Comparison of Freshwater Content and Variability in the Arctic Ocean Using Observations and Model Simulations
Abstract
:1. Introduction
2. Materials and Methods
2.1. Observations
2.1.1. Satellite Data
2.1.2. In Situ Data
2.1.3. Arctic Oscillation Index
2.2. Ocean Model and Reanalysis Products
2.3. Methods
3. Results
3.1. Sea Surface Variability and Connection to Freshwater
3.2. Comparison of Beaufort Gyre Properties
3.3. Influence of 2007 AO Event
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Aagaard, K.; Carmack, E.C. The Role of Sea Ice and Other Fresh Water in the Arctic Circulation. J. Geophys. Res. 1989, 94, 14485. [Google Scholar] [CrossRef]
- Aagaard, K.; Swift, J.H.; Carmack, E.C. Thermohaline Circulation in the Arctic Mediterranean Seas. J. Geophys. Res. 1985, 90, 4833. [Google Scholar] [CrossRef]
- Proshutinsky, A.; Krishfield, R.; Toole, J.M.; Timmermans, M.L.; Williams, W.; Zimmermann, S.; Yamamoto-Kawai, M.; Armitage, T.W.K.; Dukhovskoy, D.; Golubeva, E.; et al. Analysis of the Beaufort Gyre Freshwater Content in 2003–2018. J. Geophys. Res. Ocean. 2019, 124, 9658–9689. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carmack, E.C.; Yamamoto-Kawai, M.; Haine, T.W.N.; Bacon, S.; Bluhm, B.A.; Lique, C.; Melling, H.; Polyakov, I.V.; Straneo, F.; Timmermans, M.-L.; et al. Freshwater and Its Role in the Arctic Marine System: Sources, Disposition, Storage, Export, and Physical and Biogeochemical Consequences in the Arctic and Global Oceans. J. Geophys. Res. Biogeosci. 2016, 121, 675–717. [Google Scholar] [CrossRef] [Green Version]
- Haine, T.W.N.; Curry, B.; Gerdes, R.; Hansen, E.; Karcher, M.; Lee, C.; Rudels, B.; Spreen, G.; de Steur, L.; Stewart, K.D.; et al. Arctic Freshwater Export: Status, Mechanisms, and Prospects. Glob. Planet. Chang. 2015, 125, 13–35. [Google Scholar] [CrossRef] [Green Version]
- Dewey, S.; Morison, J.; Kwok, R.; Dickinson, S.; Morison, D.; Andersen, R. Arctic Ice-Ocean Coupling and Gyre Equilibration Observed With Remote Sensing. Geophys. Res. Lett. 2018, 45, 1499–1508. [Google Scholar] [CrossRef]
- Doddridge, E.W.; Meneghello, G.; Marshall, J.; Scott, J.; Lique, C. A Three-Way Balance in the Beaufort Gyre: The Ice-Ocean Governor, Wind Stress, and Eddy Diffusivity. J. Geophys. Res. Ocean. 2019, 124, 3107–3124. [Google Scholar] [CrossRef] [Green Version]
- Lique, C.; Johnson, H.L.; Davis, P.E.D. On the Interplay between the Circulation in the Surface and the Intermediate Layers of the Arctic Ocean. J. Phys. Oceanogr. 2015, 45, 1393–1409. [Google Scholar] [CrossRef]
- Meneghello, G.; Doddridge, E.W.; Marshall, J.; Scott, J.; Campin, J.M. Exploring the Role of the “Ice-Ocean Governor” and Mesoscale Eddies in the Equilibration of the Beaufort Gyre: Lessons from Observations. J. Phys. Oceanogr. 2019, 49, 269–277. [Google Scholar] [CrossRef]
- Manucharyan, G.E.; Isachsen, P.E. Critical Role of Continental Slopes in Halocline and Eddy Dynamics of the Ekman-Driven Beaufort Gyre. J. Geophys. Res. Ocean. 2019, 124, 2679–2696. [Google Scholar] [CrossRef]
- Kelly, S.J.; Proshutinsky, A.; Popova, E.K.; Aksenov, Y.K.; Yool, A. On the Origin of Water Masses in the Beaufort Gyre. J. Geophys. Res. Ocean. 2019, 124, 4696–4709. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Wekerle, C.; Danilov, S.; Koldunov, N.; Sidorenko, D.; Sein, D.; Rabe, B.; Jung, T. Arctic Sea Ice Decline Significantly Contributed to the Unprecedented Liquid Freshwater Accumulation in the Beaufort Gyre of the Arctic Ocean. Geophys. Res. Lett. 2018, 45, 4956–4964. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Wallace, J.M. The Arctic Oscillation Signature in the Wintertime Geopotential Height and Temperature Fields. Geophys. Res. Lett. 1998, 25, 1297–1300. [Google Scholar] [CrossRef] [Green Version]
- Sokolov, A.L. Drift of Ice in the Arctic Basin and Changes in Ice Conditions over the Northern Sea Route. Probl. Arct. Antarct. 1962, 11, 1–20. [Google Scholar]
- Morison, J.; Kwok, R.; Peralta-Ferriz, C.; Alkire, M.; Rigor, I.; Andersen, R.; Steele, M. Changing Arctic Ocean Freshwater Pathways. Nature 2012, 481, 66–70. [Google Scholar] [CrossRef]
- Morison, J.; Kwok, R.; Dickinson, S.; Andersen, R.; Peralta-Ferriz, C.; Morison, D.; Rigor, I.; Dewey, S.; Guthrie, J. The Cyclonic Mode of Arctic Ocean Circulation. J. Phys. Oceanogr. 2021, 51, 1053–1075. [Google Scholar] [CrossRef]
- Kwok, R. Outflow of Arctic Ocean Sea Ice into the Greenland and Barent Seas: 1979-2007. J. Clim. 2009, 22, 2438–2457. [Google Scholar] [CrossRef] [Green Version]
- Carton, J.A.; Penny, S.G.; Kalnay, E. Temperature and Salinity Variability in the SODA3, ECCO4r3, and ORAS5 Ocean Reanalyses, 1993–2015. J. Clim. 2019, 32, 2277–2293. [Google Scholar] [CrossRef]
- Proshutinsky, A.; Steele, M.; Timmermans, M.L. Forum for Arctic Modeling and Observational Synthesis (FAMOS): Past, Current, and Future Activities. J. Geophys. Res. Ocean. 2016, 121, 3803–3819. [Google Scholar] [CrossRef] [Green Version]
- Wang, Q.; Ilicak, M.; Gerdes, R.; Drange, H.; Aksenov, Y.; Bailey, D.A.; Bentsen, M.; Biastoch, A.; Bozec, A.; Böning, C.; et al. An Assessment of the Arctic Ocean in a Suite of Interannual CORE-II Simulations. Part I: Sea Ice and Solid Freshwater. Ocean. Model. Oxf. 2016, 99, 110–132. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.B.; Subrahmanyam, B.; Morison, J.H. Intercomparison of Salinity Products in the Beaufort Gyre and Arctic Ocean. Remote Sens. 2022, 14, 71. [Google Scholar] [CrossRef]
- Fournier, S.; Lee, T.; Wang, X.; Armitage, T.W.K.; Wang, O.; Fukumori, I.; Kwok, R. Sea Surface Salinity as a Proxy for Arctic Ocean Freshwater Changes. J. Geophys. Res. Ocean. 2020, 125, e2020JC016110. [Google Scholar] [CrossRef]
- Giles, K.A.; Laxon, S.W.; Ridout, A.L.; Wingham, D.J.; Bacon, S. Western Arctic Ocean Freshwater Storage Increased by Wind-Driven Spin-up of the Beaufort Gyre. Nat. Geosci. 2012, 5, 194–197. [Google Scholar] [CrossRef]
- Armitage, T.W.K.; Bacon, S.; Ridout, A.L.; Thomas, S.F.; Aksenov, Y.K.; Wingham, D.J. Arctic Sea Surface Height Variability and Change from Satellite Radar Altimetry and GRACE, 2003–2014. J. Geophys. Res. Ocean. 2016, 121, 4303–4322. [Google Scholar] [CrossRef] [Green Version]
- Fournier, S.; Lee, T.; Tang, W.; Steele, M.; Olmedo, E. Evaluation and Intercomparison of SMOS, Aquarius, and SMAP Sea Surface Salinity Products in the Arctic Ocean. Remote. Sens. 2019, 11, 3043. [Google Scholar] [CrossRef] [Green Version]
- Morison, J.; Kwok, R.; Rigor, I. SIDEBAR Changes in Arctic Ocean Circulation from In Situ and Remotely Sensed Observations SYNERGIES AND SAMPLING CHALLENGES. Oceanography 2022, 35, 222–223. [Google Scholar] [CrossRef]
- Martínez, J.; Gabarró, C.; Turiel, A.; González-Gambau, V.; Umbert, M.; Hoareau, N.; González-Haro, C.; Olmedo, E.; Arias, M.; Catany, R.; et al. Improved BEC SMOS Arctic Sea Surface Salinity Product v3.1. Earth Syst. Sci. Data 2022, 14, 307–323. [Google Scholar] [CrossRef]
- Meissner, T.; Wentz, F.J. Remote Sensing Systems SMAP Ocean Surface Salinities [Level 2C, Level 3 Running 8-Day, Level 3 Monthly], Version 4.0 Validated Release; Remote Sensing Systems: Santa Rosa, CA, USA, 2019. [Google Scholar]
- Vazquez-Cuervo, J.; Gentemann, C.; Tang, W.; Carroll, D.; Zhang, H.; Menemenlis, D.; Gomez-Valdes, J.; Bouali, M.; Steele, M. Using Saildrones to Validate Arctic Sea-Surface Salinity from the Smap Satellite and from Ocean Models. Remote Sens. 2021, 13, 831. [Google Scholar] [CrossRef]
- Melnichenko, O.; Hacker, P.; Potemra, J.; Meissner, T.; Wentz, F. Aquarius/SMAP Sea Surface Salinity Optimum Interpolation Analysis. IPRC Tech. Note No. 7 2021. Available online: https://podaac-tools.jpl.nasa.gov/drive/files/allData/smap/docs/OISSS_V1 (accessed on 10 September 2021).
- IPRC/SOEST University of Hawaii Manoa Multi-Mission Optimally Interpolated Sea Surface Salinity Global Monthly Dataset V1. Ver. 1.0. PO.DAAC, CA, USA. 2022. Available online: https://podaac.jpl.nasa.gov/dataset/OISSS_L4_multimission_monthly_v1 (accessed on 10 September 2021).
- Melnichenko, O.; Hacker, P.; Maximenko, N.; Lagerloef, G.; Potemra, J. Optimum Interpolation Analysis of Aquarius Sea Surface Salinity. J. Geophys. Res. Ocean. 2016, 121, 602–615. [Google Scholar] [CrossRef] [Green Version]
- Meneghello, G.; Marshall, J.; Timmermans, M.L.; Scott, J. Observations of Seasonal Upwelling and Downwelling in the Beaufort Sea Mediated by Sea Ice. J. Phys. Oceanogr. 2018, 48, 795–805. [Google Scholar] [CrossRef]
- Regan, H.C.; Lique, C.; Armitage, T.W.K. The Beaufort Gyre Extent, Shape, and Location Between 2003 and 2014 From Satellite Observations. J. Geophys. Res. Ocean. 2019, 124, 844–862. [Google Scholar] [CrossRef]
- Gouretski, V.; Reseghetti, F. On Depth and Temperature Biases in Bathythermograph Data: Development of a New Correction Scheme Based on Analysis of a Global Ocean Database. Deep Sea Res. 1 Oceanogr. Res. Pap. 2010, 57, 812–833. [Google Scholar] [CrossRef]
- Gouretski, V.; Cheng, L. Correction for Systematic Errors in the Global Dataset of Temperature Profiles from Mechanical Bathythermographs. J. Atmos. Ocean. Technol. 2020, 37, 841–855. [Google Scholar] [CrossRef] [Green Version]
- Good, S.A.; Martin, M.J.; Rayner, N.A. EN4: Quality Controlled Ocean Temperature and Salinity Profiles and Monthly Objective Analyses with Uncertainty Estimates. J. Geophys. Res. Ocean. 2013, 118, 6704–6716. [Google Scholar] [CrossRef]
- Bertosio, C.; Provost, C.; Athanase, M.; Sennéchael, N.; Garric, G.; Lellouche, J.M.; Bricaud, C.; Kim, J.H.; Cho, K.H.; Park, T. Changes in Freshwater Distribution and Pathways in the Arctic Ocean Since 2007 in the Mercator Ocean Global Operational System. J. Geophys. Res. Ocean. 2022, 127, e2021JC017701. [Google Scholar] [CrossRef]
- Fukumori, I.; Wang, O.; Fenty, I.; Forget, G.; Heimbach, P.; Ponte, R.M. Synopsis of the ECCO Central Production Global Ocean and Sea-Ice State Estimate, Version 4 Release 4 (Version 4 Release 4). Zenodo 2021, 3, 1–17. [Google Scholar]
- Forget, G.; Campin, J.M.; Heimbach, P.; Hill, C.N.; Ponte, R.M.; Wunsch, C. ECCO Version 4: An Integrated Framework for Non-Linear Inverse Modeling and Global Ocean State Estimation. Geosci. Model. Dev. 2015, 8, 3071–3104. [Google Scholar] [CrossRef] [Green Version]
- Fukumori, I.; Wang, O.; Fenty, I. Causal Mechanisms of Sea Level and Freshwater Content Change in the Beaufort Sea. J. Phys. Oceanogr. 2021, 51, 3217–3234. [Google Scholar] [CrossRef]
- Fekete, B.M.; Vörösmarty, C.J.; Grabs, W. High-Resolution Fields of Global Runoff Combining Observed River Discharge and Simulated Water Balances. Glob. Biogeochem. Cycles 2002, 16, 15-1–15-10. [Google Scholar] [CrossRef]
- Dai, A.; Qian, T.; Trenberth, K.E.; Milliman, J.D. Changes in Continental Freshwater Discharge from 1948 to 2004. J. Clim. 2009, 22, 2773–2792. [Google Scholar] [CrossRef]
- Madec, G.; NEMO team. NEMO Ocean Note du Pôle de Modelisation; Institut Pierre-Simon Laplace (IPSL): Guyancourt, France, 2008. [Google Scholar]
- Hu, X.; Myers, P.G.; Lu, Y. Pacific Water Pathway in the Arctic Ocean and Beaufort Gyre in Two Simulations With Different Horizontal Resolutions. J. Geophys. Res. Ocean. 2019, 124, 6414–6432. [Google Scholar] [CrossRef]
- Bacon, S.; Aksenov, Y.; Fawcett, S.; Madec, G. Arctic Mass, Freshwater and Heat Fluxes: Methods and Modelled Seasonal Variability. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2015, 373, 2052. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.; Woodgate, R.; Moritz, R. Sea Ice Response to Atmospheric and Oceanic Forcing in the Bering Sea. J. Phys. Oceanogr. 2010, 40, 1729–1747. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.; Steele, M.; Runciman, K.; Dewey, S.; Morison, J.; Lee, C.; Rainville, L.; Cole, S.; Krishfield, R.; Timmermans, M.L.; et al. The Beaufort Gyre Intensification and Stabilization: A Model-Observation Synthesis. J. Geophys. Res. Ocean. 2016, 121, 7933–7952. [Google Scholar] [CrossRef]
- Zhang, J.; Schweiger, A.; Steele, M. MIZMAS: Modeling the Evolution of Ice Thickness and Floe Size Distributions in the Marginal Ice Zone of the Chukchi and Beaufort Seas. Distrib. Statement A 2023. Available online: https://apps.dtic.mil/sti/tr/pdf/ADA601248.pdf (accessed on 29 November 2021).
- Zuo, H.; Balmaseda, M.A.; Tietsche, S.; Mogensen, K.; Mayer, M. The ECMWF Operational Ensemble Reanalysis-Analysis System for Ocean and Sea Ice: A Description of the System and Assessment. Ocean. Sci. 2019, 15, 779–808. [Google Scholar] [CrossRef] [Green Version]
- Zuo, H.; Alonso-Balmaseda, M.; Mogensen, K.; Tietsche, S. OCEAN5: The ECMWF Ocean Reanalysis System and Its Real-Time Analysis Component; European Centre for Medium Range Weather Forecasts: Reading, UK, 2018. [Google Scholar]
- Lellouche, J.; Greiner, E.; Bourdallé-Badie, R.; Garric, G.; Melet, A.; Drévillon, M.; Bricaud, C.; Hamon, M.; Le Galloudec, O.; Regnier, C.; et al. The Copernicus Global 1/12 Oceanic and Sea Ice GLORYS12 Reanalysis. Front. Earth Sci. 2021, 9, 698876. [Google Scholar] [CrossRef]
- Verezemskaya, P.; Barnier, B.; Gulev, S.K.; Gladyshev, S.; Molines, J.M.; Gladyshev, V.; Lellouche, J.M.; Gavrikov, A. Assessing Eddying (1/12) Ocean Reanalysis GLORYS12 Using the 14-Yr Instrumental Record From 59.5°N Section in the Atlantic. J. Geophys. Res. Ocean. 2021, 126, e2020JC016317. [Google Scholar] [CrossRef]
- Garric, G.; Parent, L.; Greiner, E.; Drévillon, M.; Hamon, M.; Lellouche, J.-M.; Régnier, C.; Desportes, C.; Le Galloudec, O.; Bricaud, C.; et al. Performance and Quality Assessment of the Global Ocean Eddy-Permitting Physical Reanalysis GLORYS2V4. Eguga 2017, 19, 18776. [Google Scholar]
- Carton, J.A.; Chepurin, G.A.; Chen, L. SODA3: A New Ocean Climate Reanalysis. J. Clim. 2018, 31, 6967–6983. [Google Scholar] [CrossRef]
- Peralta-Ferriz, C.; Woodgate, R.A. Seasonal and Interannual Variability of Pan-Arctic Surface Mixed Layer Properties from 1979 to 2012 from Hydrographic Data, and the Dominance of Stratification for Multiyear Mixed Layer Depth Shoaling. Prog. Oceanogr. 2015, 134, 19–53. [Google Scholar] [CrossRef]
- Matthews, J.L.; Peng, G.; Meier, W.N.; Brown, O. Sensitivity of Arctic Sea Ice Extent to Sea Ice Concentration Threshold Choice and Its Implication to Ice Coverage Decadal Trends and Statistical Projections. Remote Sens. 2020, 12, 807. [Google Scholar] [CrossRef] [Green Version]
- Tsubouchi, T.; Bacon, S.; Naveira Garabato, A.C.; Aksenov, Y.; Laxon, S.W.; Fahrbach, E.; Beszczynska-Möller, A.; Hansen, E.; Lee, C.M.; Ingvaldsen, R.B. The Arctic Ocean in Summer: A Quasi-Synoptic Inverse Estimate of Boundary Fluxes and Water Mass Transformation. J. Geophys. Res. Ocean. 2012, 117, C1. [Google Scholar] [CrossRef]
- Schauer, U.; Losch, M. Freshwater in the Ocean Is Not a Useful Parameter in Climate Research. J. Phys. Oceanogr. 2019, 49, 2309–2321. [Google Scholar] [CrossRef] [Green Version]
- Carmack, E.; McLaughlin, F.; Yamamoto-Kawai, M.; Itoh, M.; Shimada, K.; Krishfield, R.; Proshutinsky, A. Freshwater Storage in the Northern Ocean and the Special Role of the Beaufort Gyre. In Arctic-Subarctic Ocean Fluxes: Defining the Role of the Northern Seas in Climate; Springer: Dordrecht, The Netherlands, 2008; pp. 145–169. ISBN 9781402067730. [Google Scholar]
- Fuentes-Franco, R.; Koenigk, T. Sensitivity of the Arctic Freshwater Content and Transport to Model Resolution. Clim. Dyn. 2019, 53, 1765–1781. [Google Scholar] [CrossRef] [Green Version]
- Dewey, S.R.; Morison, J.H.; Zhang, J. An Edge-Referenced Surface Fresh Layer in the Beaufort Sea Seasonal Ice Zone. J. Phys. Oceanogr. 2017, 47, 1125–1144. [Google Scholar] [CrossRef]
- Hall, S.B.; Subrahmanyam, B.; Steele, M. The Role of the Russian Shelf in Seasonal and Interannual Variability of Arctic Sea Surface Salinity and Freshwater Content. J. Geophys. Res. Ocean. 2023, 128, e2022JC019247. [Google Scholar] [CrossRef]
- Proshutinsky, A.; Krishfield, R.A.; Timmermans, M.-L.; Toole, J.M.; Carmack, E.C.; McLaughlin, F.; Williams, W.J.; Zimmermann, S.; Itoh, M.; Shimada, K. Beaufort Gyre Freshwater Reservoir: State and Variability from Observations. J. Geophys. Res. 2009, 114, C1. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.B.; Subrahmanyam, B.; Nyadjro, E.S.; Samuelsen, A. Surface Freshwater Fluxes in the Arctic and Subarctic Seas during Contrasting Years of High and Low Summer Sea Ice Extent. Remote Sens. 2021, 13, 1570. [Google Scholar] [CrossRef]
- Timmermans, M.L.; Marshall, J.; Proshutinsky, A.; Scott, J. Seasonally Derived Components of the Canada Basin Halocline. Geophys. Res. Lett. 2017, 44, 5008–5015. [Google Scholar] [CrossRef]
- Timmermans, M.L.; Proshutinsky, A.; Golubeva, E.; Jackson, J.M.; Krishfield, R.; McCall, M.; Platov, G.; Toole, J.; Williams, W.; Kikuchi, T.; et al. Mechanisms of Pacific Summer Water Variability in the Arctic’s Central Canada Basin. J. Geophys. Res. Ocean. 2014, 119, 7523–7548. [Google Scholar] [CrossRef] [Green Version]
- Woodgate, R.A.; Peralta-Ferriz, C. Warming and Freshening of the Pacific Inflow to the Arctic From 1990-2019 Implying Dramatic Shoaling in Pacific Winter Water Ventilation of the Arctic Water Column. Geophys. Res. Lett. 2021, 48, e2021GL092528. [Google Scholar] [CrossRef]
- Armitage, T.W.K.; Bacon, S.; Kwok, R. Arctic Sea Level and Surface Circulation Response to the Arctic Oscillation. Geophys. Res. Lett. 2018, 45, 6576–6584. [Google Scholar] [CrossRef]
- Solomon, A.; Heuzé, C.; Rabe, B.; Bacon, S.; Bertino, L.; Heimbach, P.; Inoue, J.; Iovino, D.; Mottram, R.; Zhang, X.; et al. Freshwater in the Arctic Ocean 2010-2019. Ocean. Sci. 2021, 17, 1081–1102. [Google Scholar] [CrossRef]
- Zhang, J.; Cheng, W.; Steele, M.; Weijer, W. Asymmetrically Stratified Beaufort Gyre: Mean State and Response to Decadal Forcing. Geophys. Res. Lett. 2023, 50, e2022GL100457. [Google Scholar] [CrossRef]
- Wang, Q.; Danilov, S. A Synthesis of the Upper Arctic Ocean Circulation During 2000–2019: Understanding the Roles of Wind Forcing and Sea Ice Decline. Front. Mar. Sci. 2022, 9. [Google Scholar] [CrossRef]
- Lin, P.; Pickart, R.S.; Heorton, H.; Tsamados, M.; Itoh, M.; Kikuchi, T. Recent State Transition of the Arctic Ocean’s Beaufort Gyre. Nat. Geosci. 2023, 16, 485–491. [Google Scholar] [CrossRef]
- Kenigson, J.S.; Gelderloos, R.; Manucharyan, G.E. Vertical Structure of the Beaufort Gyre Halocline and the Crucial Role of the Depth-Dependent Eddy Diffusivity. J. Phys. Oceanogr. 2020, 51, 845–860. [Google Scholar] [CrossRef]
- Zhong, W.; Steele, M.; Zhang, J.; Cole, S.T. Circulation of Pacific Winter Water in the Western Arctic Ocean. J. Geophys. Res. Ocean. 2019, 124, 863–881. [Google Scholar] [CrossRef]
- Carton, J.A.; Chepurin, G.A. RARE: The Regional Arctic Reanalysis. J. Clim. 2023, 36, 2333–2348. [Google Scholar] [CrossRef]
Product | ECCO | NEMO | MIZMAS | ORAS5 | GLORYS12 | SODA3 |
---|---|---|---|---|---|---|
Version | Version 4, release 4 | Version 3.1 | Version 1 | Version 5 | Version 1 Level 4 | Version 3.12 |
Origin | NASA | ECMWF | APL/PSC | ECMWF/ICDC | CMEMS | UofMD |
Horizontal Resolution | 1-1/5°; LLC90 grid | 1/12° gridded (ORCA) | 1/5° gridded | 1/4° gridded | 1/12° gridded | 1/2° gridded |
Temporal Resolution | Daily and monthly; January 1992–December 2017 | Daily; January 2016–December 2021 | Daily; January 2012–December 2017 | Monthly; January 1979–December 2018 | Daily; January 1993–December 2019 | Monthly; January 1980–December 2017 |
Vertical Layers | 50; 5 m–5.9 km | 50; 0.5 m–5.7 km | 40; 0.5 m–4.3 km | 75; 0.5 m–5.9 km | 50; 0.5 m–5.7 km | 50; 5 m–5.4 km |
Ocean and Ice Data | Aquarius SSS constrained; Argo floats, WOA09 CTDs, APB gliders, ITPs, moorings, Fekete et al., 2002 river discharge assimilated | Altimeter data, CMEMS in situ temperature and salinity vertical profiles, SIC, SLA, satellite SST, Dai et al., 2009 river discharge assimilated | Parallel Ocean Program model + TED sea ice model; polar profiling floats, ITPs, autonomous glider data assimilated | NEMOv3.4 + LIM2 sea ice model; HadISST2 SST, OSTIA SIC, EN4 in situ, AVISO DT2014 SLA assimilated | NEMOv3.4 and ORCA12; CMEMS SLA, AVHRR SST data, CORA in situ database, Dai et al., 2009 river discharge assimilated | Modular Ocean Model v5.1 + Sea Ice Simulator, WOD13 and ICOADS v5r2, Dai et al., 2009 river discharge assimilated |
Atmospheric Data | ECMWF ERA-Interim | ECMWF forecast, bulk CORE formulas | NCEP CFSv2, NCAR reanalysis data | ERA-Interim (1979–2014), ECMWF NWP (2015–2018), WAVE forcing | ERA-Interim | JRA-55DO atmospheric reanalysis with CORE4 bulk formula |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hoffman, E.L.; Subrahmanyam, B.; Trott, C.B.; Hall, S.B. Comparison of Freshwater Content and Variability in the Arctic Ocean Using Observations and Model Simulations. Remote Sens. 2023, 15, 3715. https://doi.org/10.3390/rs15153715
Hoffman EL, Subrahmanyam B, Trott CB, Hall SB. Comparison of Freshwater Content and Variability in the Arctic Ocean Using Observations and Model Simulations. Remote Sensing. 2023; 15(15):3715. https://doi.org/10.3390/rs15153715
Chicago/Turabian StyleHoffman, Emma L., Bulusu Subrahmanyam, Corinne B. Trott, and Sarah B. Hall. 2023. "Comparison of Freshwater Content and Variability in the Arctic Ocean Using Observations and Model Simulations" Remote Sensing 15, no. 15: 3715. https://doi.org/10.3390/rs15153715
APA StyleHoffman, E. L., Subrahmanyam, B., Trott, C. B., & Hall, S. B. (2023). Comparison of Freshwater Content and Variability in the Arctic Ocean Using Observations and Model Simulations. Remote Sensing, 15(15), 3715. https://doi.org/10.3390/rs15153715