Spatio-Temporal Evolution of Inland Lakes and Their Relationship with Hydro-Meteorological Factors in Horqin Sandy Land, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Overview of Study Area
2.2. Data and Processing
2.2.1. Multi-Temporal Landsat Image and Digital Elevation Model (DEM) Data
2.2.2. Meteorological and Hydrological Data
2.3. Methods
2.3.1. Extraction of Lake Surface Area and Accuracy Assessment
2.3.2. Estimating Water Storage Change
2.3.3. Lake Water Balance Equation
3. Results
3.1. Accuracy Evaluation
3.2. Temporal Variation Characteristics of Lake Surface Area
3.3. Spatial Differentiation Characteristics of Lake Surface Area
3.4. Water Storage Change
3.5. Relationship between Lake Surface Area, Water Storage Change, and Hydro-Meteorological Variables
4. Discussion
4.1. Evolution of Lakes in Sandy Land
4.2. Potential Causes of Lake Change Based on Hydro-Meteorological Elements
4.3. Uncertainty Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Verpoorter, C.; Kutser, T.; Seekell, D.A.; Tranvik, L.J. A global inventory of lakes based on high-resolution satellite imagery. Geophys. Res. Lett. 2014, 41, 6396–6402. [Google Scholar] [CrossRef]
- Messager, M.L.; Lehner, B.; Grill, G.; Nedeva, I.; Schmitt, O. Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nat. Commun. 2016, 7, 13603. [Google Scholar] [CrossRef] [PubMed]
- Yao, J.; Chen, Y.; Zhao, Y.; Yu, X. Hydroclimatic changes of Lake Bosten in Northwest China during the last decades. Sci. Rep. 2018, 8, 466–484. [Google Scholar] [CrossRef] [PubMed]
- Moser, K.A.; Baron, J.S.; Brahney, J.; Oleksy, I.A.; Saros, J.E.; Hundey, E.J.; Sadro, S.A.; Kopacek, J.; Sommaruga, R.; Kainz, M.J.; et al. Mountain lakes: Eyes on global environmental change. Glob. Planet. Chang. 2019, 178, 77–95. [Google Scholar] [CrossRef]
- Maberly, S.C.; O’donnell, R.A.; Woolway, R.I.; Cutler, M.E.J.; Gong, M.; Jones, I.D.; Merchant, C.J.; Miller, C.A.; Politi, E.; Scott, E.M.; et al. Global lake thermal regions shift under climate change. Nat. Commun. 2020, 11, 1681–1694. [Google Scholar] [CrossRef] [PubMed]
- Shrestha, N.; Mittelstet, A.R.; Gilmore, T.E.; Zlotnik, V.; Neale, C.M. Effects of drought on groundwater-fed lake areas in the Nebraska Sand Hills. J. Hydrol.-Reg. Stud. 2021, 36, 42–62. [Google Scholar] [CrossRef]
- Zhang, R.; Zhu, L.; Ma, Q.; Chen, H.; Liu, C.; Zubaida, M. The consecutive lake group water storage variations and their dynamic response to climate change in the central Tibetan Plateau. J. Hydrol. 2021, 601, 126–145. [Google Scholar] [CrossRef]
- Jacob, K. Limnology-Inland Water Ecosystems; Prentice-Hall Inc.: Upper Saddle River, NJ, USA, 2002. [Google Scholar]
- Pekel, J.-F.; Cottam, A.; Gorelick, N.; Belward, A.S. High-resolution mapping of global surface water and its long-term changes. Nature 2016, 540, 418–437. [Google Scholar] [CrossRef]
- Rad, A.M.; Kreitler, J.; Abatzoglou, J.T.; Fallon, K.; Roche, K.R.; Sadegh, M. Anthropogenic stressors compound climate impacts on inland lake dynamics: The case of Hamun Lakes. Sci. Total Environ. 2022, 829, 324–343. [Google Scholar]
- Liu, X.; Shi, Z.; Huang, G.; Bo, Y.; Chen, G. Time Series Remote Sensing Data-Based Identification of the Dominant Factor for Inland Lake Surface Area Change: Anthropogenic Activities or Natural Events? Remote Sens. 2020, 12, 612. [Google Scholar] [CrossRef]
- Zhang, G.; Yao, T.; Chen, W.; Zheng, G.; Shum, C.K.; Yang, K.; Piao, S.; Sheng, Y.; Yi, S.; Li, J.; et al. Regional differences of lake evolution across China during 1960s–2015 and its natural and anthropogenic causes. Remote Sens. Environ. 2019, 221, 386–404. [Google Scholar] [CrossRef]
- Zhou, Y.; Dong, J.; Xiao, X.; Liu, R.; Zou, Z.; Zhao, G.; Ge, Q. Continuous monitoring of lake dynamics on the Mongolian Plateau using all available Landsat imagery and Google Earth Engine. Sci. Total Environ. 2019, 689, 366–380. [Google Scholar] [CrossRef]
- Lei, Y.; Yao, T.; Bird, B.W.; Yang, K.; Zhai, J.; Sheng, Y. Coherent lake growth on the central Tibetan Plateau since the 1970s: Characterization and attribution. J. Hydrol. 2013, 483, 61–67. [Google Scholar] [CrossRef]
- Qiao, B.; Zhu, L.; Yang, R. Temporal-spatial differences in lake water storage changes and their links to climate change throughout the Tibetan Plateau. Remote Sens. Environ. 2019, 222, 232–243. [Google Scholar] [CrossRef]
- Duan, H.; Cao, Z.; Shen, M.; Ma, J.; Qi, T. Review of lake remote sensing research. J. Remote Sens. 2022, 26, 3–18. [Google Scholar]
- Papa, F.; Cretaux, J.-F.; Grippa, M.; Robert, E.; Trigg, M.; Tshimanga, R.M.; Kitambo, B.; Paris, A.; Carr, A.; Fleischmann, A.S.; et al. Water Resources in Africa under Global Change: Monitoring Surface Waters from Space. Surv. Geophys. 2022, 12, 9–30. [Google Scholar]
- Zhang, G.; Yao, T.; Piao, S.; Bolch, T.; Xie, H.; Chen, D.; Gao, Y.; O’reilly, C.M.; Shum, C.K.; Yang, K.; et al. Extensive and drastically different alpine lake changes on Asia’s high plateaus during the past four decades. Geophys. Res. Lett. 2017, 44, 252–260. [Google Scholar] [CrossRef]
- Che, X.; Feng, M.; Sun, Q.; Sexton, J.O.; Channan, S.; Liu, J. The Decrease in Lake Numbers and Areas in Central Asia Investigated Using a Landsat-Derived Water Dataset. Remote Sens. 2021, 13, 1032. [Google Scholar] [CrossRef]
- Sogno, P.; Klein, I.; Kuenzer, C. Remote Sensing of Surface Water Dynamics in the Context of Global Change-A Review. Remote Sens. 2022, 14, 2475. [Google Scholar] [CrossRef]
- Rokni, K.; Ahmad, A.; Selamat, A.; Hazini, S. Water Feature Extraction and Change Detection Using Multitemporal Landsat Imagery. Remote Sens. 2014, 6, 4173–4189. [Google Scholar] [CrossRef]
- Bai, J.; Chen, X.; Li, J.; Yang, L.; Fang, H. Changes in the area of inland lakes in arid regions of central Asia during the past 30 years. Environ. Monit. Assess. 2011, 178, 247–256. [Google Scholar] [CrossRef]
- An, C.; Zhang, F.; Chan, N.W.; Johnson, V.C.; Shi, J. A review on the research progress of lake water volume estimation methods. J. Environ. Manag. 2022, 11, 57–80. [Google Scholar] [CrossRef] [PubMed]
- Zhang, G.; Xie, H.; Kang, S.; Yi, D.; Ackley, S.F. Monitoring lake level changes on the Tibetan Plateau using ICESat altimetry data (2003–2009). Remote Sens. Environ. 2011, 115, 1733–1742. [Google Scholar] [CrossRef]
- Kostianoy, A.G.; Lebedev, S.A.; Kostianaia, E.A.; Prokofiev, Y.A. Interannual Variability of Water Level in Two Largest Lakes of Europe. Remote Sens. 2022, 14, 659. [Google Scholar] [CrossRef]
- Song, C.; Huang, B.; Ke, L. Modeling and analysis of lake water storage changes on the Tibetan Plateau using multi-mission satellite data. Remote Sens. Environ. 2013, 135, 25–35. [Google Scholar] [CrossRef]
- Woolway, R.I.; Kraemer, B.M.; Lenters, J.D.; Merchant, C.J.; O’reilly, C.M.; Sharma, S. Global lake responses to climate change. Nat. Rev. Earth Environ. 2020, 1, 388–403. [Google Scholar] [CrossRef]
- Tao, S.; Fang, J.; Ma, S.; Cai, Q.; Xiong, X.; Tian, D.; Zhao, X.; Fang, L.; Zhang, H.; Zhu, J.; et al. Changes in China’s lakes: Climate and human impacts. Natl. Sci. Rev. 2020, 7, 132–140. [Google Scholar] [CrossRef]
- Yang, K.; Yu, Z.; Luo, Y.; Zhou, X.; Shang, C. Spatial-Temporal Variation of Lake Surface Water Temperature and Its Driving Factors in Yunnan-Guizhou Plateau. Water Resour. Res. 2019, 55, 4688–4703. [Google Scholar] [CrossRef]
- Fan, C.; Song, C.; Liu, K.; Ke, L.; Xue, B.; Chen, T.; Fu, C.; Cheng, J. Century-Scale Reconstruction of Water Storage Changes of the Largest Lake in the Inner Mongolia Plateau Using a Machine Learning Approach. Water Resour. Res. 2021, 57, 8831–8849. [Google Scholar] [CrossRef]
- Dai, X.; Yang, X.; Wang, M.; Gao, Y.; Liu, S.; Zhang, J. The Dynamic Change of Bosten Lake Area in Response to Climate in the Past 30 Years. Water 2020, 12, 4. [Google Scholar] [CrossRef]
- Wan, W.; Xiao, P.; Feng, X.; Li, H.; Ma, R.; Duan, H.; Zhao, L. Monitoring lake changes of Qinghai-Tibetan Plateau over the past 30 years using satellite remote sensing data. Chin. Sci. Bull. 2014, 59, 1021–1035. [Google Scholar] [CrossRef]
- Dwyer, J.L.; Roy, D.P.; Sauer, B.; Jenkerson, C.B.; Zhang, H.K.; Lymburner, L. Analysis Ready Data: Enabling Analysis of the Landsat Archive. Remote Sens. 2018, 10, 1363. [Google Scholar] [CrossRef]
- Rodriguez, E.; Morris, C.S.; Belz, J.E. A global assessment of the SRTM performance. Photogramm. Eng. Remote Sens. 2006, 72, 249–260. [Google Scholar] [CrossRef]
- Yang, R.; Zhu, L.; Wang, J.; Ju, J.; Ma, Q.; Turner, F.; Guo, Y. Spatiotemporal variations in volume of closed lakes on the Tibetan Plateau and their climatic responses from 1976 to 2013. Clim. Chang. 2017, 140, 621–633. [Google Scholar] [CrossRef]
- Chen, X.; Shang, K.; Wang, S.; Yang, D. Analysis on the Spatiotemporal Characteristics of Precipitation under Different Intensities in China in Recent 50 Years. Arid. Zone Res. 2010, 27, 766–772. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop Evapotranspiration: Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage; FAO: Rome, Italy, 1998. [Google Scholar]
- Sun, G.; Huang, H.; Weng, Q.; Zhang, A.; Jia, X.; Ren, J.; Sun, L.; Chen, X. Combinational shadow index for building shadow extraction in urban areas from Sentinel-2A MSI imagery. Int. J. Appl. Earth Obs. Geoinf. 2019, 78, 53–65. [Google Scholar] [CrossRef]
- Deng, Y.; Jiang, W.; Tang, Z.; Ling, Z.; Wu, Z. Long-Term Changes of Open-Surface Water Bodies in the Yangtze River Basin Based on the Google Earth Engine Cloud Platform. Remote Sens. 2019, 11, 2213. [Google Scholar] [CrossRef]
- Zou, Z.; Xiao, X.; Dong, J.; Qin, Y.; Doughty, R.B.; Menarguez, M.A.; Zhang, G.; Wang, J. Divergent trends of open-surface water body area in the contiguous United States from 1984 to 2016. Proc. Natl. Acad. Sci. USA 2018, 115, 3810–3815. [Google Scholar] [CrossRef]
- Shao, Y.; Zhang, Y.; Wu, X.; Bourque, C.P.A.; Zhang, J.; Qin, S.; Wu, B. Relating historical vegetation cover to aridity patterns in the greater desert region of northern China: Implications to planned and existing restoration projects. Ecol. Indic. 2018, 89, 528–537. [Google Scholar] [CrossRef]
- Wang, Z.; Liu, K.; Zhan, P.; Wang, C.; Fan, C.; Song, C.; Tang, G. Spatiotemporal changes of lake shoreline morphology in Tibetan Plateau during 1990–2018. Geogr. Res. 2022, 41, 980–996. [Google Scholar]
- Jumaah, H.J.; Ameen, M.H.; Mohamed, G.H.; Ajaj, Q.M. Monitoring and evaluation Al-Razzaza lake changes in Iraq using GIS and remote sensing technology. Egypt. J. Remote Sens. Space Sci. 2022, 25, 313–321. [Google Scholar] [CrossRef]
- Xu, D.; Ding, J.; Wu, Y. Lake Area Change in the Mu Us Desert in 1989–2014. J. Desert Res. 2019, 39, 40–47. [Google Scholar]
- Vasilevskiy, P.; Wang, P.; Pozdniakov, S.; Wang, T.; Zhang, Y.; Zhang, X.; Yu, J. Simulating River/Lake-Groundwater Exchanges in Arid River Basins: An Improvement Constrained by Lake Surface Area Dynamics and Evapotranspiration. Remote Sens. 2022, 14, 1657. [Google Scholar] [CrossRef]
- Demura, Y.; Hoshino, B.; Baba, K.; Mccarthy, C.; Sofue, Y.; Kai, K.; Purevsuren, T.; Hagiwara, K.; Noda, J. Determining the Frequency of Dry Lake Bed Formation in Semi-Arid Mongolia From Satellite Data. Land 2017, 6, 88. [Google Scholar] [CrossRef]
- Li, H.; Luo, Z.; Xu, Y.; Zhu, S.; Chen, X.; Geng, X.; Xiao, L.; Wan, W.; Cui, Y. A remote sensing-based area dataset for approximately 40 years that reveals the hydrological asynchrony of Lake Chad based on Google Earth Engine. J. Hydrol. 2021, 603, 934–948. [Google Scholar] [CrossRef]
- Chang, X.; Zhao, X.; Wang, W.; Liu, L. Responses of lake fluctuation to climate change in Horqin Sandy Land. Acta Ecol. Sin. 2013, 33, 7002–7012. [Google Scholar] [CrossRef]
- Zhong, X.; Wang, L.; Zhou, J.; Li, X.; Qi, J.; Song, L.; Wang, Y. Precipitation Dominates Long-Term Water Storage Changes in Nam Co Lake (Tibetan Plateau) Accompanied by Intensified Cryosphere Melts Revealed by a Basin-Wide Hydrological Modelling. Remote Sens. 2020, 12, 1926. [Google Scholar] [CrossRef]
- Yao, F.; Livneh, B.; Rajagopalan, B.; Wang, J.; Crétaux, J.-F.; Wada, Y.; Berge-Nguyen, M. Satellites reveal widespread decline in global lake water storage. Science 2023, 380, 743–749. [Google Scholar] [CrossRef]
- Liu, J.; Gao, G.; Wang, S.; Jiao, L.; Wu, X.; Fu, B. The effects of vegetation on runoff and soil loss: Multidimensional structure analysis and scale characteristics. J. Geog. Sci. 2018, 28, 59–78. [Google Scholar] [CrossRef]
- Xu, S.; Frey, S.K.; Erler, A.R.; Khader, O.; Berg, S.J.; Hwang, H.T.; Callaghan, M.V.; Davison, J.H.; Sudicky, E.A. Investigating groundwater-lake interactions in the Laurentian Great Lakes with a fully-integrated surface water-groundwater model. J. Hydrol. 2021, 594, 125911. [Google Scholar] [CrossRef]
- Smith, A.B.; Jackson, D.W.T.; Cooper, J.A.G. Three-dimensional airflow and sediment transport patterns over barchan dunes. Geomorphology 2017, 278, 28–42. [Google Scholar] [CrossRef]
- Telfer, M.W.; Hesse, P.P.; Perez-Fernandez, M.; Bailey, R.M.; Bajkan, S.; Lancaster, N. Morphodynamics, boundary conditions and pattern evolution within a vegetated linear dunefield. Geomorphology 2017, 290, 85–100. [Google Scholar] [CrossRef]
- Lyons, E.A.; Sheng, Y.; Smith, L.C.; Li, J.; Hinkel, K.M.; Lenters, J.D.; Wang, J. Quantifying sources of error in multitemporal multisensor lake mapping. Int. J. Remote Sens. 2013, 34, 7887–7905. [Google Scholar] [CrossRef]
Elevation (m asl) | Changing Area (km2) | Lake Surface Area (km2) | Water Storage Change at an Elevation Interval of 1 m (km3) | Water Storage Change Relative to the Elevation of 253 m (km3) |
---|---|---|---|---|
253 | - | 2.1980 | 0 | 0 |
254 | 0.3760 | 2.5740 | 0.0072 | 0.0072 |
255 | 0.5255 | 3.0995 | 0.0085 | 0.0156 |
256 | 0.6520 | 3.7515 | 0.0103 | 0.0188 |
257 | 0.7699 | 4.5214 | 0.0124 | 0.0227 |
Classification | Ground from Google Earth | Total | User Accuracy | ||
---|---|---|---|---|---|
Water | Non-Water | ||||
Samples from Landsat | Water | 184 | 3 | 187 | 98.39% |
Non-water | 16 | 197 | 213 | 92.48% | |
Total | 200 | 200 | 400 | Overall accuracy = 95.25% | |
Producer accuracy | 92.00% | 98.50% | Kappa coefficient = 0.91 |
ID | Latitude (N) | Longitude (E) | Google Earth (km2) | Landsat (km2) | Relative Error (%) |
---|---|---|---|---|---|
L1 | 43°37′42.25″ | 122°48′28.60″ | 16.585 | 15.582 | 0.064 |
L2 | 43°17′52.37″ | 123°13′02.67″ | 9.298 | 9.234 | 0.007 |
L3 | 43°12′03.83″ | 123°07′34.92″ | 9.230 | 9.130 | 0.011 |
L4 | 43°10′01.15″ | 123°11′23.41″ | 4.040 | 3.991 | 0.012 |
L5 | 43°17′46.05″ | 122°35′52.70″ | 3.662 | 3.560 | 0.029 |
L6 | 42°53′09.71″ | 122°12′44.74″ | 2.197 | 2.198 | 0.000 |
L7 | 43°19′54.09″ | 122°38′37.66″ | 2.111 | 1.949 | 0.084 |
L8 | 42°58′39.38″ | 122°56′34.25″ | 1.902 | 1.881 | 0.012 |
L9 | 43°11′55.73″ | 122°15′23.91″ | 1.094 | 1.105 | 0.010 |
L10 | 43°02′45.91″ | 122°32′14.12″ | 0.528 | 0.545 | 0.031 |
2021 | Permanent | Seasonal | Disappeared | Total | |
---|---|---|---|---|---|
1984 | |||||
Permanent | 9.0159 | 0.8365 | 12.8997 | 22.7521 | |
Seasonal | 20.1562 | 6.6747 | 25.2147 | 52.0456 | |
Disappeared | 12.0938 | 2.2586 | - | 14.3524 | |
Total | 41.2659 | 9.7698 | 38.1144 | 89.1501 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Tong, X.; Liu, T.; Duan, L.; Hao, L.; Singh, V.P.; Jia, T.; Lun, S. Spatio-Temporal Evolution of Inland Lakes and Their Relationship with Hydro-Meteorological Factors in Horqin Sandy Land, China. Remote Sens. 2023, 15, 2719. https://doi.org/10.3390/rs15112719
Zhang Y, Tong X, Liu T, Duan L, Hao L, Singh VP, Jia T, Lun S. Spatio-Temporal Evolution of Inland Lakes and Their Relationship with Hydro-Meteorological Factors in Horqin Sandy Land, China. Remote Sensing. 2023; 15(11):2719. https://doi.org/10.3390/rs15112719
Chicago/Turabian StyleZhang, Yiran, Xin Tong, Tingxi Liu, Limin Duan, Lina Hao, Vijay P. Singh, Tianyu Jia, and Shuo Lun. 2023. "Spatio-Temporal Evolution of Inland Lakes and Their Relationship with Hydro-Meteorological Factors in Horqin Sandy Land, China" Remote Sensing 15, no. 11: 2719. https://doi.org/10.3390/rs15112719
APA StyleZhang, Y., Tong, X., Liu, T., Duan, L., Hao, L., Singh, V. P., Jia, T., & Lun, S. (2023). Spatio-Temporal Evolution of Inland Lakes and Their Relationship with Hydro-Meteorological Factors in Horqin Sandy Land, China. Remote Sensing, 15(11), 2719. https://doi.org/10.3390/rs15112719