Characteristics of Internal Tides from ECCO Salinity Estimates and Observations in the Bay of Bengal
Abstract
:1. Introduction
2. Data and Methods
2.1. Estimating the Circulation and Climate of the Ocean (ECCO) Salinity Estimates
2.2. Observations
2.3. Methodology
3. Results
3.1. Seasonal Variation of ECCO Salinity in the Bay of Bengal and Andaman Sea
3.2. Latitude-Time Variations of Raw ECCO Salinity in the Selected Boxes A to F
3.3. Time Series of Filtered ECCO Salinity for Boxes A to F
3.4. Comparison of ECCO Salinity with the Aquarius Salinity and SMOS Salinity
3.5. Spatial Variations in the Surface Salinity Gradients in the Bay of Bengal from Different Salinity Products
3.6. Spatial Variations in Bandpass-Filtered ECCO Salinity on the Dates of Large Minimum Salinity Amplitudes in the Boxes
3.7. Characteristics of Semi-Diurnal Internal Tide in the Boxes A to F as Inferred from Wavelet Analysis and 2D-FFT Spectra of Bandpass Filtered ECCO Salinity
3.8. Analysis of Moored-Buoy Observed Data in the Andaman Sea and Bay of Bengal
3.9. Wavelet Analysis of Bandpass-Filtered Observed Salinity at Different Depths at the Moored Buoys
3.10. Walevet Power Spectra at Various Observed Depths at BD12 Moored Buoy
3.11. Wavelet Coherence between the Filtered ECCO Salinity for the Pairs of Boxes (A to B, B to C and D to E, E to F)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Mohanty, S.; Rao, A.D.; Latha, G. Energetics of semidiurnal internal tides in the Andaman Sea. J. Geophys. Res. Oceans 2018, 123, 6224–6240. [Google Scholar] [CrossRef]
- Bulatov, V.V.; Vladimirov, Y.V. General problems of the internal gravity waves linear theory. arXiv 2006, arXiv:physics/0609236. [Google Scholar]
- Meyer, A.; Polzin, K.L.; Sloyan, B.M.; Phillips, H.E. Internal waves and mixing near the Kerguelen Plateau. J. Phys. Oceanogr. 2015, 46, 417–437. [Google Scholar] [CrossRef]
- Varkey, M.J.; Murty, V.S.N.; Suryanarayana, A. Physical Oceanography of the Bay of Bengal and Andaman Sea. Oceanogr. Mar. Biol. Annu. Rev. 1996, 34, 1–70. [Google Scholar]
- Lozovatsky, L.; Wijesekera, H.; Jarosz, E.; Lilover, M.; Pirro, A.; Silver, Z.; Centurioni, L.; Fernando, H.J.S. A snapshot of internal waves and hydrodynamic instabilities in the southern Bay of Bengal. J. Geophys. Res. Oceans 2016, 121, 5898–5915. [Google Scholar] [CrossRef] [Green Version]
- Osadchiev, A.A. Small mountainous rivers generate high-frequency internal waves in coastal ocean. Sci. Rep. 2018, 8, 16609. [Google Scholar] [CrossRef] [Green Version]
- Phaniharam, S.A.; Venkateswarlu, C.; Gireesh, B.; Prasad, K.V.S.R. Study of internal wave characteristics off northwest Bay of Bengal using synthetic aperture radar. Nat. Harazds 2020, 104, 2451–2460. [Google Scholar] [CrossRef]
- Sengutpa, D.; Bharat Raj, G.N.; Ravichandran, M.; Sree Lekha, J.; Papa, F. Near-surface salinity and stratification in the north Bay of Bengal from moored observations. Geophys. Res. Lett. 2016, 43, 4448–4456. [Google Scholar] [CrossRef] [Green Version]
- Sree Lekha, J.; Buckley, J.M.; Tandon, A.; Sengupta, D. Subseasonal dispersal of freshwater in the northern Bay of Bengal in the 2013 summer monsoon season. J. Geophys. Res. Ocean 2018, 123, 6330–6348. [Google Scholar] [CrossRef]
- Madhu, J.; Rao, A.D.; Mohanty, S.; Pradhan, H.K.; Murty, V.S.N.; Prasad, K.V.S.R. Internal waves over the shelf in the Western Bay of Bengal: A case study. Ocean. Dyn. 2016, 67, 147–161. [Google Scholar] [CrossRef]
- Osborne, A.R.; Burch, T.L. Internal solitons in the Andaman Sea. Science 1980, 208, 451–460. [Google Scholar] [CrossRef] [PubMed]
- Apel, J.R. Chapter 7. Oceanic Internal Waves and Solitons: An Atlas of Oceanic Internal Solitary Waves (May 2002) by Global Ocean Associates, Prepared for the Office of Naval Research 2002. Available online: https://www.sarusersmanual.com/ManualPDF/NOAASARManual_CH07_pg189-206.pdf (accessed on 8 January 2023).
- Rizal, S.; Damm, P.; Wahid, M.A.; Sundermann, J.; Ilhamsyah, Y.; Iskandar, T.; Muhammad. General Circulation in the Malacca Strait and Andaman Sea: A Numerical Model Study. Am. J. Environ. Sci. 2012, 8, 479–488. [Google Scholar] [CrossRef]
- Osborne, A.R.; Burch, T.L.; Scarlet, R.L. The influence of internal wave on deep-water drilling. J. Petroleum Tech. 1978, 30, 1497–1504. [Google Scholar] [CrossRef]
- Perry, R.B.; Schmike, G.R. Large amplitude internal waves observed off the Northwestern coast of Sumatra. J. Geophys. Res. 1965, 70, 2319–2324. [Google Scholar] [CrossRef]
- Jensen, T.G.; Magalhães, J.; Wijesekera, H.W.; Buijsman, M.; Helber, R.; Richman, J. Numerical modelling of tidally generated internal wave radiation from the Andaman Sea into the Bay of Bengal. Deep Sea. Res. Part II Top. Stud. Oceanogr. 2020, 172, 104710. [Google Scholar] [CrossRef]
- Wijeratne, E.M.S.; Woodworth, P.L.; Pugh, D.T. Meteorological and internal wave forcing of seiches along the Sri Lanka coast. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef]
- Apel, J.R.; Badley, M.; Chiu, C.S.; Finette, S.; Headrick, R.; Kemp, J.; Lynch, J.F.; Newhall, A.; Orr, M.H.; Pasewark, B.H.; et al. An overview of the 1995 SWARM Shallow-water internal wave acoustic scattering experiment. IEEE J. Oceanic Eng. 1997, 22, 465–500. [Google Scholar] [CrossRef]
- Shimizu, K.; Nakayama, K. Effects of topography and Earth’s rotation on the oblique interaction of internal solitary-like waves in the Andaman Sea. J. Geophys. Res. Oceans. 2017, 122, 7449–7465. [Google Scholar] [CrossRef] [Green Version]
- Jackson, C.; DaSilva, J.C.B.; Jeans, G. The Generation of Nonlinear Internal Waves. Oceanography 2012, 25, 2. [Google Scholar] [CrossRef] [Green Version]
- Alpers, W.; Wang-Chen, H.; Hock, L. Observation of internal waves in the Andaman Sea by ERS SAR. In Proceedings of the IGARSS’97. 1997 IEEE International Geoscience and Remote Sensing Symposium Proceedings. Remote Sensing—A Scientific Vision for Sustainable Development, Singapore, 3–8 August 1997; Volume 4, pp. 1518–1520. Available online: https://ieeexplore.ieee.org/document/608926 (accessed on 29 March 2021).
- Magalhaes, J.M.; Da Silva, J.C.B. Internal solitary waves in the Andaman Sea: New insights from SAR Imagery. Remote Sens. 2018, 10, 861. [Google Scholar] [CrossRef] [Green Version]
- Raju, N.J.; Dash, M.K.; Dey, S.P.; Bhaskaran, P.K. Potentail generation sites of internal solitary waves and their propagation characteristics in the Andaman Sea- a study based on MODIS true-colour and SAR observations. Environ. Monit. Assess. 2019, 191, 809. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, J.C.B.; Magalhaes, J.M. Internal solitons in the Andaman Sea: A new look at an old problem. In Remote Sensing of the Ocean, Sea Ice, Coastal Waters and Large Water Regions; SPIE: Bellingham, WA, USA, 2016; Volume 9999, pp. 42–54. [Google Scholar] [CrossRef] [Green Version]
- Hyder, P.; Jeans, D.R.G.; Cauqil, E.; Nerzic, R. Observational and Predictibility of internal solitons in the northern Andaman Sea. App. Ocean Res. 2005, 27, 1–11. [Google Scholar] [CrossRef]
- Magalhaes, J.M.; Da Silva, J.C.B.; Buijsman, M.C. Long lived second mode internal solitary waves in the Andaman Sea. Sci. Rep. 2020, 10, 10234. [Google Scholar] [CrossRef]
- Raju, N.J.; Mihir, K.D.; Bhaskaran, P.K.; Pandey, P.C. Numerical Investigation of Bidirectional Mode-1 and Mode-2 Internal Solitary Wave generation from north and south of Batti Malv Island, Nicobar Islands, India. J. Phys. Oceanogr. 2021, 51, 47–62. [Google Scholar] [CrossRef]
- Tensubam, C.M.; Raju, N.J.; Dash, M.K. Estimation of internal solitary wave propagation speed in the Andaman Sea using multi-satellite images. Remote Sens. Environ. 2021, 252, 112123. [Google Scholar] [CrossRef]
- Jithin, A.K.; Francis, P.A.; Chatterjee, A.; Suprit, K.; Fernando, V. Validation of the Simulations by the High-Resolution Operational Ocean Forecast and Reanalysis System (HOOFS) for the Bay of Bengal; Technical Report; INCOIS: Hyderabad, India, 2017; p. 4418. Available online: https://moeseprints.incois.gov.in (accessed on 29 March 2021).
- Jithin, A.K.; Francis, P.A.; Unnikrishnan, A.S.; Ramakrishna, S.S.V.S. Modeling of internal tides in the western Bay of Bengal: Characteristics and energetics. J. Geophys. Res. Oceans. 2019, 124, 8720–8746. [Google Scholar] [CrossRef]
- Susanto, R.D.; Ray, R.D. Seasonal and Interannual Variability of Tidal Mixing Signatures in Indonesian Seas from High-Resolution Sea Surface Temperature. Remote Sens. 2022, 14, 1934. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Meyers, G.; Ando, K.; Masumoto, Y.; Murty, V.S.N.; Ravichandran, M.; Syamsudin, F.; Vialard, J.; Yu, L.; Yu, W. RAMA: The Research Moored Array for African-Asian-Australian Monsoon Analysis and Prediction. Bull. Am. Meteorol. Soc. 2009, 90, 459–480. [Google Scholar] [CrossRef] [Green Version]
- Venkatesan, R.; Shamji, V.; Latha, G.; Mathew, S.; Rao, R.; Muthiah, A.; Atmanand, M. In situ ocean subsurface time-series measurements from OMNI buoy network in the Bay of Bengal. Curr. Sci. 2013, 104, 1166–1177. [Google Scholar]
- Forget, G.; Campin, J.M.; Heimbach, P.; Hill, C.N.; Ponte, R.M.; Wunsch, C. ECCO version 4: An integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci. Model Dev. 2015, 8, 3071–3104. [Google Scholar] [CrossRef] [Green Version]
- Su, Z.; Wang, J.; Klein, P.; Thompson, A.F.; Menemenlis, D. Ocean submesoscales as a key component of the global heat budget. Nat. Commun. 2018, 9, 775. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Arbic, B.K.; Elipot, S.; Brasch, J.M.; Menemenlis, D.; Ponte, A.L.; Shriver, J.F.; Yu, X.; Zaron, E.D.; Alford, M.H.; Buijsman, M.C.; et al. Near-surface oceanic kinetic energy distributions from drifter observations and numerical models. J. Geophys. Res. Ocean. 2002, 127, e2022JC018551. [Google Scholar] [CrossRef]
- Fekete, B.M.; Vöröosmarty, C.J.; Grabs, W. High-resolution fields of global runoff combining observed river discharge and simulated water balances. Global Biogeochem. Cycles 2002, 16, 15-1–15-10. [Google Scholar] [CrossRef]
- Savage, A.C.; Arbic, B.K.; Alford, M.H.; Ansong, J.K.; Farrar, J.T.; Menemenlis, D.; O’Rourke, A.K.; Richman, J.G.; Shriver, J.F.; Voet, G.; et al. Spectral decomposition of internal gravity wave sea surface height in global models. J. Geophys. Res. Oceans. 2017, 122, 7803–7821. [Google Scholar] [CrossRef]
- Arbic, B.K.; Alford, M.H.; Ansong, J.K.; Buijsman, M.C.; Ciotti, R.B.; Farrar, J.T.; Zhao, Z. A Primer on Global Internal Tide and Internal Gravity Wave Continuum Modeling in HYCOM and MITgcm. In New Front in Operational Oceanog; Chassignet, E.A., Pascual, J.T., Verron, J., Eds.; GODAE OceanView: Tallahassee, FL, USA, 2018; pp. 307–392. [Google Scholar] [CrossRef] [Green Version]
- Zhang, H.M.; Bates, J.J.; Reynolds, R.W. Assessment of composite global sampling: Sea surface wind speed. Geophys. Res. Lett. 2006, 33. [Google Scholar] [CrossRef]
- Apel, J.R.; Thompson, D.R.; Tilley, D.O.; van Dyke, P. Hydrodynamics and radar signatures of internal solitons in the Andaman Sea. Johns Hopkins APL Tech. Dig. 1985, 6, 330–337. [Google Scholar]
- Wyrtki, K. Physical Oceanography of the Southeast Asian Waters; Naga Report 2; The University of California: La Jolla, CA, USA, 1961; Volume 195. [Google Scholar]
- Mandal, S.; Sil, S.; Gangopadhyay, A.; Jena, B.K.; Venkatesan, R.; Glen, G. Seasonal and tidal variability of surface currents in the western Andaman Sea using HF Radars and Buoy Observations during 2016–2017. IEEE Trans. Geosci. Rem. Sens. 2020, 59, 7235–7244. [Google Scholar] [CrossRef]
- Sindhu, B.; Unnikrishnan, A.S. Characteristics of Tides in the Bay of Bengal. Mar. Geod. 2013, 36, 377–407. [Google Scholar] [CrossRef]
- Krishnamurti, T.N.; Dubey, S.; Kumar, V.; Deepa, R.; Bhardwaj, A. Scale interaction during an extreme rain event over southeast India. Quart. J. Royal Meteorol. Soc. 2017, 143, 1442–1458. [Google Scholar] [CrossRef]
- Roman-Stork, H.; Subrahmanyam, B.; Trott, C. Monitoring Intraseasonal Oscillations in the Indian Ocean Using Satellite Observations. J. Geophys. Res. Oceans. 2020, 125, e2019JC015891. [Google Scholar] [CrossRef]
- Subrahmanyam, B.; Trott, C.B.; Murty, V.S.N. Detection of Intraseasonal Oscillations in SMAP salinity in the Bay of Bengal. Geo. Phys. Letts. 2018, 45, 7057–7065. [Google Scholar] [CrossRef]
- Trott, C.B.; Subrahmanyam, B. Detection of intraseasonal oscillations in the Bay of Bengal using altimetry. Atmos. Sci. Lett. 2019, 20, e920. [Google Scholar] [CrossRef] [Green Version]
- Nam, S.; Kim, D.J.; Lee, S.W.; Kim, B.G.; Kang, K.M.; Cho, Y.K. Nonlinear internal wave spirals in the northern East China Sea. Sci. Rep. 2018, 8, 3473. [Google Scholar] [CrossRef] [PubMed]
- Kawaguchi, Y.; Wagawa, T.; Igeta, Y. Near-inertial internal waves and multiple-inertial oscillations trapped by negative vorticity anomaly in the central Sea of Japan. Progr. Oceanogr. 2020, 181, 102240. [Google Scholar] [CrossRef]
- Zhao, J. Dynamic state estimation with Model uncertainties using H-infinity Extended Kalman Filter. IEEE Trans. Power Syst. 2017, 33, 1099–1100. [Google Scholar] [CrossRef]
- Grinsted, A.; Moore, J.C.; Jevrejeva, S. Application of the cross wavelet transform and wavelet coherence to geophysical time series. Nonlinear Process. Geophys. 2004, 11, 561–566. [Google Scholar] [CrossRef]
- Morlet, J. Sampling Theory and Wave Propagation. In Issues in Acoustic Signal—Image Processing and Recognition; Chen, C.H., Ed.; NATO ASI Series (Series F: Computer and System Sciences); Springer: Berlin/Heidelberg, Germany, 1983; Volume 1. [Google Scholar] [CrossRef]
- Torrence, C.; Compo, G.P. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1988, 79, 61–78. [Google Scholar] [CrossRef]
- Paris, M.L.; Subrahmanyam, B.; Trott, C.B.; Murty, V.S.N. Influence of ENSO Events on the Agulhas Leakage Region. Remote Sens. Earth Syst. Sci. 2018, 1, 79–88. [Google Scholar] [CrossRef]
- Trott, C.B.; Subrahmanyam, B.; Washburn, C. Investigating the Response of Temperature and Salinity in the Agulhas Current Region to ENSO Events. Remote Sens. 2021, 13, 1829. [Google Scholar] [CrossRef]
- Hayes, M.H. Statistical Digital Signal Processing and Modeling; John Wiley & Sons: Chichester, UK, 1996. [Google Scholar]
- Stoica, P.; Moses, R.L. Spectral Analysis of Signals; Pearson Prentice Hall: Hoboken, NJ, USA, 2005; 427p. [Google Scholar]
- Belonenko, T.V.; Kubryakov, A.A.; Stanichny, S.V. Spectral characteristics of Rossby waves in the Northwestern Pacific based on satellite altimetry. Izv. Atmos. Ocean. Phys. 2016, 52, 920–928. [Google Scholar] [CrossRef]
- Wang, M.; Xie, S.P.; Shen, S.S.; Du, Y. Rossby and Yanai Modes of Tropical Instability Waves in the Equatorial Pacific Ocean and a Diagnostic Model for Surface Currents. J. Phys. Oceanogr. 2020, 50, 3009–3024. [Google Scholar] [CrossRef]
- Fofonoff, N.P.; Millard, R.C., Jr. Algorithms for the Computation of Fundamental Properties of Seawater; UNESCO Technical Papers in Marine Sciences; 44; UNESCO: Paris, France, 1983; 53p. [Google Scholar] [CrossRef]
- Murty, V.S.N.; Sarma, Y.Y.B.; Rao, D.P.; Murty, C.S. Water characteristics, mixing and circulation in the Bay of Bengal during southwest monsoon. J. Mar. Res. 1992, 50, 207–228. [Google Scholar] [CrossRef]
- Shankar, D.; Vinayachandran, P.N.; Unnikrishnan, A.S. The monsoon currents in the north Indian Ocean. Progr. Ocean. 2002, 52, 63–120. [Google Scholar] [CrossRef]
- Lin, X.; Qiu, Y.; Sun, D. Thermohaline structures and heat/freshwater transports of mesoscale eddies in the Bay of Bengal observed by Argo and Satellite data. Remote Sens. 2019, 11, 2989. [Google Scholar] [CrossRef] [Green Version]
- Mukhopadhyay, S.; Shankar, D.; Aparna, S.G.; Fernando, V.; Kankakee, A. Observed variability of the East India Coastal Current on the continental shelf during 2010–2018. J. Earth Syst. Sci. 2020, 129, 77. [Google Scholar] [CrossRef]
IW Category | Box | Propagation Direction | k (1/degree) | Wavelength (km) | Period (h) | Speed (m/s) |
---|---|---|---|---|---|---|
Semi-diurnal (11–14 h) | Box A | Northeast | 10.202 | 10.880 | 12.722 | 0.238 |
Box B | Southwest | 6.306 | 17.602 | 12.773 | 0.383 | |
Box C | Southwest | 3.899 | 28.468 | 13.263 | 0.596 | |
Box D | Southwest | 8.902 | 12.468 | 12.896 | 0.269 | |
Box E | Southwest | 3.158 | 35.144 | 12.387 | 0.788 | |
Box F | Southwest | 8.219 | 13.506 | 12.082 | 0.311 |
Internal Tide Category | Box | Propagation Direction | k (1/degree) | Wavelength (km) | Period (h) | Speed (m/s) |
---|---|---|---|---|---|---|
Diurnal (22–26 h) | Box A | Northeast | 2.418 | 45.899 | 23.572 | 0.541 |
Box B | Southwest | 8.933 | 12.425 | 23.576 | 0.146 | |
Box C | Southwest | 11.327 | 9.799 | 23.491 | 0.116 | |
Box D | Southwest | 6.865 | 16.169 | 23.794 | 0.189 | |
Box E | Southwest | 6.865 | 16.169 | 23.877 | 0.188 | |
Box F | Southwest | 6.306 | 17.602 | 24.165 | 0.202 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Subrahmanyam, B.; Murty, V.S.N.; Hall, S.B. Characteristics of Internal Tides from ECCO Salinity Estimates and Observations in the Bay of Bengal. Remote Sens. 2023, 15, 3474. https://doi.org/10.3390/rs15143474
Subrahmanyam B, Murty VSN, Hall SB. Characteristics of Internal Tides from ECCO Salinity Estimates and Observations in the Bay of Bengal. Remote Sensing. 2023; 15(14):3474. https://doi.org/10.3390/rs15143474
Chicago/Turabian StyleSubrahmanyam, Bulusu, V.S.N. Murty, and Sarah B. Hall. 2023. "Characteristics of Internal Tides from ECCO Salinity Estimates and Observations in the Bay of Bengal" Remote Sensing 15, no. 14: 3474. https://doi.org/10.3390/rs15143474