Spatiotemporal Characteristics and Driving Factors of Land-Cover Change in the Heilongjiang (Amur) River Basin
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Sources
2.3. Method
2.3.1. Spatiotemporal Changes of Land Cover and Ecological Value Judgment
2.3.2. Dynamic Analysis of Land Cover
2.3.3. Land-Use Integrated Index
3. Results
3.1. Spatiotemporal Changes of Land Cover
3.1.1. Spatiotemporal Changes of Land Cover in HARB
3.1.2. Spatiotemporal Changes of China’s Land Cover in HARB
3.1.3. Spatiotemporal Changes of Russia’s Land Cover in HARB
3.1.4. Spatiotemporal Changes of Mongolia’s Land Cover in HARB
3.2. Dynamic Degree Analysis of Land Cover
3.3. Analysis of the Land-Cover Integrated Index
4. Discussion
4.1. The Validation of the Land Cover
4.2. The Driving Forces of Land Cover
4.2.1. Natural Factors
4.2.2. Anthropogenic Factor
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Turner, B.L., II; Lambin, E.F.; Reenberg, A. The emergence of land change science for global environmental change and sustainability. Proc. Natl. Acad. Sci. USA 2007, 104, 20666–20671. [Google Scholar] [CrossRef]
- Dong, J.; Kuang, W.; Liu, J. Continuous land cover change monitoring in the remote sensing big data era. Sci. China Earth Sci. 2017, 60, 2223–2224. [Google Scholar] [CrossRef]
- Turner, B.L., II; Skole, D.L.; Sanderson, S.; Fischer, G.; Fresco, L.; Leemans, R. Land-Use and Land-Cover Change. Science/Research Plan; Global Change Report (Sweden); The International Geosphere Biosphere Programme: A Study of Global Change (IGBP) of the International Council of Scientific Unions (ICSU) and The Human Dimensions of Global Environmental Change Programme (HDP) of the International Social Science Council (ISSC): Stockholm, Sweden; Geneva, Switzerland, 1995. [Google Scholar] [CrossRef]
- Pimnon, S.; Bhumiratana, A. Adaptation of Anopheles Vectors to Anthropogenic Malaria-Associated Rubber Plantations and Indoor Residual Spraying: Establishing Population Dynamics and Insecticide Susceptibility. Can. J. Infect. Dis. Med. Microbiol. 2018, 2018, 9853409. [Google Scholar] [CrossRef] [Green Version]
- He, X.; Liang, J.; Zeng, G.; Yuan, Y.; Li, X. The Effects of Interaction between Climate Change and Land-Use/Cover Change on Biodiversity-Related Ecosystem Services. Glob. Chall. 2019, 3, 1800095. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, Z.; Gao, K.; Yang, X.; Su, F.; Huang, C.; Shi, T.; Yan, F.; Li, H.; Zhang, H.; Lv, N.; et al. Land use/land cover classification development from a geographical perspective. Geogr. Res. 2022, 41, 2946–2962. (In Chinese) [Google Scholar] [CrossRef]
- Attri, P.; Chaudhry, S.; Sharma, S. Remote Sensing & GIS based Approaches for LULC Change Detection—A Review. Int. J. Curr. Eng. Technol. 2015, 5, 3126–3137. [Google Scholar]
- Verburg, P.H.; van de Steeg, J.; Veldkamp, A.; Willemen, L. From land cover change to land function dynamics: A major challenge to improve land characterization. J. Environ. Manag. 2009, 90, 1327–1335. [Google Scholar] [CrossRef]
- Orusa, T.; Cammareri, D.; Borgogno Mondino, E.B. A Scalable Earth Observation Service to Map Land Cover in Geomorphological Complex Areas beyond the Dynamic World: An Application in Aosta Valley (NW Italy). Appl. Sci. 2023, 13, 390. [Google Scholar] [CrossRef]
- Hu, Y.; Zhang, Y. Spatial–temporal dynamics and driving factor analysis of urban ecological land in Zhuhai city, China. Sci. Rep. 2020, 10, 16174. [Google Scholar] [CrossRef]
- Chen, J.; Chen, J.; Liao, A.; Cao, X.; Chen, L.; Chen, X.; He, C.; Han, G.; Peng, S.; Lu, M.; et al. Global land cover mapping at 30 m resolution: A POK-based operational approach. Isprs J. Photogramm. Remote Sens. 2015, 103, 7–27. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data Discuss. 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Gong, P.; Liu, H.; Zhang, M.; Li, C.; Wang, J.; Huang, H.; Clinton, N.; Ji, L.; Li, W.; Bai, Y.; et al. Stable classification with limited sample: Transferring a 30-m resolution sample set collected in 2015 to mapping 10-m resolution global land cover in 2017. Sci. Bull. 2019, 64, 370–373. [Google Scholar] [CrossRef] [PubMed]
- Buchhorn, M.; Lesiv, M.; Tsendbazar, N.-E.; Herold, M.; Bertels, L.; Smets, B. Copernicus Global Land Cover Layers—Collection 2. Remote Sens. 2020, 12, 1044. [Google Scholar] [CrossRef] [Green Version]
- Bontemps, S.; Boettcher, M.; Brockmann, C.; Kirches, G.; Lamarche, C.; Radoux, J.; Santoro, M.; Vanbogaert, E.; Wegmüller, U.; Herold, M.; et al. Multi-year global land cover mapping at 300 m and characterization for climate modelling: Achievements of the Land Cover component of the ESA Climate Change Initiative. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7/W3, 323–328. [Google Scholar] [CrossRef] [Green Version]
- Turner, B.L., II; Meyer, W.B.; Skole, D.L. Global land-use/land-cover change: Towards an integrated study. AMBIO—J. Hum. Environ. 1994, 23, 91–95. [Google Scholar]
- Verburg, P.H.; Crossman, N.; Ellis, E.C.; Heinimann, A.; Hostert, P.; Mertz, O.; Nagendra, H.; Sikor, T.; Erb, K.-H.; Golubiewski, N.; et al. Land system science and sustainable development of the earth system: A global land project perspective. Anthropocene 2015, 12, 29–41. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.; Liu, H.; Li, Y.; Hu, H.; An, J. Spatio-temporal Variation and Driving Forces of the Coastal Wetland Resources Based on the Transition Matrix in Jiangsu Province. J. Nat. Resour. 2010, 25, 1918–1929. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, F.; Tiyip, T.; Feng, Z.D.; Kung, H.; Johnson, V.C.; Ding, J.L.; Tashpolat, N.; Sawut, M.; Gui, D.W. Spatio-Temporal Patterns of Land Use/Cover Changes Over the Past 20 Years in the Middle Reaches of the Tarim River, Xinjiang, China. Land Degrad. Dev. 2015, 26, 284–299. [Google Scholar] [CrossRef]
- Zhao, Y.; Yu, X.; Jia, J.; Liu, X. Analysis on dynamic evolution and driving force of land-use landscape in Hongmenchuan basin. Trans. Chin. Soc. Agric. Eng. 2013, 29, 239–248. [Google Scholar] [CrossRef]
- Yang, X.; Wei, Z.; Yun, X. The changes of land use and vegetation during recent 30 years in steppe grassland of Xilinhot, Inner Mogolia. J. China Agric. Univ. 2015, 20, 196–204. (In Chinese) [Google Scholar] [CrossRef]
- Zhou, D.; Zhao, S.; Zhu, C. The Grain for Green Project induced land cover change in the Loess Plateau: A case study with Ansai County, Shanxi Province, China. Ecol. Indic. 2012, 23, 88–94. [Google Scholar] [CrossRef]
- Fyfe, R.M.; Woodbridge, J.; Roberts, C.N. Trajectories of change in Mediterranean Holocene vegetation through classification of pollen data. Veg. Hist. Archaeobotany 2018, 27, 351–364. [Google Scholar] [CrossRef]
- Xiao, D.; Niu, H.; Yan, H.; Fan, L.; Zhao, S. Spatiotemperal evolution of land use pattern in the Yellow River Basin (Henan section) from 1990 to 2018. Trans. Chin. Soc. Agric. Eng. 2020, 36, 271–281. (In Chinese) [Google Scholar] [CrossRef]
- Perez, G.J.; Comiso, J.C.; Aragones, L.V.; Merida, H.C.; Ong, P.S. Reforestation and Deforestation in Northern Luzon, Philippines: Critical Issues as Observed from Space. Forests 2020, 11, 1071. [Google Scholar] [CrossRef]
- Yu, S.; Wang, F.; Qu, M.; Yu, B.; Zhao, Z. The Effect of Land Use/Cover Change on Soil Erosion Change by Spatial Regression in Changwu County on the Loess Plateau in China. Forests 2021, 12, 1209. [Google Scholar] [CrossRef]
- Zhang, H.; Song, J.; Li, M.; Han, W.H. Eco-environmental quality assessment and cause analysis of Qilian Mountain National Park based on GEE. Chin. J. Ecol. 2021, 40, 1883–1894. (In Chinese) [Google Scholar] [CrossRef]
- Wu, Y.; Liu, T.; Tong, X.; Luo, Y.; Duan, L.; Wang, G. Dynamic evolution analysis of land use (land cover) in Horqin Sandy Land based on long time series landsat data. Acta Ecol. Sin. 2020, 40, 8672–8682. (In Chinese) [Google Scholar]
- Zhang, C.; Zhao, Z. Temporal and spatial change of land use/cover and quantitative analysis on the driving forces in the yellow river delta. Beijing Daxue Xuebao Ziran Kexue Ban/Acta Entiarum Nat. Univ. Pekin. 2015, 51, 151–158. (In Chinese) [Google Scholar] [CrossRef]
- Li, Z.; Bagan, H.; Yamagata, Y. Analysis of spatiotemporal land cover changes in Inner Mongolia using self-organizing map neural network and grid cells method. Sci. Total Environ. 2018, 636, 1180–1191. [Google Scholar] [CrossRef]
- Bagan, H.; Yamagata, Y. Analysis of urban growth and estimating population density using satellite images of nighttime lights and land-use and population data. GIS Sci. Remote Sens. 2015, 52, 765–780. [Google Scholar] [CrossRef]
- Kang, Q.; Wang, Z. Land cover change in Wusuli River basin from 1990 to 2015. Bull. Soil Water Conserv. 2020, 40, 312–320. (In Chinese) [Google Scholar]
- Ma, E.; Cai, J.; Lin, J.; Han, Y.; Liao, L.; Han, W. Explanation of land use/cover change from the perspective of tele-coupling. Acta Geogr. Sin. 2019, 74, 421–431. (In Chinese) [Google Scholar] [CrossRef]
- Tankpa, V.; Wang, L.; Atanga, R.A.; Awotwi, A.; Guo, X. Evidence and impact of map error on land use and land cover dynamics in Ashi River watershed using intensity analysis. PLoS ONE 2020, 15, e0229298. [Google Scholar] [CrossRef] [Green Version]
- Chu, H.; Venevsky, S.; Wu, C.; Wang, M. NDVI-based vegetation dynamics and its response to climate changes at Amur-Heilongjiang River Basin from 1982 to 2015. Sci. Total Environ. 2018, 650 Pt 2, 2051–2062. [Google Scholar] [CrossRef]
- Wang, X.; Zhu, Y.; Chen, Y.; Zheng, H.; Liu, H.; Huang, H.; Liu, K.; Liu, L. Influences of forest on MODIS snow cover mapping and snow variations in the Amur River Basin in Northeast Asia during 2000–2014. Hydrol. Process. 2017, 31, 3225–3241. [Google Scholar] [CrossRef]
- Damien, S.-M.; Josh, M.G.; Abercrombie, S.P.; Friedl, M.A. Hierarchical mapping of annual global land cover 2001 to present: The MODIS Collection 6 Land Cover product. Remote Sens. Environ. Interdiscip. J. 2019, 222, 183–194. [Google Scholar] [CrossRef]
- Belward, A.S.; Estes, J.E.; Kline, K.D. The IGBP-DIS global 1-km land-cover data set DISCover: A project overview. Photogramm. Eng. Remote Sens. 1999, 65, 1013–1020. [Google Scholar]
- Loveland, T.R.; Belward, A.S. The International Geosphere Biosphere Programme Data and Information System global land cover data set (DISCover). Acta Astronaut. 1997, 41, 681–689. [Google Scholar] [CrossRef]
- Hansen, M.C.; DeFries, R.S.; Townshend, J.R.G.; Sohlberg, R. Global land cover classification at 1 km spatial resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [Google Scholar] [CrossRef]
- Myneni, R.B.; Hoffman, S.; Knyazikhin, Y.; Privette, J.L.; Glassy, J.; Tian, Y.; Wang, Y.; Song, X.; Zhang, Y.; Smith, G.R.; et al. Global products of vegetation leaf area and fraction absorbed PAR from year one of MODIS data. Remote Sens. Environ. 2002, 83, 214–231. [Google Scholar] [CrossRef] [Green Version]
- Running, S.W.; Nemani, R.R.; Heinsch, F.A.; Zhao, M.; Reeves, M.; Hashimoto, H. A Continuous Satellite-Derived Measure of Global Terrestrial Primary Production. BioScience 2004, 54, 547–560. [Google Scholar] [CrossRef] [Green Version]
- Bonan, G.B.; Levis, S.; Kergoat, L.; Oleson, K.W. Landscapes as patches of plant functional types: An integrating concept for climate and ecosystem models. Glob. Biogeochem. Cycles 2002, 16, 5-1–5-23. [Google Scholar] [CrossRef] [Green Version]
- Cao, M.; Zhang, Y.; Zheng, S.; Chen, L. Accuracy analysis of MODIS land cover data product: A case study of Yellow river source region. Remote Sens. Inf. 2012, 27, 22–27. [Google Scholar]
- Liang, D.; Zuo, Y.; Huang, L.; Zhao, J.; Teng, L.; Yang, F. Evaluation of the Consistency of MODIS Land Cover Product (MCD12Q1) Based on Chinese 30 m GlobeLand30 Datasets: A Case Study in Anhui Province, China. ISPRS Int. J. Geo-Inf. 2015, 4, 2519–2541. [Google Scholar] [CrossRef] [Green Version]
- Damien, S.-M.; Friedl, M.A. User Guide to Collection 6 MODIS Land Cover (MCD12Q1 and MCD12C1) Product. 2018. Available online: https://lpdaac.usgs.gov/documents/101/MCD12_User_Guide_V6.pdf2018 (accessed on 12 January 2019).
- Zhao, J.; Dong, Y.; Zhang, M.; Huang, L. Comparison of identifying land cover tempo-spatial changes using GlobCover and MCD12Q1 global land cover products. Arab. J. Geosci. 2020, 13, 1–12. [Google Scholar] [CrossRef]
- Costanza, R.; D’Arge, R.; De Groot, R.; Farber, S.; Grasso, M.; Hannon, B.; Limburg, K.; Naeem, S.; O’Neill, R.V.; Paruelo, J.; et al. The value of the world’s ecosystem services and natural capital. Ecol. Econ. 1997, 25, 3–15. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, X. Value of ecosystem services in China. Chin. Sci. Bull. 2000, 45, 870–876. [Google Scholar] [CrossRef]
- Xie, G.D.; Zhen, L.; Lu, C.X.; Xiao, Y.; Chen, C. Expert Knowledge Based Valuation Method of Ecosystem Services in China. J. Nat. Resour. 2008, 23, 911–919. (In Chinese) [Google Scholar] [CrossRef]
- Wang, X.L.; Bao, Y.H. Study on the methods of land use dynamic change research. Prog. Geogr. 1999, 18, 81–87. (In Chinese) [Google Scholar] [CrossRef]
- Zhang, J.; Liu, Z.; Sun, X. Changing landscape in the Three Gorges Reservoir Area of Yangtze River from 1977 to 2005: Land use/land cover, vegetation cover changes estimated using multi-source satellite data. Int. J. Appl. Earth Obs. Geoinf. 2009, 11, 403–412. [Google Scholar] [CrossRef]
- Liu, J.Y. The Land Use in Xizang Autonomous Region; Science Press: Beijing, China, 1992. (In Chinese) [Google Scholar]
- Chen, W.; Zhao, X.; Cui, L. Temporal-spatial characteristics of land use in Xinjian County, Jiangxi Province. Chin. J. Appl. Ecol. 2006, 17, 873. [Google Scholar]
- Che, Y.; Yang, K.; Chen, T.; Xu, Q. Assessing a riverfront rehabilitation project using the comprehensive index of public accessibility. Ecol. Eng. 2012, 40, 80–87. [Google Scholar] [CrossRef]
- Verburg, P.H.; Neumann, K.; Nol, L. Challenges in using land use and land cover data for global change studies. Glob. Chang. Biol. 2011, 17, 974–989. [Google Scholar] [CrossRef] [Green Version]
- Gong, P.; Wang, J.; Yu, L.; Zhao, Y.; Zhao, Y.; Liang, L.; Niu, Z.; Huang, X.; Fu, H.; Liu, S.; et al. Finer resolution observation and monitoring of global land cover: First mapping results with Landsat TM and ETM+ data. Int. J. Remote Sens. 2013, 34, 48. [Google Scholar] [CrossRef] [Green Version]
- Congalton, R.G.; Gu, J.; Yadav, K.; Thenkabail, P.; Ozdogan, M. Global Land Cover Mapping: A Review and Uncertainty Analysis. Remote Sens. 2014, 6, 12070–12093. [Google Scholar] [CrossRef] [Green Version]
- Foody, G.M. Status of land cover classification accuracy assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Morisette, J.T.; Privette, J.L.; Justice, C.O. A framework for the validation of MODIS Land products. Remote Sens. Environ. 2002, 83, 77–96. [Google Scholar] [CrossRef]
- Song, F.; Yang, Z.; Gao, X.; Dan, T.; Yang, Y.; Zhao, W.; Yu, R. Multi-Scale Feature based Land Cover Change Detection in Mountainous Terrain using Multi-Temporal and Multi-Sensor Remote Sensing Images. IEEE Access 2018, 6, 77494–77508. [Google Scholar] [CrossRef]
- Wang, C.; Wang, Y.; Wang, R.; Zheng, P. Modeling and evaluating land-use/land-cover change for urban planning and sustainability: A case study of Dongying city, China. J. Clean. Prod. 2018, 172, 1529–1534. [Google Scholar] [CrossRef]
- Zhang, H.; Qi, Z.-F.; Ye, X.-Y.; Cai, Y.-B.; Ma, W.-C.; Chen, M.-N. Analysis of land use/land cover change, population shift, and their effects on spatiotemporal patterns of urban heat islands in metropolitan Shanghai, China. Appl. Geogr. 2013, 44, 121–133. [Google Scholar] [CrossRef]
- Yang, J.; Huang, X. The 30m annual land cover dataset and its dynamics in China from 1990 to 2019. Earth Syst. Sci. Data 2021, 13, 3907–3925. [Google Scholar] [CrossRef]
Type | Unused Land | Forest, Grass, Water | Farmland | Urban |
---|---|---|---|---|
Land-cover type | Barren | Forest, Grassland, Water, Wetland | Farmland | Urban |
Graded index | 1 | 2 | 3 | 4 |
Change Types | Area (km2) | Ratio (%) | Change Types | Area (km2) | Ratio (%) |
---|---|---|---|---|---|
F–GL | 66,891.25 | 3.21 | B–GL | 395.75 | 0.02 |
GL–F | 57,156.75 | 2.74 | WL–GL | 381 | 0.02 |
GL–FL | 35,741 | 1.72 | W–GL | 340.5 | 0.02 |
FL–GL | 19,470 | 0.93 | FL–W | 275.5 | 0.01 |
FL–F | 3693 | 0.18 | GL–B | 244 | 0.01 |
F–FL | 2358 | 0.11 | F–W | 237.5 | 0.01 |
GL–WL | 1642.5 | 0.08 | FL–WL | 218.25 | 0.01 |
GL–W | 448 | 0.02 | F–WL | 209.5 | 0.01 |
FL–U | 432 | 0.02 | others | 1069 | 0.05 |
Land-Cover Type | 2001 | 2010 | 2019 | 2001–2010 | 2010–2019 | 2001–2019 | |||
---|---|---|---|---|---|---|---|---|---|
Area/km2 | Area/km2 | Area/km2 | Change Area/km2 | Change Rate/% | Change Area/km2 | Change Rate/% | Change Area/km2 | Change Rate/% | |
Forest | 332,612.75 | 353,607 | 337,321 | 20,994.25 | 6.31 | −16,286 | −4.61 | 4708.25 | 1.42 |
Grassland | 248,360 | 226,667.75 | 228,852 | −21,692.3 | −8.73 | 2184.25 | 0.96 | −19,508 | −7.85 |
Wetland | 1047 | 1599 | 2225 | 552 | 52.72 | 626 | 39.15 | 1178 | 112.51 |
Farmland | 286,430.5 | 286,120.25 | 299,066.5 | −310.25 | −0.11 | 12,946.25 | 4.52 | 12,636 | 4.41 |
Urban | 6871.25 | 7072 | 7421.5 | 200.75 | 2.92 | 349.5 | 4.94 | 550.25 | 8.01 |
Barren | 793.25 | 769 | 573.5 | −24.25 | −3.06 | −195.5 | −25.42 | −219.75 | −27.70 |
Water | 5699.50 | 5979.25 | 6354.75 | 279.75 | 4.91 | 375.50 | 6.28 | 655.25 | 11.50 |
Land-Cover Type | 2001 | 2010 | 2019 | 2001–2010 | 2010–2019 | 2001–2019 | |||
---|---|---|---|---|---|---|---|---|---|
Area/km2 | Area/km2 | Area/km2 | Change Area/km2 | Change Rate/% | Change Area/km2 | Change Rate/% | Change Area/km2 | Change Rate/% | |
Forest | 702,521.75 | 714,935.75 | 689,516.25 | 12,414 | 1.77 | −25,419.5 | −3.56 | −13,005.5 | −1.85 |
Grassland | 278,223.25 | 267,250.75 | 289,209.75 | −10,972.5 | −3.94 | 21,959 | 8.22 | 10,986.5 | 3.95 |
Wetland | 1167.00 | 1159.50 | 1575.50 | −7.5 | −0.64 | 416 | 35.88 | 408.5 | 35.00 |
Farmland | 13,369.50 | 11,822.25 | 14,800.25 | −1547.25 | −11.57 | 2978 | 25.19 | 1430.75 | 10.70 |
Urban | 3396.50 | 3398.75 | 3401.75 | 2.25 | 0.07 | 3 | 0.09 | 5.25 | 0.15 |
Barren | 173.00 | 236.25 | 196.00 | 63.25 | 36.56 | −40.25 | −17.04 | 23 | 13.29 |
Water | 11,364.25 | 11,412.00 | 11,515.75 | 47.75 | 0.42 | 103.75 | 0.91 | 151.50 | 1.33 |
Land-Cover Type | 2001 | 2010 | 2019 | 2001–2010 | 2010–2019 | 2001–2019 | |||
---|---|---|---|---|---|---|---|---|---|
Area/km2 | Area/km2 | Area/km2 | Change Area/km2 | Change Rate/% | Change Area/km2 | Change Rate/% | Change Area/km2 | Change Rate/% | |
Forest | 2626.75 | 2251.50 | 2125 | −375.25 | −14.29 | −126.5 | −5.62 | −501.75 | −19.10 |
Grassland | 187,139.25 | 187,546 | 187,790.25 | 406.75 | 0.22 | 244.25 | 0.13 | 651 | 0.35 |
Wetland | 5.25 | 9.5 | 9.25 | 4.25 | 80.95 | −0.25 | −2.63 | 4 | 76.19 |
Farmland | 236.5 | 288.75 | 201.25 | 52.25 | 22.09 | −87.5 | −30.30 | −35.25 | −14.90 |
Urban | 150.5 | 150.5 | 150.5 | 0 | 0 | 0 | 0 | 0 | 0 |
Barren | 192.25 | 197.75 | 189.25 | 5.5 | 2.86 | −8.5 | −4.30 | −3 | −1.56 |
Water | 674.75 | 581.25 | 559.75 | −93.5 | −13.86 | −21.50 | −3.70 | −115 | −17.04 |
F_Ds | GL_Ds | WL_Ds | FL_Ds | U_Ds | B_Ds | W_Ds | |
---|---|---|---|---|---|---|---|
Chinese region | 0.079 | −0.436 | 6.251 | 0.245 | 0.445 | −1.539 | 0.639 |
Russian region | −0.103 | 0.219 | 1.945 | 0.595 | 0.009 | 0.739 | 0.074 |
Mongolian region | −1.061 | 0.019 | 4.233 | −0.828 | 0.000 | −0.087 | −0.947 |
HARB | −0.047 | −0.061 | 3.957 | 0.260 | 0.296 | −0. 961 | 0. 214 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, S.; Yang, Y. Spatiotemporal Characteristics and Driving Factors of Land-Cover Change in the Heilongjiang (Amur) River Basin. Remote Sens. 2023, 15, 3730. https://doi.org/10.3390/rs15153730
Jia S, Yang Y. Spatiotemporal Characteristics and Driving Factors of Land-Cover Change in the Heilongjiang (Amur) River Basin. Remote Sensing. 2023; 15(15):3730. https://doi.org/10.3390/rs15153730
Chicago/Turabian StyleJia, Shuzhen, and Yaping Yang. 2023. "Spatiotemporal Characteristics and Driving Factors of Land-Cover Change in the Heilongjiang (Amur) River Basin" Remote Sensing 15, no. 15: 3730. https://doi.org/10.3390/rs15153730
APA StyleJia, S., & Yang, Y. (2023). Spatiotemporal Characteristics and Driving Factors of Land-Cover Change in the Heilongjiang (Amur) River Basin. Remote Sensing, 15(15), 3730. https://doi.org/10.3390/rs15153730