Remote Sensing and Geovisualization of Rock Slopes and Landslides
Abstract
:1. Introduction
2. Methods
2.1. Remote Sensing Equipment and Software
2.2. MR/VR Hardware
2.3. Workflow for Data Collection, Geovisualization, and Processing
3. Results
3.1. Yak Peak (British Columbia, Canada)
Remote Sensing Analysis
3.2. Mt. Kidd (Alberta, Canada)
3.3. Jure landslide (Nepal)
3.3.1. Remote Sensing Analysis
3.3.2. 2D Rockfall Simulations
3.3.3. MR Rockfall Simulations
4. Potential Future Applications of MR and VR for Rock Mass Characterization and Real-Time Data Collection and Processing
4.1. CoreLogger MR and XRCoreShack
4.2. EasyMineXR
5. Discussion and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Einstein, H.H.; Veneziano, D.; Baecher, G.B.; O’Reilly, K.J. The Effect of Discontinuity Persistence on Rock Slope Stability. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1983, 20, 227–236. [Google Scholar] [CrossRef]
- Hoek, E.; Brown, E.T. The Hoek–Brown Failure Criterion and GSI—2018 Edition. J. Rock Mech. Geotech. Eng. 2019, 11, 445–463. [Google Scholar] [CrossRef]
- ISRM Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1978, 15, 319–368. [CrossRef]
- Barton, N. The Shear Strength of Rock and Rock Joints. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1976, 13, 255–279. [Google Scholar] [CrossRef]
- Stead, D.; Donati, D.; Wolter, A.; Sturzenegger, M. Application of Remote Sensing to the Investigation of Rock Slopes: Experience Gained and Lessons Learned. ISPRS Int. J. Geo-Inf. 2019, 8, 296. [Google Scholar] [CrossRef] [Green Version]
- Sturzenegger, M.; Stead, D. Close-Range Terrestrial Digital Photogrammetry and Terrestrial Laser Scanning for Discontinuity Characterization on Rock Cuts. Eng. Geol. 2009, 106, 163–182. [Google Scholar] [CrossRef]
- Donati, D.; Stead, D.; Brideau, M.A.; Ghirotti, M. Using Pre-Failure and Post-Failure Remote Sensing Data to Constrain the Three-Dimensional Numerical Model of a Large Rock Slope Failure. Landslides 2021, 18, 827–847. [Google Scholar] [CrossRef]
- Jaboyedoff, M.; Oppikofer, T.; Abellán, A.; Derron, M.-H.; Loye, A.; Metzger, R.; Pedrazzini, A. Use of LIDAR in Landslide Investigations: A Review. Nat. Hazards 2012, 61, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Guerin, A.; Jaboyedoff, M.; Collins, B.D.; Derron, M.H.; Stock, G.M.; Matasci, B.; Boesiger, M.; Lefeuvre, C.; Podladchikov, Y.Y. Detection of Rock Bridges by Infrared Thermal Imaging and Modeling. Sci. Rep. 2019, 9, 13138. [Google Scholar] [CrossRef] [Green Version]
- Abellán, A.; Jaboyedoff, M.; Oppikofer, T.; Vilaplana, J.M. Detection of Millimetric Deformation Using a Terrestrial Laser Scanner: Experiment and Application to a Rockfall Event. Nat. Hazards Earth Syst. Sci. 2009, 9, 365–372. [Google Scholar] [CrossRef] [Green Version]
- Atzeni, C.; Barla, M.; Pieraccini, M.; Antolini, F. Early Warning Monitoring of Natural and Engineered Slopes with Ground-Based Synthetic-Aperture Radar. Rock Mech. Rock Eng. 2015, 48, 235–246. [Google Scholar] [CrossRef] [Green Version]
- Corsini, A.; Castagnetti, C.; Bertacchini, E.; Rivola, R.; Ronchetti, F.; Capra, A. Integrating Airborne and Multi-Temporal Long-Range Terrestrial Laser Scanning with Total Station Measurements for Mapping and Monitoring a Compound Slow Moving Rock Slide. Earth Surf. Process. Landf. 2013, 38, 1330–1338. [Google Scholar] [CrossRef]
- Stumpf, A.; Malet, J.P.; Allemand, P.; Pierrot-Deseilligny, M.; Skupinski, G. Ground-Based Multi-View Photogrammetry for the Monitoring of Landslide Deformation and Erosion. Geomorphology 2015, 231, 130–145. [Google Scholar] [CrossRef]
- Kenner, R.; Gischig, V.; Gojcic, Z.; Quéau, Y.; Kienholz, C.; Figi, D.; Thöny, R.; Bonanomi, Y. The Potential of Point Clouds for the Analysis of Rock Kinematics in Large Slope Instabilities: Examples from the Swiss Alps: Brinzauls, Pizzo Cengalo and Spitze Stei. Landslides 2022, 19, 1357–1377. [Google Scholar] [CrossRef]
- Kromer, R.A.; Abellán, A.; Hutchinson, D.J.; Lato, M.; Chanut, M.-A.; Dubois, L.; Jaboyedoff, M. Automated Terrestrial Laser Scanning with Near-Real-Time Change Detection—Monitoring of the Séchilienne Landslide. Earth Surf. Dyn. 2017, 5, 293–310. [Google Scholar] [CrossRef] [Green Version]
- Williams, J.G.; Rosser, N.J.; Hardy, R.J.; Brain, M.J.; Afana, A.A. Optimising 4-D Surface Change Detection: An Approach for Capturing Rockfall Magnitude–Frequency. Earth Surf. Dyn. 2018, 6, 101–119. [Google Scholar] [CrossRef] [Green Version]
- Shan, J.; Toth, C.K. Topographic Laser Ranging and Scanning. Principles and Processing; Taylor & Francis Group: Boca Raton, FL, USA, 2008; ISBN 978-1-4200-5142-1. [Google Scholar]
- Westoby, M.J.; Brasington, J.; Glasser, N.F.; Hambrey, M.J.; Reynolds, J.M. “Structure-from-Motion” Photogrammetry: A Low-Cost, Effective Tool for Geoscience Applications. Geomorphology 2012, 179, 300–314. [Google Scholar] [CrossRef] [Green Version]
- Giordan, D.; Godone, D.; Baldo, M.; Piras, M.; Grasso, N.; Zerbetto, R. Survey Solutions for 3D Acquisition and Representation of Artificial and Natural Caves. Appl. Sci. 2021, 11, 6482. [Google Scholar] [CrossRef]
- Menegoni, N.; Giordan, D.; Perotti, C.; Tannant, D.D. Detection and Geometric Characterization of Rock Mass Discontinuities Using a 3D High-Resolution Digital Outcrop Model Generated from RPAS Imagery—Ormea Rock Slope, Italy. Eng. Geol. 2019, 252, 145–163. [Google Scholar] [CrossRef]
- Francioni, M.; Stead, D.; Clague, J.J.; Westin, A. Identification and Analysis of Large Paleo-Landslides at Mount Burnaby, British Columbia. Environ. Eng. Geosci. 2018, 24, 221–235. [Google Scholar] [CrossRef]
- Clark, M.R.; McCann, D.M.; Forde, M.C. Application of Infrared Thermography to the Non-Destructive Testing of Concrete and Masonry Bridges. NDT E Int. 2003, 36, 265–275. [Google Scholar] [CrossRef]
- Röper, T.; Greskowiak, J.; Massmann, G. Detecting Small Groundwater Discharge Springs Using Handheld Thermal Infrared Imagery. Groundwater 2014, 52, 936–942. [Google Scholar] [CrossRef]
- Baroň, I.; Bečkovský, D.; Míča, L. Application of Infrared Thermography for Mapping Open Fractures in Deep-Seated Rockslides and Unstable Cliffs. Landslides 2014, 11, 15–27. [Google Scholar] [CrossRef]
- Teza, G.; Marcato, G.; Pasuto, A.; Galgaro, A. Integration of Laser Scanning and Thermal Imaging in Monitoring Optimization and Assessment of Rockfall Hazard: A Case History in the Carnic Alps (Northeastern Italy). Nat. Hazards 2015, 76, 1535–1549. [Google Scholar] [CrossRef]
- Pappalardo, G.; Mineo, S.; Zampelli, S.P.; Cubito, A.; Calcaterra, D. InfraRed Thermography Proposed for the Estimation of the Cooling Rate Index in the Remote Survey of Rock Masses. Int. J. Rock Mech. Min. Sci. 2016, 83, 182–196. [Google Scholar] [CrossRef]
- Mineo, S.; Pappalardo, G.; Rapisarda, F.; Cubito, A.; Maria, G.D. Integrated Geostructural, Seismic and Infrared Thermography Surveys for the Study of an Unstable Rock Slope in the Peloritani Chain (NE Sicily). Eng. Geol. 2015, 195, 225–235. [Google Scholar] [CrossRef]
- Frodella, W.; Morelli, S.; Gigli, G.; Casagli, N. Contribution of Infrared Thermography to the Slope Instability Characterization. In Proceedings of the World Landslide Forum 3, Beijing, China, 2–6 June 2014; pp. 97–103. [Google Scholar]
- van der Meer, F.D.; van der Werff, H.M.A.; van Ruitenbeek, F.J.A.; Hecker, C.A.; Bakker, W.H.; Noomen, M.F.; van der Meijde, M.; Carranza, E.J.M.; de Smeth, J.B.; Woldai, T. Multi- and Hyperspectral Geologic Remote Sensing: A Review. Int. J. Appl. Earth Obs. Geoinf. 2012, 14, 112–128. [Google Scholar] [CrossRef]
- Riaza, A.; Strobl, P.; Beisl, U.; Hausold, A.; Müller, A. Spectral Mapping of Rock Weathering Degrees on Granite Using Hyperspectral DAIS 7915 Spectrometer Data. ITC J. 2001, 3, 345–354. [Google Scholar] [CrossRef]
- Debba, P.; Carranza, E.J.M.; Stein, A.; van der Meer, F.D. Deriving Optimal Exploration Target Zones on Mineral Prospectivity Maps. Math. Geosci. 2009, 41, 421–446. [Google Scholar] [CrossRef]
- Kurz, T.H.; Buckley, S.J.; Howell, J. A Close-Range Hyperspectral Imaging for Geological Field Studies: Workflow and Methods. Int. J. Remote Sens. 2013, 34, 1798–1822. [Google Scholar] [CrossRef]
- Murphy, R.J.; Schneider, S.; Monteiro, S.T. Mapping Layers of Clay in a Vertical Geological Surface Using Hyperspectral Imagery: Variability in Parameters of SWIR Absorption Features under Different Conditions of Illumination. Remote Sens. 2014, 6, 9104–9129. [Google Scholar] [CrossRef] [Green Version]
- Calvin, W.M.; Pace, E.L. Mapping Alteration in Geothermal Drill Core Using a Field Portable Spectroradiometer. Geothermics 2016, 61, 12–23. [Google Scholar] [CrossRef] [Green Version]
- Milgram, P.; Kishino, F. A Taxonomy of Mixed Reality Visual Displays. IEICE Trans. Inf. Syst. 1994, E77, 1321–1329. [Google Scholar]
- WayRay. Available online: https://wayray.com/ (accessed on 15 March 2023).
- Brepohl, P.C.A.; Leite, H. Virtual Reality Applied to Physiotherapy: A Review of Current Knowledge. Virtual Real. 2023, 27, 71–95. [Google Scholar] [CrossRef]
- Choi, S.; Jung, K.; Noh, S.D. Virtual Reality Applications in Manufacturing Industries: Past Research, Present Findings, and Future Directions. Concurr. Eng. 2015, 23, 40–63. [Google Scholar] [CrossRef]
- Product—Clirio, Inc. Available online: https://clir.io/product/ (accessed on 15 March 2023).
- Onsel, E.; Chang, O.; Mysiorek, J.; Donati, D.; Stead, D.; Barnett, W.; Zorzi, L. Applications of Mixed and Virtual Reality Techniques in Site Characterization Multi-Sensor Remote Sensing Techniques Site Characterization with MR/VR. In Proceedings of the 26th Vancouver Geotechnical Society Symposium, Vancouver, BC, Canada, 31 May 2019. [Google Scholar]
- Chang, O. Application of Mixed and Virtual Reality in Geoscience and Engineering Geology. Master’s Thesis, Simon Fraser University, Burnaby, BC, Canada, 2019. Available online: https://summit.sfu.ca/item/34761 (accessed on 15 March 2023).
- Riegl RiSCAN PRO 2.6. 2018. Available online: http://www.riegl.com/products/software-packages/riscan-pro/ (accessed on 15 March 2023).
- Agisoft Agisoft Metashape 1.5. 2020. Available online: https://www.agisoft.com/ (accessed on 15 March 2023).
- FLIR ResearchIR 4.4. 2019. Available online: https://www.flir.com/support-center/Instruments/researchir/ (accessed on 15 March 2023).
- L3 Harris Geospatiale ENVI® Geospatial Image Analysis Software 5.5. 2019. Available online: https://www.l3harrisgeospatial.com/Software-Technology/ENVI (accessed on 15 March 2023).
- Lichtenauer, J.F.; Sirmacek, B. A Semi-Automatic Procedure for Texturing of Laser Scanning Point Clouds with Google Streetview Images. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. ISPRS Arch. 2015, 40, 109–114. [Google Scholar] [CrossRef] [Green Version]
- Eaton, J.; Bateman, D.; Hauberg, S.; Webhring, R. GNU Octave Version 8.1.0 Manual: A High-Level Interactive Language for Numerical Computations. 2023. Available online: https://octave.org/ (accessed on 20 May 2023).
- Meshlab 2022.02. 2022. Available online: https://www.meshlab.net/ (accessed on 15 March 2023).
- CloudCompare. CloudCompare 2.12 [GPL Software]. 2022. Available online: https://www.danielgm.net/cc/ (accessed on 15 March 2023).
- Donati, D.; Stead, D.; Lato, M.; Gaib, S. Spatio-Temporal Characterization of Slope Damage: Insights from the Ten Mile Slide, British Columbia, Canada. Landslides 2020, 17, 1037–1049. [Google Scholar] [CrossRef]
- Mysiorek, J.; Onsel, E.; Stead, D.; Rosser, N.J. Engineering Geological Characterization of the 2014 Jure Landslide, Nepal: An Interactive Mixed-Reality Approach to Slope Characterization. In Proceedings of the Under Land and Sea. GeoStJohn 2019—72nd Canadian Geotechnical Conference, St. John’s, NL, Canada, 29 September–2 October 2019. [Google Scholar]
- Unity Unity—Game Engine 2020. Available online: https://www.unity.com/ (accessed on 15 March 2023).
- Blender Development Team Blender 2.93 LTS. 2022. Available online: https://www.blender.org/ (accessed on 15 March 2023).
- Cairnes, C.E. Coquihalla Area, British Columbia; FA Acland: Ottawa, ON, Canada, 1924; 193p. [Google Scholar]
- Berman, R.G.; Armstrong, R.L. Geology of the Coquihalla Volcanic Complex, Southwestern British Columbia. Can. J. Earth Sci. 1980, 17, 985–995. [Google Scholar] [CrossRef]
- Tuckey, Z. An Integrated Field Mapping-Numerical Modelling Approach to Characterising Discontinuity Persistence and Intact Rock Bridges in Large Open Pit Slopes. M.Sc. Thesis, Simon Fraser University, 2012. Available online: https://summit.sfu.ca/item/12708 (accessed on 10 April 2023).
- Leith, K.; Moore, J.R.; Amann, F.; Loew, S. In Situ Stress Control on Microcrack Generation and Macroscopic Extensional Fracture in Exhuming Bedrock. J. Geophys. Res. 2014, 119, 594–615. [Google Scholar] [CrossRef]
- Paronuzzi, P.; Bolla, A. In-Depth Field Survey of a Rockslide Detachment Surface to Recognise the Occurrence of Gravity-Induced Cracking. Eng. Geol. 2022, 302, 106636. [Google Scholar] [CrossRef]
- de Vilder, S.J.; Rosser, N.J.; Brain, M.J. Forensic Analysis of Rockfall Scars. Geomorphology 2017, 295, 202–214. [Google Scholar] [CrossRef] [Green Version]
- McMechan, M.A. Rocky Mountain Foothills and Front Ranges in Kananaskis Country, West of Fifth Meridian, Alberta, Geological Survey of Canada, “A” Series Map 1865A, 1995, 1 Sheet; Natural Resources Canada: Ottawa, ON, Canada, 1995. [Google Scholar] [CrossRef]
- Zechmeister, M.S.; Pannalal, S.; Elmore, R.D. A Multidisciplinary Investigation of Multiple Remagnetizations within the Southern Canadian Cordillera, SW Alberta and SE British Columbia. Geol. Soc. Lond. Spec. Publ. 2012, 371, 123–144. [Google Scholar] [CrossRef]
- Price, R.A. The Cordilleran Foreland Thrust and Fold Belt in the Southern Canadian Rocky Mountains. Geol. Soc. Lond. Spec. Publ. 1981, 9, 427–448. [Google Scholar] [CrossRef]
- Upreti, B.N. An Overview of the Stratigraphy and Tectonics of the Nepal Himalaya. J. Asian Earth Sci. 1999, 17, 577–606. [Google Scholar] [CrossRef]
- Dhital, M.R. Geology of the Nepal Himalaya; Regional Geology Reviews; Springer International Publishing: Cham, Switzerland, 2015; ISBN 978-3-319-02495-0. [Google Scholar]
- Champati ray, P.K.; Chattoraj, S.L. Sunkoshi Landslide in Nepal and Its Possible Impact in India: A Remote Sensing Based Appraisal. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Hyderabad, India, 9–12 December 2014; Copernicus GmbH: Göttingen, Germany, 2014; Volume XL–8, pp. 1345–1351. [Google Scholar]
- Shrestha, B.B.; Nakagawa, H. Hazard Assessment of the Formation and Failure of the Sunkoshi Landslide Dam in Nepal. Nat. Hazards 2016, 82, 2029–2049. [Google Scholar] [CrossRef]
- Mysiorek, J. Engineering Geological Characterization of the 2014 Jure Nepal Landslide: An Integrated Field, Remote Sensing-Virtual/Mixed Reality Approach. Master’s Thesis, Simon Fraser University, Burnaby, BC, Canada, 2019. Available online: https://summit.sfu.ca/item/19917 (accessed on 10 March 2023).
- Thiele, S.T.; Grose, L.; Samsu, A.; Micklethwaite, S.; Vollgger, S.A.; Cruden, A.R. Rapid, Semi-Automatic Fracture and Contact Mapping for Point Clouds, Images and Geophysical Data. Solid Earth 2017, 8, 1241–1253. [Google Scholar] [CrossRef] [Green Version]
- Rocscience RocFall2. 2022. Available online: https://www.rocscience.com/software/rocfall (accessed on 15 March 2023).
- ESRI ArcMap 10.6. 2019. Available online: https://www.esri.com/ (accessed on 15 March 2023).
- Orpen, J.L. Best Practice and New Technology in Core Drilling, Logging and Fracture Analysis. In Proceedings of the 1st International Conference on Discrete Fracture Network Engineering, Vancouver, BC, Canada, 19 October 2014. [Google Scholar]
- SRK Consulting EasyMineXR Collaborative Mapping Software. 2022. Available online: https://www.srk.com/en/products/easyminexr-collaborative-mapping-software (accessed on 15 April 2023).
- Onsel, I.E.; Donati, D.; Stead, D.; Chang, O. Applications of Virtual and Mixed Reality in Rock Engineering. In Proceedings of the 52nd U.S. Rock Mechanics/Geomechanics Symposium, Washington, DC, USA, 17–20 June 2018. [Google Scholar]
- Seequent Leapfrog Geo. 2022. Available online: https://www.seequent.com/products-solutions/leapfrog-geo/ (accessed on 15 April 2023).
- Hammah, R.E.; Curran, J.H. On Distance Measures for the Fuzzy K-Means Algorithm for Joint Data. Rock Mech. Rock Eng. 1999, 32, 1–27. [Google Scholar] [CrossRef]
- Barton, N.; Choubey, V. The Shear Strength of Rock Joints in Theory and Practice. Rock Mech. Felsmech. Mec. Roches 1977, 10, 1–54. [Google Scholar] [CrossRef]
- Deere, D.U.; Deere, D.W. Rock Quality Designation (RQD) after Twenty Years; Defense Techniccal Information Centre: Fort Belvoir, VA, USA, 1989; ADA207597; Available online: https://apps.dtic.mil/sti/citations/ADA207597 (accessed on 15 April 2023).
- NGI. Using the Q-System. Rock Mass Classification and Support Design; NGI: Oslo, Norway, 2022.
- Pells, P.J.; Bieniawski, Z.T.; Hencher, S.R.; Pells, S.E. Rock Quality Designation (RQD): Time to Rest in Peace. Can. Geotech. J. 2017, 54, 825–834. [Google Scholar] [CrossRef] [Green Version]
Yak Peak | Mt. Kidd | Jure Landslide | XRCoreShack | EasyMineXR | |
---|---|---|---|---|---|
Remote sensing data collection |
|
|
|
|
|
2D/3D visualization and processing (on screen) |
|
|
|
| Possibility to export HL scans to traditional visualization systems |
MR/VR visualization | - | HSI, IRT datasets visualized as texture on 3D mesh from TLS dataset |
| 2D remote sensing datasets visualized as texture on 3D mesh from SfM models | Visualization of remote sensing datasets from various sources (e.g., SfM, TLS) |
MR/VR data processing | - | - | Outcrop scale MR/VR discontinuity mapping | Datasets visualized using MR/VR headsets, where mapping is undertaken | Immersive, MR rock mass characterization using remote sensing datasets and models |
MR/VR real time data collection and processing | - | - | - | Real time rock core logging using virtual, interactive sheets and charts | Real time discontinuity mapping, annotation, stereonet analysis |
Advantages | Challenges | |
---|---|---|
Virtual reality (VR) |
|
|
Mixed reality (MR) |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Donati, D.; Stead, D.; Onsel, E.; Mysiorek, J.; Chang, O. Remote Sensing and Geovisualization of Rock Slopes and Landslides. Remote Sens. 2023, 15, 3702. https://doi.org/10.3390/rs15153702
Donati D, Stead D, Onsel E, Mysiorek J, Chang O. Remote Sensing and Geovisualization of Rock Slopes and Landslides. Remote Sensing. 2023; 15(15):3702. https://doi.org/10.3390/rs15153702
Chicago/Turabian StyleDonati, Davide, Doug Stead, Emre Onsel, Jesse Mysiorek, and Omar Chang. 2023. "Remote Sensing and Geovisualization of Rock Slopes and Landslides" Remote Sensing 15, no. 15: 3702. https://doi.org/10.3390/rs15153702
APA StyleDonati, D., Stead, D., Onsel, E., Mysiorek, J., & Chang, O. (2023). Remote Sensing and Geovisualization of Rock Slopes and Landslides. Remote Sensing, 15(15), 3702. https://doi.org/10.3390/rs15153702