1. Study Area

The Zhoushan Archipelago is located on the coast of the East China Sea and bordered
by Hangzhou Bay to the west, Shanghai to the north, and Ningbo to the south (Figure 2).
It serves as a significant geographic gateway to the Yangtze River Basin and the Yangtze
River Delta [89]. Geographically, the Zhoushan Archipelago is characterized by a low
hilly landscape, with approximately 37.4% of the terrain consisting of hills, and a complex
distribution of water systems, including underdeveloped surface water systems [65]. It
has a subtropical monsoon humid climate, having a moderate climate throughout the year,
distinct seasons, warm winters, and cool summers. The average annual temperature is 16
◦C. The vegetation in the archipelago is dominated by evergreen broad-leaved forests in the
Chinese subtropical region, which primarily consist of mixed forests of broad-leaved trees
and shrubs [90]. Additionally, the archipelago is home to abundant biological resources
and plays an important role as a habitat for island-dwelling birds.
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Zhoushan City was the first prefecture-level city to be established in island form in
China, covering a total of 2085 islands, representing 20% of China’s islands [91]. Moreover
Zhoushan Island is the largest in the Zhoushan Archipelago and the third largest in the
country. It is home to 74% of the total population of Zhoushan City and serves as the admin-
istrative and economic center of the urban area located in the Zhoushan Archipelago [92].
Due to the unique geographic location of the islands, the fragile ecological environment
in the Zhoushan Archipelago is susceptible to frequent interactions between land, sea, at-
mosphere, human activities, natural disasters, intensified urbanization, and global climate
change [93].

3.2. Data Sources

In this study, Landsat series satellite images were used. The Landsat series is one
of the longest-operating optical remote sensing satellite systems and has the advantages
of a long time series, high spatial resolution, and high data availability [94,95]. Since the
1970s, a total of nine Landsat satellites have been launched, all of which have successfully
acquired a substantial amount of Earth observation data, except for Landsat 6, which
failed to launch [96,97]. The latest Landsat satellite, known as Landsat 9, was launched in
September 2021 [98,99]. It will continue to provide long-term data products, achieve the
goal of continuously monitoring land surface landscape changes in the Landsat plan, and
continue the long-term Landsat observation record [100,101]. Currently, the Landsat series
has become an important information source for the long-term monitoring of land use and
land cover changes and the ecological environments of Earth [102–104].

In this study, surface reflectance (SR) data from Landsat 5 thematic mapper (TM)
sensors for the years 1985, 1990, 1995, 2000, 2005, and 2010 and Landsat 8 operational land
imager/thermal infrared sensor (OLI/TIRS) for 2015 and 2020 were selected through the
GEE cloud-based platform. Landsat images acquired during the growing sensor (from
May to October) were selected, and we proposed annual composite images using median
values to ensure the seasonal consistency of the temporal analysis. The cloud and shadow
mask algorithm on the GEE cloud-based platform was then applied to remove clouds and
shadows from the obtained images, achieving the goal of eliminating anomalous values
and improving the image quality. The data used in this study are described in Table 1.
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Table 1. Description of data used in this study.

Year Satellite Landsat
Collection Sensor Spatial Resolution Bands

1985
1990
1995

Landsat 5 Landsat 5 Surface
Reflectance Tier 1

Thematic Mapper
30-meter reflective

resolution
120-meter thermal

resolution

Blue: 0.45–0.52 µm
Green: 0.52–0.60 µm
Red: 0.63–0.69 µm

Near-Infrared1: 0.76–0.90 µm
Near-Infrared2: 1.55–1.75 µm

Thermal: 10.40–12.50 µm
Mid-Infrared: 2.08–2.35 µm

2000
2005

2010

2015

Landsat 8 Landsat 8 Surface
Reflectance Tier 1

Operational Land
Imager (OLI)

30-meter multispectral
resolution

15-meter panchromatic
resolution

Coastal aerosol: 0.43–0.45 µm
Blue: 0.45–0.51 µm

Green: 0.53–0.59 µm
Red: 0.64–0.67 µm

Near-Infrared: 0.85–0.88 µm
SWIR1 1.57–1.65 µm
SWIR2: 2.11–2.29 µm

Panchromatic: 0.50–0.68 µm
Cirrus: 1.36–1.38 µm

2020

Thermal Infrared
Sensor (TIRS) 100-meter resolution TIR 1: 10.6–11.19 µm

TIR 2: 11.50–12.51 µm

4. Results and Analysis
4.1. RSEI Calculation for the Zhoushan Archipelago

Based on satellite remote sensing data used to characterize ecological environmental
factors, such as greenness, humidity, temperature, and dryness, the RSEI was calculated
using PCA. The results of the PCA for the study area from 1985 to 2020 are presented
in Table 2, with the analyzed indicator values of the first to fourth principal components
denoted as PC1, PC2, PC3, and PC4, respectively.

Table 2. Result of the principal component analysis.

Year Index PC1 PC2 PC3 PC4

1985
Eigenvalue 0.0807 0.0304 0.0060 0.0017

Percent eigenvalue 67.95% 25.56% 5.06% 1.43%

1990
Eigenvalue 0.0698 0.0293 0.0045 0.0012

Percent eigenvalue 66.54% 27.97% 4.31% 1.18%

1995
Eigenvalue 0.0730 0.0297 0.0055 0.0014

Percent eigenvalue 66.61% 27.11% 5.03% 1.25%

2000
Eigenvalue 0.0749 0.0211 0.0044 0.0007

Percent eigenvalue 74.10% 20.81% 4.37% 0.72%

2005
Eigenvalue 0.0819 0.0232 0.0047 0.0007

Percent eigenvalue 74.14% 20.97% 4.29% 0.60%

2010
Eigenvalue 0.0627 0.0120 0.0059 0.0001

Percent eigenvalue 77.71% 14.84% 7.31% 0.15%

2015
Eigenvalue 0.0717 0.0059 0.0021 0.00002

Percent eigenvalue 89.94% 7.37% 2.67% 0.02%

2020
Eigenvalue 0.0735 0.0085 0.0012 0

Percent eigenvalue 88.25% 10.25% 1.50% 0.00%

As can be seen in Table 2, (1) the contribution rates of the four indicators to the first
principal component exceeded 65% in all years, with values of 67.95%, 66.54%, 66.61%,
74.10%, 74.14%, 77.71%, 89.94%, and 88.25% recorded in 1985, 1990, 1995, 2000, 2005, 2010,
2015, and 2020, respectively. (2) Compared to the other components, the first principal
component concentrated over 65% of the characteristic information of each indicator
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and could integrate the information of each indicator well, representing the ecological
environmental characteristics of the region. Therefore, it was used to construct the RSEI
and characterize the ecological environmental status of the region.

Based on the calculation results of the remote sensing-based ecological index for each
year of the study period, a spatial distribution map of the RSEI with a 30-meter resolution
for the Zhoushan Archipelago from 1985 to 2020 was generated (Figure 3).
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Figure 3. Spatial distribution of RSEI in the Zhoushan Archipelago from 1985 to 2020.

As can be seen in Figure 3, the range of the remote sensing-based ecological index
values from 1985 to 2020 in the Zhoushan Archipelago was 0–1. The areas with relatively
high RSEI values were mainly located in the interior regions of the major islands in the
archipelago, while the areas with relatively low RSEI values were mainly distributed in the
eastern part of Zhoushan Island, the southwestern part of Jintang Island, the northern part
of Daishan Island, the southern part of Qushan Island, the northern and northwestern parts
of Zhujiajian, and the northwestern and eastern parts of Liuheng Island. To quantitatively
analyze the changes in the RSEI during the study period, the mean and standard deviation
of the RSEI and the four component indexes for each year were calculated, and a line
graph recording the changes in the remote sensing-based ecological index in the Zhoushan
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Archipelago from 1985 to 2020 was created. The results are presented in Table 3 and
Figure 4.

Table 3. Mean values of the normalized ecological environment factors of the Zhoushan Archipelago.

1985 1990 1995 2000 2005

Average Std Average Std Average Std Average Std Average Std

NDVI 0.5218 0.2774 0.4749 0.2527 0.4924 0.2629 0.5088 0.2701 0.5005 0.2843
WET 0.6076 0.1354 0.5787 0.1404 0.6030 0.1359 0.6496 0.1069 0.6961 0.0964

NDBSI 0.4811 0.1436 0.4673 01457 0.5204 0.1419 0.5394 0.1165 0.4691 0.1199
LST 0.4197 0.0946 0.6623 0.0716 0.5943 0.0847 0.4730 0.0880 0.3779 0.1022

RSEI 0.7719 0.1936 0.7532 0.1942 0.7657 0.1870 0.7566 0.1871 0.7293 0.2029
2010 2015 2020

Average Std Average Std Average Std
NDVI 0.4770 0.2388 0.5841 0.2708 0.5676 0.2740
WET 0.8973 0.0301 0.6130 0.0584 0.6839 0.0439

NDBSI 0.4083 0.1205 0.2727 0.0204 0.8856 0.0012
LST 0.5452 0.1069 0.5048 0.0790 0.5605 0.1000

RSEI 0.6682 0.2025 0.6250 0.2712 0.5817 0.2583Remote Sens. 2023, 15, x FOR PEER REVIEW  14  of  31 
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Figure 4. Statistical chart of the average values of the normalized ecological environmental factors in
the Zhoushan Archipelago from 1985 to 2020; the left vertical axes correspond to the average values
of NDVI, WET, NDBSI, and LST, while the right vertical axes correspond to the average value of
RSEI.

As can be seen in Table 3 and Figure 4, the overall ecological environment of the
Zhoushan Archipelago was good from 1985 to 2020, but the mean RSEI exhibited a decreas-
ing trend over time. The mean RSEI decreased from 0.7719 in 1985 to 0.7566 in 2000, and
it further decreased to 0.5817 in 2020. This declining trend indicates that the ecological
environment of the Zhoushan Archipelago has deteriorated by approximately 25% in the
past 35 years. The decline was relatively slow from 1985 to 2000, though it was more
severe from 2000 to 2020. During the study period, the standard deviation of the RSEI was
relatively small, indicating that the data concentration was high, and the research results
were more reliable.

4.2. Spatial Pattern Analysis of the Ecological Environmental Evolution
4.2.1. Rank Division of Ecological Environment

To better analyze the changes in the ecological environment of the Zhoushan Archipelago,
it was necessary to rank the RSEI. Referring to the Technical Specification for the Evaluation
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of Ecological Environment Status (HJ/T 192-2015) issued in 2015, the ecological environ-
ment levels were classified using an interval of 0.2 as follows: poor (0–0.2], relatively poor
(0.2–0.4], general (0.4–0.6], good (0.6–0.8], and excellent (0.8–1] (Table 4 and Figure 5).

Table 4. Statistics regarding the ecological quality grades and areas of the Zhoushan Archipelago.

RSEI
1985 1990 1995

Area (km2) Scale (%) Area (km2) Scale (%) Area (km2) Scale (%)

Poor (0–0.2] 47.9052 km2 3.80% 39.1488 km2 3.11% 33.2631 km2 2.64%
Fair (0.2–0.4] 48.3586 km2 3.84% 76.9924 km2 6.11% 64.4624 km2 5.12%

Moderate
(0.4–0.6] 106.2847 km2 8.44% 91.3340 km2 7.25% 104.6577 km2 8.31%

Good (0.6–0.8] 207.3997 km2 16.46% 314.6015 km2 24.98% 266.0274 km2 21.12%
Excellent

(0.8–1] 850.0737 km2 67.46% 737.2577 km2 58.54% 791.4330 km2 62.82%

RSEI
2000 2005 2010

Area (km2) Scale (%) Area (km2) Scale (%) Area (km2) Scale (%)
Poor (0–0.2] 9.9180 km2 0.79% 9.9754 km2 0.79% 19.8861 km2 1.58%
Fair (0.2–0.4] 86.0458 km2 6.83% 118.9365 km2 9.44% 173.2290 km2 13.75%

Moderate
(0.4–0.6] 149.1874 km2 11.84% 185.6070 km2 14.73% 204.6716 km2 16.24%

Good (0.6–0.8] 306.8136 km2 24.36% 325.6663 km2 25.85% 424.9797 km2 33.73%
Excellent

(0.8–1] 707.5451 km2 56.18% 619.8297 km2 49.19% 437.2329 km2 34.70%

RSEI
2015 2020

Area (km2) Scale (%) Area (km2) Scale (%)
Poor (0–0.2] 148.2637 km2 11.78% 157.0072 km2 12.33%
Fair (0.2–0.4] 167.6234 km2 13.31% 195.3946 km2 15.34%

Moderate
(0.4–0.6] 174.2904 km2 13.84% 212.3815 km2 16.68%

Good (0.6–0.8] 253.8551 km2 20.16% 344.0534 km2 27.02%
Excellent

(0.8–1] 514.9355 km2 40.90% 364.5735 km2 28.63%

Table 4 and Figure 5 show the area in of the ecological environment levels in the
Zhoushan Archipelago from 1985 to 2020. The statistical results show that the proportion
of areas with excellent ecological environments decreased by 38.83%, while the proportion
of areas with poor ecological environments increased by 8.53%. Therefore, the ecological
environment of the Zhoushan Archipelago exhibited an overall decreasing trend. The
specific analysis is as follows: (1) From 1985 to 2020, the ecological environment of the
Zhoushan Archipelago was mainly at the excellent level, having an average of 49.80% per
year, but the proportion of the excellent areas decreased over time. Indeed, the proportion
of the excellent ecological environment was highest in 1985, accounting for 67.46% of the
total area, and it was lowest in 2020, accounting for 28.63% of the total area. (2) From
1985 to 2020, the proportion of areas with good ecological environments in the Zhoushan
Archipelago was second only to those with excellent ecological environments. Except
for 1985, it exceeded one-fifth of the total area, having an average of 24.21%. Indeed, the
proportion of areas with good ecological environments was highest in 2010, accounting
for 33.73%, while it was lowest in 1985, accounting for 16.46%. (3) From 1985 to 2020, the
proportion of areas with a general ecological environment in the Zhoushan Archipelago
ranked third, having an average of 12.17%. Indeed, the proportion of areas with general
ecological environments was highest in 2020, accounting for 16.68%, while it was lowest in
1990, accounting for 7.25%. (4) From 1985 to 2020, the proportions of areas with poor and
relatively poor ecological environments in the Zhoushan Archipelago were relatively small,
having averages of 4.60% and 9.22%, respectively. Except for 2015 and 2020, the sum of
the areas with these two levels was less than 16% in all years, but their overall proportions
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exhibited an increasing trend. Indeed, the sum of the areas with poor and relatively poor
ecological environments was highest in 2020, accounting for 27.67% of the total area. The
sum of the areas with poor and relatively poor ecological environments was smallest in
1985 and 2000, accounting for 7.64% and 7.62% of the total area, respectively.
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4.2.2. Level of Conversion of Ecological Environment

In order to further analyze the spatiotemporal changes in the ecological environment of
the Zhoushan Archipelago, the classified RSEI results for each study period were overlaid,
and a Sankey diagram (Figure 6) and an ecological environment level transition matrix
(Figure 7) were created to illustrate the results.
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The Sankey diagram clearly describes the direction and volume of the changes in the
ecological environment levels, which quantitatively expresses the transition relationship
between the ecological environment levels during different periods. It can be concluded
based on Figure 6 that the characteristics of the ecological environment level conversions
every 5 years can be summarized as follows: the transition between every two adjacent
levels was relatively drastic. In particular, the transitions between excellent and good,
good and general, general and relatively poor, and relatively poor and poor ecological
environments were significant transitions.

The ecological environment level transfer matrix visually reflects the specific areas
in which ecological environment level changes occurred, and it has great significance
for quantifying the transitions between different ecological environment levels in each
period. In this study, the ecological environment level transfer matrix was created every
5 years from 1985 to 2020 (Figure 7). It can be concluded based on Figure 7 that there
were significant changes in the ecological environment levels in the Zhoushan Archipelago
from 1985 to 2020. (1) During the study period, the conversion from the excellent to the
good level was dominant, with the largest period of conversion occurring from 2010 to
2015, during which time 131.3087 km2 were converted from the excellent to the good level.
The main category converted to the excellent level was the good level, with a maximum
conversion area of 186.8389 km2 (2005–2010). (2) The main category converted from the
good level was the excellent level, followed by the conversion from the good to the general
levels. The maximum area converted from the good to the general level was 33.8996
km2 (2015–2020), and the maximum area converted from the general to the good level
was 79.0286 km2 (2010–2015). (3) The main areas converted from the general level was
converted to the good and relatively poor levels. The maximum area converted from
the relatively poor to the general level was 83.2385 km2 (2010–2015), and the maximum
area converted from the general to the relatively poor level was 37.2699 km2 (2015–2020).
(4) Except for the conversion between the general and relatively poor levels, the conversion
from and to of the relatively poor level mainly occurred with regard to the poor levels.
The maximum area converted from the poor to the relatively poor level was 97.3449 km2

(2010–2015), and the maximum area converted from the relatively poor to the poor level
was 36.3026 km2 (2015–2020). (5) Aside from the conversion of the very poor level, the
amount of area converted from the poor level to other levels was relatively small, with
the minimum conversion amount occurring during the period 1995–2000, during which
time the area converted to the good level was only 0.0047 km2. The conversion to the poor
level mainly occurred from the relatively poor and general levels, and the maximum area
converted from the general to the poor level was 11.6758 km2 (2015–2020).

4.3. Temporal Trend Analysis of Ecological Environmental Evolution
4.3.1. Change Trend of Ecological Environment

By combining Theil–Sen median trend analysis and the Mann–Kendall test, we effec-
tively analyzed the change trend and spatial distribution characteristics of the ecological
environment in the Zhoushan Archipelago from 1985 to 2020. Since there were basically no
regions with SRSEI values strictly equal to 0 in this study, the regions with SRSEI values of
−0.0005 to 0.0005 were defined as regions with stable and unchanged ecological environ-
ments, regions with SRSEI values of greater than 0.0005 were defined as regions with an
improved ecological environment, and regions with SRSEI values of less than−0.0005 were
defined as regions with a degraded ecological environment, thus dividing the ecological
environmental changes in the study area into three different categories. In the significance
analysis, after setting the significance level at 0.05, the significance of the RSEI time-series
trend change was assessed. The results of the significance test were divided into significant
changes (Z > 1.96 or Z < −1.96) and slight changes (−1.96 ≤ Z ≤ 1.96). The results of the
Theil–Sen median trend analysis and the Mann–Kendall test were superimposed to obtain
the RSEI change trend results at the pixel scale from 1985 to 2020. The results were divided
into five types of change (Table 5).
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Table 5. Statistics of RSEI trends in the Zhoushan Archipelago.

SRSEI Z Value Trend of RSEI Percentage

SRSEI > 0.0005 Z > 1.96 Significantly improved 0.83
SRSEI > 0.0005 −1.96 ≤ Z ≤ 1.96 Slightly improved 11.77

−0.0005 ≤ SRSEI ≤ 0.0005 −1.96 ≤ Z ≤ 1.96 Stable 3.05
SRSEI < −0.0005 −1.96 ≤ Z ≤ 1.96 Slightly degraded 50.25
SRSEI < −0.0005 Z < −1.96 Severely degraded 34.10

As can be seen in Table 5, the area with an improved ecological environment accounted
for 12.60% of the total area, the stable and unchanged ecological environment areas ac-
counted for 3.05% of the total area, and the areas with a degraded ecological environment
accounted for 84.35% of the total area. Therefore, most of the areas in the Zhoushan
Archipelago exhibited a trend of ecological environmental degradation from 1985 to 2020.
Indeed, 50.25% of the study area had a slightly degraded ecological environment, while
34.10% of the area had a seriously degraded ecological environment. The proportion of
the areas with significant improvement in the ecological environment was the smallest,
accounting for only 0.84% of the total area.

As can be seen in Figure 8, the area of ecological environment degradation in the
Zhoushan Archipelago far exceeded the area of ecological environment improvement from
1985 to 2020. The areas with significantly degraded ecological environments were mainly
located in the southern part of Zhoushan Island, the southwestern part of Jintang Island, the
northwestern area of Zhujiajian Island, the northern area of Taohua Island, the central part
of Liuheng Island, and the western parts of Qushan Island, Shengsi Island, and Yangshan
Island. The areas with slightly degraded ecological environments were mainly located
in the central part of Zhoushan Island, the eastern parts of Jintang Island and Zhujiajian
Island, and the southern parts of Dachangtu Island and Yushan Island. The areas with
stable ecological environments were scattered throughout the archipelago. The areas with
slightly improved ecological environments were mainly located in the northeastern and
eastern parts of Zhoushan Island, the southern parts of Taohua Island and Zhujiajian Island,
the southwestern area of Liuheng Island, and the northern area of Qushan Island. The
areas with significantly improved ecological environments were scattered within the inner
areas of the slightly improved areas.
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4.3.2. Sustainability Analysis of Ecological Environment

The Hurst exponent was used to explore the sustainability of the change trends of the
ecological environment of the Zhoushan Archipelago. The results show that the average
Hurst index of the RSEI is 0.65, with the areas in which the Hurst index is less than 0.5
accounting for 13.39% of the total area and the areas in which it is greater than 0.5 accounting
for 86.61% of the total area. These results indicate that the ecological environmental changes
in the Zhoushan Archipelago have a strong positive persistence, meaning it will have a
strong tendency to continue its original change trend in the future.

The Theil–Sen median trend analysis quantitatively reflects the change trend of the
RSEI during a given period, while the Hurst exponent qualitatively predicts whether
the change trend is sustainable. The sustainability of the RSEI changes in the Zhoushan
Archipelago is obtained by superimposing the results of the RSEI change trend on the
Hurst exponent results. In this paper, the results are categorized into four levels (Table 6
and Figure 9).

Table 6. Statistics of the sustainability of the RSEI change in the Zhoushan Archipelago.

SRSEI Hurst Value Sustainability of the
Change in the RSEI Percentage

SRSEI > 0.0005 0.5 < H < 1 Improved sustainability 10.56
−0.0005 ≤ SRSEI ≤ 0.0005 0.5 < H < 1 Stable sustainability 2.65

SRSEI < −0.0005 0.5 < H < 1 Degraded sustainability 73.40
SRSEI > 0.0005

0 < H < 0.5 Unsustainability 13.39−0.0005 ≤ SRSEI ≤ 0.0005
SRSEI < −0.0005
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As can be seen in Table 6 and Figure 9, in most areas of the Zhoushan Archipelago,
the ecological environment exhibited a trend of degraded sustainably, having an area
proportion of 73.40%. The regions in which the ecological environment exhibited a trend of
sustainably stability accounted for 2.65% of the total area, and these regions were scattered
in the central part of Zhoushan Island and the western part of Taohua Island. The regions
in which the ecological environment exhibited a trend of improved sustainably accounted
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for 10.56% of the total area and were mainly located in the eastern and northeastern parts
of Zhoushan Island; the northern, northwestern, and southern parts of Zhujiajian Island;
the southern part of Taohua Island; the southwestern part of Liuheng Island; the northern
part of Yangshan Island; and the southern and northern parts of Qushan Island. The area
proportion in which the trend of the change was unsustainable was 13.39%, and these areas
were scattered within the central areas of the islands, such as the central parts of Zhoushan
island. In conclusion, the protection of the ecosystem in the Zhoushan Archipelago should
be given due attention. In particular, the regions with a sustainable degradation trend
require special attention.

4.4. Time-Series Stability Analysis of Ecological Environmental Evolution

To determine the time-series stability of the ecological environmental changes in the
Zhoushan Archipelago recorded in this study, the coefficient of variation in the RSEI from
1985 to 2020 was calculated. The coefficient of variation values for each pixel were then
counted and used to create a cumulative frequency graph (Figure 10).
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As can be seen in Figure 10, the coefficient of variation was mainly concentrated
between 0 and 0.4, having an average value of 0.1627 and a standard deviation of 0.1467. The
pixels with a coefficient of variation of 0.04 had the largest number of occurrences, having a
frequency of nearly 350,000. The second largest frequency was for pixels with a coefficient
of variation of 0.06, which had a frequency of greater than 250,000. This result indicates
that the RSEI values in the Zhoushan Archipelago were relatively concentrated between
1985 and 2020, with small inter-annual fluctuations and a relatively stable time series.

According to Jenks [105], there are natural breakpoints and turning points in any
data series, which are statistically significant and can be used to divide the research object
into groups with similar properties. Therefore, natural breakpoints are good boundaries
for classification. The natural breaks method is a method of classifying data based on
natural breakpoints. It determines the best arrangement of values in a group by iteratively
comparing the sum of squares of the differences between each grouping and the mean
of the elements in the grouping to the observed values. Based on the calculated best
arrangement, the cutoff points present in an ordered distribution are determined, and the
elements are divided into multiple categories by setting boundaries at the cutoff points.
This classification method can minimize the sum of the squared differences between
groups, maximize the variance between groups, and minimize the variance within groups,
achieving the goal of classification.

To explore the time-series stability of the ecological environmental changes in the
study area, the coefficient of variation results were classified into five categories using the
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natural breaks method: very stable (0 < CV ≤ 0.10), relatively stable (0.10 < CV ≤ 0.21),
slightly variable (0.21 < CV ≤ 0.33), moderately variable (0.33 < CV ≤ 0.48), and highly
variable (0.48 < CV ≤ 1.0). The spatial distribution of the coefficient of variation values is
shown in Table 7 and Figure 11.

Table 7. Statistics of the stability of eco-environment evolution in the Zhoushan Archipelago.

CV Value Temporal Stability Percentage (%)

(0, 0.10] Very stable 49.40%
(0.10, 0.21] Relatively stable 19.25%
(0.21, 0.33] Slightly variable 15.61%
(0.33, 0.48] Moderately variable 11.22%
(0.48, 1.0] Highly variable 4.52%
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As can be seen in Table 7 and Figure 11, there are spatial differences in the time-series
stability of the ecological environment changes. The areas with moderately variable and
highly variable coefficients of variation account for a small proportion of the total area, i.e.,
11.22% and 4.52%, respectively. These areas are mainly located in the northeastern part of
Zhoushan Island, the northern part of Daishan Island, the southern and northern areas of
Yangshan Island, the edges of Liuheng Island, the western area of Zhujiajian Island, and the
northwestern, northeastern, and southwestern parts of Jintang Island. These coastal areas
are relatively flat and greatly affected by natural disasters and human activities, leading to
large fluctuations in the RSEI values. The areas that are very stable and relatively stable
account for a large proportion of the total area, i.e., 49.40% and 19.25%, respectively. These
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areas are mainly located in the central areas of the major islands, such as the central areas of
Zhoushan Island, Daishan Island, Liuheng Island, Taohua Island, Jintang Island, Xiushan
Island, Qushan Island, and Changtu Island, as well as the small islands that have not been
developed and utilized by humans. These areas have a high vegetation cover and are
less affected by natural phenomena and human activities, maintaining good ecological
conditions, thus resulting in small overall fluctuations and a stable time-series of RSEI
values over time. The areas classified as slightly variable accounted for 15.61% of the total
area and were mainly distributed in the transition zone between the relatively stable and
moderately variable regions.

5. Discussion

In this study, long-term time-series Landsat satellite remote sensing data provided by
the GEE platform were utilized to efficiently monitor and assess the ecological environment
of the Zhoushan Archipelago, and the spatiotemporal variations were comprehensively
investigated. Although the experimental results exhibit some degree of effectiveness,
uncertainties also exist in the findings.

5.1. Rationality of Mapping of Ecological Environment of Islands Using Remote Sensing Images

Remote sensing is a technique used to monitor the Earth’s surface from a distance,
and the acquired remote sensing images can be applied through interpretation, analysis,
and visualization [106–108]. Compared to other conventional methods, this method has
several significant advantages. Firstly, remote sensing technology provides abundant in-
formation with a short information acquisition cycle, meaning that it is a rich data source
for long-term ecological environment monitoring. Based on the Landsat satellite remote
sensing data derived from 1985 to 2020 and integrated into the GEE cloud-based platform,
an RSEI model was constructed to monitor and evaluate the ecological environment of the
Zhoushan Archipelago. This model accurately detected the characteristics of the ecological
environmental changes, and the results provided technical support for the formulation of re-
gional ecological environment monitoring and development planning strategies. Secondly,
remote sensing technology can achieve large-scale, long-term, and continuous observation
at fixed points, making it more efficient than other traditional methods [109,110]. Based
on the remote sensing technology, powerful online visualization calculation ability, and
cloud storage characteristics of the GEE cloud platform [111–114], in this study, the quality
of the regional ecological environment was objectively and rapidly evaluated by obtain-
ing indicators closely related to the ecological environmental quality, such as greenness,
humidity, dryness, and heat. Thirdly, remote sensing technology is characterized by com-
prehensiveness and can form a widely distributed detection network while observing the
temporal, spatial, and spectral characteristics of objects, thereby obtaining true geographic
information about objects within the regional space [115]. Compared to social statistical
yearbook data, it can reflect the geographic distribution characteristics and relationships
between things. For example, the ecological environment grading map created in this study
based on remote sensing data reflects the spatial distribution characteristics of the different
ecological environment levels in the Zhoushan Archipelago and lays the foundations for
subsequent analysis of the spatiotemporal evolution of the ecological environment.

5.2. Uncertainties of Mapping of Ecological Environment of Islands Using Remote Sensing Images

Remote sensing technology can quickly monitor the ecological environment status
of a region, but some factors affect the accuracy of ecological environment assessment.
From the perspective of the inherent defects of remote sensing technology, the spatial
resolution determines the size of the pixels covering the Earth’s surface in satellite images,
and the RSEI represents the ecological environmental status of the ground covered by
the pixel [116]. However, the mixed pixels in the remote sensing images create certain
differences between the acquired information and the true values, which may cause some
uncertainties regarding the calculation of the RSEI [117,118]. In some areas of the Zhoushan
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Archipelago, the vegetation cover is high, and the NDVI value may be saturated, which may
lead to the inaccurate calculation of the greenness index. In the future, the leaf area index
(LAI) will be used instead of the NDVI to invert the greenness index of the remote sensing-
based ecological index [119–121]. As developed land is often covered by impermeable
surfaces, such as building roofs, paved roads, and parking lots [122–124], the normalized
difference impervious surface index (NDISI) can enhance the characteristics of the soil and
developed land that cause dry land surfaces compared to the NDBSI. Therefore, the NDISI
can be used instead of the NDBSI to invert the dryness index and make the results more
accurate.

5.3. Prospects of Remote Sensing Technology for Ecological Environmental Monitoring

Remote sensing data have become important sources of information used to study
surface conditions and monitor ecological environments. In recent years, with the devel-
opment of remote sensing technology to include multiple platforms, sensors, and angles;
higher spatial and spectral resolutions; and quantitative remote sensing in practical appli-
cations, remote sensing technology is playing an increasingly important role in ecological
environmental monitoring. On one hand, the combination of satellite remote sensing data
and measured data can improve the accuracy of ecological environmental remote sensing
monitoring. On the other hand, the fusion of space–time technology has the ability to
enhance image quality, obtain temporal remote sensing data that can be used to describe
the ecological conditions in different periods, and reveal the evolutionary characteristics of
the ecological environment at the fine scale [125–128]. Moreover, new techniques, such as
cloud computing, big data, and artificial intelligence, have injected new vitality into remote
sensing image processing and provide innovative technical means of solving the large-scale
automatic processing of and intelligent information extraction from satellite data, which
can fully tap the value of massive remote sensing data and promote the rapid development
of remote sensing technology [129–131].

6. Conclusions

Based on the GEE cloud-based platform and Landsat satellite remote sensing data,
in this study, the NDVI, Wet, LST, and NDBSI were selected to characterize the closely
related greenness, humidity, heat, and dryness of the ecological environment, respectively.
The RSEI was constructed using PCA, and RSEI distribution maps with 30-meter spatial
resolutions for eight time periods from 1985 to 2020 in the Zhoushan Archipelago were
created. The trends and patterns of the spatiotemporal evolution of the ecological envi-
ronment in the Zhoushan Archipelago were explored using the Theil–Sen median trend
analysis, Mann–Kendall test, Hurst index, and coefficient of variation method. The spatial
pattern, temporal trend, and temporal stability of ecological environmental evolution in
the Zhoushan Archipelago from 1985 to 2020 were clarified. The main conclusions are as
follows:

(1) The average RSEI values for the eight time periods (at five-year intervals) from 1985
to 2020 were 0.7719, 0.7532, 0.7657, 0.7566, 0.7293, 0.6682, 0.6250, and 0.5817. Except
for 2020, the RSEI values for all years were within the range 0.6–0.8. During the
entire study period, the average RSEI value in the Zhoushan Archipelago decreased
from 0.7719 to 0.5817, indicating an overall declining trend regarding the ecological
environment in the study area.

(2) The area change in each ecological environment level was obvious in the Zhoushan
Archipelago during the study period. From 1985 to 2020, the proportion of areas
with an ecological environment grade of excellent decreased by 38.83%, while the
proportion of areas with ecological environment grades of poor and relatively poor
increased by a total of 20.03%. The proportions of areas with ecological environment
grades of good and general increased by 10.56% and 8.24%, respectively. Based on the
results of the ecological environment grade conversion, the transition between each
pair of adjacent grades was relatively drastic. The transition between the excellent and
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good grades was dominant, with the largest area of transition from the excellent to the
good grade occurring from 2010 to 2015, covering an area of 131.3087 km2. The largest
area of transition from good to excellent grade was 186.8389 km2, occurring from 2005
to 2010. The good and general grades exhibited the second largest transition areas.
During the study period, the largest area of transition from general to good grade was
79.0286 km2, occurring from 2010 to 2015.

(3) The ecological environment in the Zhoushan Archipelago exhibited co-existing degra-
dation and partial improvement, with the areas with a degraded ecological environ-
ment accounting for 84.35% of the total area and the areas with an improved ecological
environment accounting for 12.61% of the total area. The proportion of the areas with
a significantly improved ecological environment was the smallest, accounting for only
0.84% of the total area. The proportion of the areas with a heavily degraded ecological
environment was significant, accounting for 34.10% of the total area. These areas were
mainly distributed in the southern part of Zhoushan Island, the southwestern part of
Jintang Island, the northwestern area of Zhujiajian Island, the northern area of Taohua
Island, the central part of Liuheng Island, and the western parts of Qushan Island,
Shengsi Island, and Yangshan Island. The decline in the ecological environment in
these areas was related to urbanization and the development of tourism resources in
the Zhoushan Archipelago.

(4) The results of the Hurst exponent analysis indicate that the change trend of the
ecological environment in most regions of the Zhoushan Archipelago is sustainable.
The proportion of the areas with degraded sustainably was 73.40%, and these areas
were extensively distributed on the major islands in the Zhoushan Archipelago. The
proportion of the areas with stable sustainably was 2.65%, and these areas were
scattered in the central part of Zhoushan Island and the western part of Taohua Island.
The proportion of the areas with improved sustainably was 10.56%, and these areas
were mainly located in the eastern and northeastern parts of Zhoushan Island; the
northern, northwestern, and southern parts of Zhujiajian Island; the southern part
of Taohuajian Island; the southwestern part of Liuheng Island; and the northern
part of Yangshan Island. The proportion of the unsustainable areas was 13.39%, and
these areas were scattered within the central areas of the islands. In conclusion, the
ecological environment in the areas with degraded sustainably requires particular
attention.

(5) The coefficient of variation in the RSEI sequence from 1985 to 2020 was mainly
concentrated within the range 0–0.4, and its average value was 0.1627, indicating
that the overall variations in the RSEI value in the Zhoushan Archipelago during the
study period were relatively small, having a stable temporal trend. The regions with
a high coefficient of variation were mainly concentrated in the northeastern part of
Zhoushan Island, the northern part of Daishan Island, the edges of Liuheng Island,
the western side of Zhujiajian Island, and the northwestern and southwestern parts of
Jintang Island, indicating that the RSEI values in these areas fluctuated considerably
over time.

The contributions of this study are that it provides a feasible method for ecological
environmental monitoring in island areas, as well as data and technical support for the
monitoring and evaluating of the regional ecological environment. However, this study
only provides a simple description of the trend of the ecological environment in the
Zhoushan Archipelago from 1985 to 2020, without offering specific analysis and discussion
of the reasons and driving factors causing the changes. In the future, we will consider
the relationship between the ecological environment and land use to better reveal the
underlying causes of the ecological environment’s evolution. In addition, using data with
longer time series and more dense time intervals to more accurately explore characteristics
and trends will represent a follow-up work.
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