Using a Convolutional Neural Network and Mid-Infrared Spectral Images to Predict the Carbon Dioxide Content of Ship Exhaust
Abstract
:1. Introduction
2. Materials and Methods
2.1. Bench Experiment
2.2. Prediction Model
3. Results
3.1. Data Processing
3.2. Analysis
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hockstad, L.; Hanel, L. Inventory of US Greenhouse Gas Emissions and Sinks; Environmental System Science Data Infrastructure for a Virtual Ecosystem. 2018. Available online: https://www.osti.gov/dataexplorer/biblio/dataset/1464240) (accessed on 21 May 2023).
- Central Committee of the Communist Party of China; State Council. Opinions of the Central Committee of the Communist Party of China and the State Council on Completely and Accurately Implementing the New Development Concept and Doing a Good Job of Carbon Peak and Carbon Neutralization. In Chinese Enterprise Reform and Development 2021 Blue Book; China Commerce and Trade Press: Beijing, China, 2021; Volume 6. [Google Scholar]
- IMO. Fourth IMO GHG Study 2020 Full Report. Int. Marit. Organ. 2021, 6, 951–952. [Google Scholar]
- Eyring, V.; Isaksen, I.S.; Berntsen, T.; Collins, W.J.; Corbett, J.J.; Endresen, O.; Grainger, R.G.; Moldanova, J.; Schlager, H.; Stevenson, D.S. Transport impacts on atmosphere and climate: Shipping. Atmos. Env. 2010, 44, 4735–4771. [Google Scholar] [CrossRef]
- UNCTAD. Review of Maritime Report 2021; United Nations Publications: New York, NY, USA, 2021. [Google Scholar]
- United Nations. Trade and Development Report 2021, from Recovery Resilience: The Development Dimension Overview; United Nations: San Francisco, CA, USA, 2021. [Google Scholar]
- IMO (International Maritime Organization). Guidelines on the Operational Carbon Intensity Reduction Factors Relative to Reference Lines (CII Reduction Factors Guidelines, G3); MEPC: London, UK, 2021; Volume 338. [Google Scholar]
- Beecken, J. Remote Measurements of Gas and Particulate Matter Emissions from Individual Ships. Ph.D. Dissertation, Chalmers Tekniska Hogskola, Gothenburg, Sweden, 2015. [Google Scholar]
- Pirjola, L. Mobile measurements of ship emissions in two harbour areas in Finland. Atmos. Meas. Tech. 2014, 7, 149–161. [Google Scholar] [CrossRef]
- Fan, Z.; Yunli, F.; Jing, Z.; Bowen, A. Ship emission monitoring sensor web for research and application. Ocean Eng. 2022, 249, 110980. [Google Scholar] [CrossRef]
- Kattner, L.; Mathieu-Üffing, B.; Burrows, J.P.; Richter, A.; Schmolke, S.; Seyler, A.; Wittrock, F. Monitoring compliance with sulfur content regulations of shipping fuel by in situ measurements of ship emissions. Atmos. Chem. Phys. 2015, 15, 10087–10092. [Google Scholar] [CrossRef]
- Anand, A.; Wei, P.; Gali, N.K.; Sun, L.; Yang, F.; Westerdahl, D.; Zhang, Q.; Deng, Z.; Wang, Y.; Liu, D.; et al. Protocol development for real-time ship fuel sulfur content determination using drone based plume sniffing microsensor system. Sci. Total Environ. 2020, 744, 140885. [Google Scholar] [CrossRef]
- Shen, L.; Wang, Y.; Liu, K.; Yang, Z.; Shi, X.; Yang, X.; Jing, K. Synergistic path planning of multi-UAVs for air pollution detection of ships in ports. Trans. Res. E-Log. 2020, 144, 102128. [Google Scholar] [CrossRef]
- Balzani Lööv, J.M.; Alfoldy, B.; Gast, L.F.; Hjorth, J.; Lagler, F.; Mellqvist, J.; Beecken, J.; Berg, N.; Duyzer, J.; Westrate, H.; et al. Field test of available methods to measure remotely SOx and NOx emissions from ships. Atmos. Meas. Tech. 2014, 7, 2597–2613. [Google Scholar] [CrossRef]
- Gagnon, J.P.; Larivière-Bastien, M.; Thibodeau, J.; Tombet, S.B. Remote estimation of sulfur content in fuel from SO2 and CO2 quantification of ship exhaust plumes. In Proceedings of the 2021 11th Workshop on Hyperspectral Imaging and Signal Processing: Evolution in Remote Sensing (WHISPERS), Amsterdam, The Netherlands, 24–26 March 2021; pp. 1–4. [Google Scholar]
- Zhang, Z.; Zheng, W.; Cao, K.; Li, Y.; Xie, M. An improved method for optimizing detection bands of marine exhaust SO2 concentration in ultraviolet dual-band measurements based on signal-to-noise ratio. Atmos. Pollut. Res. 2022, 13, 101479. [Google Scholar] [CrossRef]
- Hao, W.; Chao, W.; Enhui, C.; Zhirui, Y. Development of a spectrum-based ship fuel sulfur content real-time evaluation method. Mar. Pollut. Bull. 2023, 188, 114484. [Google Scholar] [CrossRef]
- Yang, Z.H.; Zhang, Y.K.; Chen, Y.; Li, X.F.; Jiang, Y.; Feng, Z.Z.; Zhou, D.F. Simultaneous detection of multiple gaseous pollutants using multi-wavelength differential absorption LIDAR. Opt. Commun. 2022, 518, 128359. [Google Scholar] [CrossRef]
- Kumar, K.A.; Prasad, A.Y.; Metan, J. A hybrid deep CNN-Cov-19-Res-Net Transfer learning architype for an enhanced brain tumor detection and classification scheme in medical image processing. Biomed. Signal Process. Control. 2022, 76, 103631. [Google Scholar] [CrossRef]
- Rajeshkumar, G.; Braveen, M.; Venkatesh, R.; Shermila, P.J.; Prabu, B.G.; Veerasamy, B.; Jeyam, A. Smart office automation via faster R-CNN based face recognition and internet of things. Meas. Sens. 2023, 27, 100719. [Google Scholar] [CrossRef]
- Muhammet, F.A.; Akif, D.; Abdullah, Y.; Alper, Y. HVIOnet: A deep learning based hybrid visual–inertial odometry approach for unmanned aerial system position estimation. Neural Netw. 2022, 155, 461–474. [Google Scholar] [CrossRef]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar] [CrossRef]
- Yu, Y.; Liang, S.; Samali, B.; Nguyen, T.N.; Zhai, C.; Li, J.; Xie, X. Torsional capacity evaluation of RC beams using an improved bird swarm algorithm optimised 2D convolutional neural network. Eng. Struct. 2022, 273, 115066. [Google Scholar] [CrossRef]
- Yu, Y.; Li, J.; Li, J.; Xia, Y.; Ding, Z.; Samali, B. Automated damage diagnosis of concrete jack arch beam using optimized deep stacked autoencoders and multi-sensor fusion. Dev. Built. Environ. 2023, 14, 100128. [Google Scholar] [CrossRef]
- Peter, J.M.; Robert, O.K.; Jonathan, G. Chapter 6—Surface-based thermal infrared spectrometers. In Field Measurements for Passive Environmental Remote Sensing; Elsevier: Amsterdam, The Netherlands, 2023; pp. 101–120. [Google Scholar] [CrossRef]
- Jiang, C.; Ren, H.; Ye, X.; Zhu, J.; Zeng, H.; Nan, Y.; Huo, H. Object detection from UAV thermal infrared images and videos using YOLO models. Int. J. Appl. Earth Obs. Geoinf. 2022, 112, 102912. [Google Scholar] [CrossRef]
- Ji, D.-C.; Min, Y.-K. A Sensor Fusion System with Thermal Infrared Camera and LiDAR for Autonomous Vehicles and Deep Learning Based Object Detection; ICT Express: Tamworth, UK, 2022. [Google Scholar] [CrossRef]
- Prata, A.J.; Cirilo, B. Retrieval of sulfur dioxide from a ground-based thermal infrared imaging camera. Atmos. Meas. Tech. 2014, 7, 2807–2828. [Google Scholar] [CrossRef]
- Jiacheng, W.; Yu, H.; Fei, W.; Yuyu, H.; Xiaoxu, R.; Mingjun, C.; Yang, W.; Honghao, Y.; Junyan, L. Convolutional neural network assisted infrared imaging technology: An enhanced online processing state monitoring method for laser powder bed fusion. Infrared Phys. Technol. 2023, 131, 104661. [Google Scholar] [CrossRef]
- Rongwei, Y.; Shun, G.; Yong, H.; Huajun, D.; Shubiao, Q.; Yong, P.; Kehong, W. Prediction of variable-groove weld penetration using texture features of infrared thermal images and machine learning methods. J. Mater. Res. Technol. 2023, 23, 1039–1051. [Google Scholar] [CrossRef]
- Tombet, S.B.; Gatti, S.; Eisele, A.; Morton, V. Observation and quantification of CO2 passive degassing at sulphur banks from Kilauea Volcano using thermal infrared multispectral imaging. In Proceedings of the Copernicus Meetings, Online, 4–8 May 2020. [Google Scholar]
- Platt, U.; Bobrowski, N.; Butz, A. Ground-based remote sensing and imaging of volcanic gases and quantitative determination of multi-species emission fluxes. Geosciences 2018, 8, 44. [Google Scholar] [CrossRef]
- Kai, C.; Zhenduo, Z.; Ying, L.; Wenbo, Z.; Ming, X. Ship fuel sulfur content prediction based on convolutional neural network and ultraviolet camera images. Environ. Pollut. 2021, 273, 116501. [Google Scholar]
- Kai, C.; Zhenduo, Z.; Ying, L.; Ming, X.; Wenbo, Z. Surveillance of ship emissions and fuel sulfur content based on imaging detection and multi-task deep learning. Environ. Pollut. 2021, 288, 117698. [Google Scholar]
- Hashim, M.; Ng, H.L.; Zakari, D.M.; Sani, D.A.; Chindo, M.M.; Hassan, N.; Azmy, M.M.; Pour, A.B. Mapping of greenhouse gas concentration in Peninsular Malaysia Industrial Areas using unmanned aerial vehicle-based sniffer sensor. Remote Sens. 2023, 15, 255. [Google Scholar] [CrossRef]
- Siozos, P.; Psyllakis, G.; Velegrakis, M. Remote operation of an open-path, laser-based instrument for atmospheric CO2 and CH4 monitoring. Photonics 2023, 10, 386. [Google Scholar] [CrossRef]
Filter Wheel Position | Content | OD | Cut-In [µm] | Cut-Out [µm] | Average Transmittance [%] |
---|---|---|---|---|---|
1 | Band-Pass Filter BBP 3000 to 5000 | N/A | 3.0 | 5.0 | N/A |
2 | Neutral Density filter OD 0.6 | 0.6 | N/A | N/A | 25% |
3 | Band-Pass Filter BP 4665-240 nm | N/A | 4.545 | 4.785 | N/A |
4 | Band-Pass Filter BP 4450-200 nm | N/A | 4.35 | 4.55 | N/A |
5 | Band-Pass Filter BBP 3725 to 4245 | N/A | 3.725 | 4.245 | N/A |
6 | Band-Pass Filter BBP 3670 to 4020 | N/A | 3.670 | 4.020 | N/A |
7 | Band-Pass Filter BBP 3440 to 4075 | N/A | 3.440 | 4.075 | N/A |
8 | Band-Pass Filter BBP 2900 to 3500 | N/A | 2.900 | 3.500 | N/A |
Number | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 |
Power percentage (%) | 0 | 5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 | 80 | 90 | 100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Wang, H.; Cao, K.; Li, Y. Using a Convolutional Neural Network and Mid-Infrared Spectral Images to Predict the Carbon Dioxide Content of Ship Exhaust. Remote Sens. 2023, 15, 2721. https://doi.org/10.3390/rs15112721
Zhang Z, Wang H, Cao K, Li Y. Using a Convolutional Neural Network and Mid-Infrared Spectral Images to Predict the Carbon Dioxide Content of Ship Exhaust. Remote Sensing. 2023; 15(11):2721. https://doi.org/10.3390/rs15112721
Chicago/Turabian StyleZhang, Zhenduo, Huijie Wang, Kai Cao, and Ying Li. 2023. "Using a Convolutional Neural Network and Mid-Infrared Spectral Images to Predict the Carbon Dioxide Content of Ship Exhaust" Remote Sensing 15, no. 11: 2721. https://doi.org/10.3390/rs15112721
APA StyleZhang, Z., Wang, H., Cao, K., & Li, Y. (2023). Using a Convolutional Neural Network and Mid-Infrared Spectral Images to Predict the Carbon Dioxide Content of Ship Exhaust. Remote Sensing, 15(11), 2721. https://doi.org/10.3390/rs15112721