Research on the Characteristics of Thermosyphon Embankment Damage and Permafrost Distribution Based on Ground-Penetrating Radar: A Case Study of the Qinghai–Tibet Highway
Abstract
:1. Introduction
2. Study Area
2.1. Physical Geography of the Study Area
2.2. Thermosyphon Embankment
2.2.1. Structure and Working Principle of Thermosyphon
2.2.2. Damage Characteristics of Thermosyphon Embankment
3. Data and Methods
3.1. Theory on the GPR
3.2. Data Acquisition
3.2.1. GPR Data Collection
3.2.2. Ground Temperature Data Acquisition
3.2.3. Other Data Acquisition
3.3. GPR Data Processing and Presentation
3.4. Methodology
4. Results
4.1. Ground Temperature Data
4.2. GPR Data
4.2.1. Identification of Permafrost under the Embankments
4.2.2. Identification of Embankment Damage
5. Discussion
5.1. Distribution of Permafrost under the Embankment
5.2. Damage Formation and Influencing Factors
5.2.1. Causes of Damage Formation
5.2.2. Factors Influencing Damage
5.2.3. Suggestions for Managing Damages
5.3. Weaknesses of Current Research
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Xu, X.Z.; Wang, J.C.; Zhang, L.X. Frozen Soil Physics Science; Science Press: Beijing, China, 2010; pp. 18–38. [Google Scholar]
- Elias, S.A. Alaskan North Slope Coastal Tundra. In Imperiled: The Encyclopedia of Conservation; Elsevier: Amsterdam, The Netherlands, 2022; pp. 151–168. [Google Scholar]
- Short, N.; Brisco, B.; Couture, N.; Pollard, W.; Murnaghan, K.; Budkewitsch, P. A comparison of TerraSAR-X, RADARSAT-2 and ALOS-PALSAR interferometry for monitoring permafrost environments, case study from Herschel Island, Canada. Remote Sens. Environ. 2011, 115, 3491–3506. [Google Scholar] [CrossRef]
- Obu, J.; Westermann, S.; Bartsch, A.; Berdnikov, N.; Christiansen, H.H.; Dashtseren, A.; Delaloye, R.; Elberling, B.; Etzelmüller, B.; Kholodov, A. Northern Hemisphere permafrost map based on TTOP modelling for 2000–2016 at 1 km2 scale. Earth-Sci. Rev. 2019, 193, 299–316. [Google Scholar] [CrossRef]
- Zou, D.; Zhao, L.; Sheng, Y.; Chen, J.; Hu, G.; Wu, T.; Wu, J.; Xie, C.; Wu, X.; Pang, Q.; et al. A new map of permafrost distribution on the Tibetan Plateau. Cryosphere 2017, 11, 2527–2542. [Google Scholar] [CrossRef]
- Wu, Q.; Zhang, Z.; Liu, Y. Long-term thermal effect of asphalt pavement on permafrost under an embankment. Cold Reg. Sci. Technol. 2010, 60, 221–229. [Google Scholar] [CrossRef]
- Qi, S.; Li, G.; Chen, D.; Chai, M.; Zhou, Y.; Du, Q.; Cao, Y.; Tang, L.; Jia, H. Damage Properties of the Block-Stone Embankment in the Qinghai–Tibet Highway Using Ground-Penetrating Radar Imagery. Remote Sens. 2022, 14, 2950. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, M.; Wu, Z.; Liu, X. Permafrost Deformation Monitoring Along the Qinghai-Tibet Plateau Engineering Corridor Using InSAR Observations with Multi-Sensor SAR Datasets from 1997–2018. Sensors 2019, 19, 5306. [Google Scholar] [CrossRef] [PubMed]
- Biskaborn, B.K.; Smith, S.L.; Noetzli, J.; Matthes, H.; Vieira, G.; Streletskiy, D.A.; Schoeneich, P.; Romanovsky, V.E.; Lewkowicz, A.G.; Abramov, A.; et al. Permafrost is warming at a global scale. Nat. Commun. 2019, 10, 264. [Google Scholar] [CrossRef]
- Smith, S.L.; O’Neill, H.B.; Isaksen, K.; Noetzli, J.; Romanovsky, V.E. The changing thermal state of permafrost. Nat. Rev. Earth Environ. 2022, 3, 10–23. [Google Scholar] [CrossRef]
- Mu, Y.H.; Ma, W.; Niu, F.J.; Liu, G.; Zhang, Q.L. Study on Geotechnical Hazards to Roadway Engineering in Permafrost Regions. J. Disaster Prev. Mitig. Eng. 2014, 34, 259–267. [Google Scholar] [CrossRef]
- Qingbai, W.; Yongzhi, L.; Jianming, Z.; Changjiang, T. A review of recent frozen soil engineering in permafrost regions along Qinghai-Tibet Highway, China. Permafr. Periglac. 2002, 13, 199–205. [Google Scholar] [CrossRef]
- Zhang, Z.; Wu, Q.; Xun, X. Radiation and energy balance characteristics of asphalt pavement in permafrost regions. Environ. Earth. Sci. 2016, 75, 221. [Google Scholar] [CrossRef]
- Yu, F.; Qi, J.; Lai, Y.; Sivasithamparam, N.; Yao, X.; Zhang, M.; Liu, Y.; Wu, G. Typical embankment settlement/heave patterns of the Qinghai–Tibet highway in permafrost regions: Formation and evolution. Eng. Geol. 2016, 214, 147–156. [Google Scholar] [CrossRef]
- Ya-Ling, C.; Sheng, Y.; Ma, W. Study on the effect of the thermal regime differences in roadbed slopes on their thawing features in permafrost regions of Qinghai–Tibetan plateau. Cold Reg. Sci. Technol. 2008, 53, 334–345. [Google Scholar] [CrossRef]
- Luo, X.; Yu, Q.; Ma, Q.; Guo, L. Study on the heat and deformation characteristics of an expressway embankment with shady and sunny slopes in warm and ice-rich permafrost regions. Transp Geotech. 2020, 24, 100390. [Google Scholar] [CrossRef]
- Fan, K. Study on Design and Construction Techniques of Special Subgrade for Permafrost Areas. Master’s Thesis, Chang’an University, Xi’an, China, 2009. [Google Scholar]
- Fang, J.; Li, D.; Xu, A.; Tong, C. Application Technology of Special Subgrade Engineering Measures in Permafrost Regions; Lanzhou University Press: Lanzhou, China, 2016; pp. 76–106. [Google Scholar]
- Qin, Y.; Zhang, J. A review on the cooling effect of duct-ventilated embankments in China. Cold Reg. Sci. Technol. 2013, 95, 1–10. [Google Scholar] [CrossRef]
- Song, Y.; Jin, L.; Zhang, J. In-situ study on cooling characteristics of two-phase closed thermosyphon embankment of Qinghai–Tibet Highway in permafrost regions. Cold Reg. Sci. Technol. 2013, 93, 12–19. [Google Scholar] [CrossRef]
- Wang, S.; Jin, L.; Peng, H.; Chen, J.; Mu, K. Damage analysis of the characteristics and development process of thermosyphon embankment along the Qinghai-Tibet Highway. Cold Reg. Sci. Technol. 2017, 142, 118–131. [Google Scholar] [CrossRef]
- Chai, M.; Li, G.; Ma, W.; Chen, D.; Du, Q.; Zhou, Y.; Qi, S.; Tang, L.; Jia, H. Damage characteristics of the Qinghai-Tibet Highway in permafrost regions based on UAV imagery. Int. J. Pavement Eng. 2022, 1–12. [Google Scholar] [CrossRef]
- Johansson, M.; Kerman, J.; Keuper, F.; Christensen, T.R.; Callaghan, L.T.V. Past and Present Permafrost Temperatures in the Abisko Area: Redrilling of Boreholes. AMBIO 2011, 40, 558–565. [Google Scholar] [CrossRef]
- Ramos, M.; Hasler, A.; Vieira, G.; Hauck, C.; Gruber, S. Drilling and installation of boreholes for permafrost thermal monitoring on Livingston Island in the maritime Antarctic. Permafr. Periglac. 2010, 20, 57–64. [Google Scholar] [CrossRef]
- Ma, S.; Yang, B.; Zhao, J.; Tan, C.; Chen, J.; Mei, Q.; Hou, X. Hydrothermal dynamics of seasonally frozen soil with different vegetation coverage in the Tianshan Mountains. Front. Earth Sci. 2022, 9, 806309. [Google Scholar] [CrossRef]
- Yuan, C.; Yu, Q.; You, Y.; Guo, L. Deformation mechanism of an expressway embankment in warm and high ice content permafrost regions. Appl. Therm. Eng. 2017, 121, 1032–1039. [Google Scholar] [CrossRef]
- Daanen, R.P.; Ingeman-Nielsen, T.; Foged, N.; Marchenko, S.S.; Svendsen, K.H. Permafrost degradation risk zone assessment using simulation models. Cryosphere 2011, 5, 1043–1056. [Google Scholar] [CrossRef]
- Ni, J.; Wu, T.; Zhu, X.; Hu, G.; Zou, D.; Wu, X.; Li, R.; Xie, C.; Qiao, Y.; Pang, Q.; et al. Simulation of the Present and Future Projection of Permafrost on the Qinghai-Tibet Plateau with Statistical and Machine Learning Models. J. Geophys. Res.-Atmos. 2021, 126, jd033402. [Google Scholar] [CrossRef]
- Filimonov, M.Y.; Kamnev, Y.K.; Shein, A.N.; Vaganova, N.A. Modeling the Temperature Field in Frozen Soil under Buildings in the City of Salekhard Taking into Account Temperature Monitoring. Land 2022, 11, 1102. [Google Scholar] [CrossRef]
- Li, R.; Zhao, L.; Ding, Y.; Wu, T.; Xiao, Y.; Du, E.; Liu, G.; Qiao, Y. Temporal and spatial variations of the active layer along the Qinghai-Tibet Highway in a permafrost region. Chin. Sci. Bull. 2012, 57, 4609–4616. [Google Scholar] [CrossRef]
- Zhang, M.; Lai, Y.; Dong, Y. Three-Dimensional Nonlinear Analysis for the Cooling Characteristics of Crushed-Rock Interlayer Embankment with Ventilated Duct along the Qinghai-Tibet Expressway in Permafrost Regions. J. Cold Reg. Eng. 2010, 24, 126–141. [Google Scholar] [CrossRef]
- Fu, Z.; Wu, Q.; Zhang, W.; He, H.; Wang, L. Water Migration and Segregated Ice Formation in Frozen Ground: Current Advances and Future Perspectives. Front. Earth Sci. 2022, 10, 826961. [Google Scholar] [CrossRef]
- Korte, S.; Gieschen, R.; Stolle, J.; Goseberg, N. Physical Modelling of Arctic Coastlines—Progress and Limitations. Water 2020, 12, 2254. [Google Scholar] [CrossRef]
- Li, G.; Zhang, M.; Pei, W.; Melnikov, A.; Khristoforov, I.; Li, R.; Yu, F. Permafrost extent and active layer thickness variation in the Northern Hemisphere from 1969 to 2018. Sci. Total Environ. 2022, 804, 150182. [Google Scholar] [CrossRef]
- Luo, J.; Niu, F.-j.; Lin, Z.-j.; Liu, M.-h.; Yin, G.-a. Variations in the northern permafrost boundary over the last four decades in the Xidatan region, Qinghai–Tibet Plateau. J. Mt. Sci. 2018, 15, 765–778. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, L.; Zhou, H.; Liu, S.; Du, E.; Zou, D.; Liu, G.; Wang, C.; Li, Y. Permafrost Ground Ice Melting and Deformation Time Series Revealed by Sentinel-1 InSAR in the Tanggula Mountain Region on the Tibetan Plateau. Remote Sens. 2022, 14, 811. [Google Scholar] [CrossRef]
- Bai, L.R.; Chai, M.T.; Wu, L.B.; Zhang, X.Y.; Cao, J.S. Extraction and Analysis on Pavement Defects of the Qinghai-Tibet Highway. Highway 2021, 66, 32–37. [Google Scholar]
- Luo, L.; Ma, W.; Zhao, W.; Zhuang, Y.; Zhang, Z.; Zhang, M.; Ma, D.; Zhou, Q. UAV-based spatiotemporal thermal patterns of permafrost slopes along the Qinghai–Tibet Engineering Corridor. Landslides 2018, 15, 2161–2172. [Google Scholar] [CrossRef]
- Ye, L.; Li, F.; Huang, X.N. Application and Research of Comprehensive Geophysical Prospecting Technology in Permafrost Exploration of Northeast Highway Project. J. Catastrophol. 2018, 33 (Suppl. 1), 25–29. [Google Scholar] [CrossRef]
- Shan, W.; Xu, Z.; Guo, Y.; Zhang, C.C.; Hu, Z.G.; Wang, Y.Z. Geological methane emissions and wildfire risk in the degraded permafrost area of the Xiao Xing’an Mountains, China. Sci. Rep. 2020, 10, 21297. [Google Scholar] [CrossRef]
- Zeng, Z.G.; Huang, Y.Z.; Xia, Z.Y.; Seguin, M.K. The Radar Detecting on Permafrost Distribution under the Asphalt Road of Qinghai-Xizang Highway. J. Glaciol. Geocryol. 1993, 15, 70–76. [Google Scholar]
- Liu, L.B.; Qian, R.Y. Ground penetrating radar: A critical tool in neat-surface geophysics. Chin. J. Geophys. 2015, 58, 2606–2617. [Google Scholar] [CrossRef]
- Solla, M.; Pérez-Gracia, V.; Fontul, S. A Review of GPR Application on Transport Infrastructures: Troubleshooting and Best Practices. Remote Sens. 2021, 13, 672. [Google Scholar] [CrossRef]
- Ling, J.; Qian, R.; Shang, K.; Guo, L.; Zhao, Y.; Liu, D. Research on the Dynamic Monitoring Technology of Road Subgrades with Time-Lapse Full-Coverage 3D Ground Penetrating Radar (GPR). Remote Sens. 2022, 14, 1593. [Google Scholar] [CrossRef]
- De Benedetto, D.; Barca, E.; Castellini, M.; Popolizio, S.; Lacolla, G.; Stellacci, A.M. Prediction of Soil Organic Carbon at Field Scale by Regression Kriging and Multivariate Adaptive Regression Splines Using Geophysical Covariates. Land 2022, 11, 381. [Google Scholar] [CrossRef]
- Ballabio, C.; Panagos, P.; Lugato, E.; Huang, J.H.; Orgiazzi, A.; Jones, A.; Fernandez-Ugalde, O.; Borrelli, P.; Montanarella, L. Copper distribution in European topsoils: An assessment based on LUCAS soil survey. Sci. Total Environ. 2018, 636, 282–298. [Google Scholar] [CrossRef]
- Pilecki, Z.; Krzysztof, K.; Elżbieta, P.; Andrzej, K.; Sylwia, T.-S.; Tomasz, Ł. Identification of buried historical mineshaft using ground-penetrating radar. Eng. Geol. 2021, 294, 106400. [Google Scholar] [CrossRef]
- Núñez-Nieto, X.; Solla, M.; Gómez-Pérez, P.; Lorenzo, H. GPR Signal Characterization for Automated Landmine and UXO Detection Based on Machine Learning Techniques. Remote Sens. 2014, 6, 9729–9748. [Google Scholar] [CrossRef]
- Fediuk, A.; Wunderlich, T.; Wilken, D.; Rabbel, W. Ground Penetrating Radar Measurements in Shallow Water Environments—A Case Study. Remote Sens. 2022, 14, 3659. [Google Scholar] [CrossRef]
- Wu, T.; Wang, Q.; Zhao, L.; Du, E.; Wang, W.; Batkhishig, O.; Battogtokh, D.; Watanabe, M. Investigating internal structure of permafrost using conventional methods and ground-penetrating radar at Honhor basin, Mongolia. Environ. Earth Sci. 2012, 67, 1869–1876. [Google Scholar] [CrossRef]
- Sjoberg, Y.; Marklund, P.; Pettersson, R.; Lyon, S. Geophysical mapping of palsa peatland permafrost. Cryosphere 2014, 8, 5137–5168. [Google Scholar] [CrossRef]
- Wang, Y.; Jin, H.; Li, G. Investigation of the freeze–thaw states of foundation soils in permafrost areas along the China–Russia Crude Oil Pipeline (CRCOP) route using ground-penetrating radar (GPR). Cold Reg. Sci. Technol. 2016, 126, 10–21. [Google Scholar] [CrossRef]
- Ma, W.; Mu, Y.H.; Xie, S.B.; Mao, Y.C.; Chen, D. Thermal-mechanical influences and environmental effects of expressway construction on the Qinghai-Tibet permafrost engineering corridor. Adv. Earth Sci. 2017, 32, 459–464. [Google Scholar] [CrossRef]
- Wang, W. Research on the Disaster Mechanism and Preventive Measures of subgrade Defect in Permafrost Regions under the Double thermal effect of Sunny-Shady Slope and Roadside Lake. Master’s Thesis, Chang’an University, Xi’an, China, 2021. [Google Scholar] [CrossRef]
- Wang, S.; Li, Z.; Zhang, J.; Chen, J. Highway Construction Technology on Permafrost Regions; China Communications Press: Beijing, China, 2008; pp. 25–32. [Google Scholar]
- Lin, Z. A new map of permafrost distribution on the Tibetan Plateau (2017). Cryosphere 2019, 11, 2527–2542. [Google Scholar] [CrossRef]
- Davis, J.L.; Annan, A.P. Ground-Penetrating Radar for High-Resolution Mapping of Soil and Rock STRATIGRAPHY1. Geophys. Prospect. 1989, 37, 531–551. [Google Scholar] [CrossRef]
- Blindow, N. Ground Penetrating Radar. In Groundwater Geophysics: A Tool for Hydrogeology; Kirsch, R., Ed.; Springer: Berlin/Heidelberg, Germany, 2006; pp. 227–252. [Google Scholar]
- Shu, Z.L.; Liu, B.X.; Liu, X.R.; Zhu, C.H. Forward and Inverse Theory and Signal Processing of Ground-Penetrating Radar; Science Press: Beijing, China, 2017; pp. 1–10. [Google Scholar]
- Zeng, Z.F.; Liu, S.X.; Wang, Z.J.; Xue, J. Principle and Application of Ground-Penetrating Radar; Science Press: Beijing, China, 2006; pp. 1–119. [Google Scholar]
- Reflexw. User Guide of Reflexw Computer Program; Sandmeier Geophysical Research: Karlsruhe, Germany, 2018. [Google Scholar]
- Benedetto, A.; Tosti, F.; Bianchini Ciampoli, L.; D’Amico, F. An overview of ground-penetrating radar signal processing techniques for road inspections. Signal Process. 2017, 132, 201–209. [Google Scholar] [CrossRef]
Division | Parameter A | Parameter B |
---|---|---|
Antenna frequency (MHz) | 300 | 70 |
Antenna spacing (m) | 0.23 | 0.6 |
Time window (ns) | 93 | 375 |
Sampling rate (m) | 0.05 | 0.05 |
Sampling point | 300 | 300 |
Trigger device | Wheel | Wheel |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qi, S.; Li, G.; Chen, D.; Niu, F.; Sun, Z.; Wu, G.; Du, Q.; Chai, M.; Cao, Y.; Yue, J. Research on the Characteristics of Thermosyphon Embankment Damage and Permafrost Distribution Based on Ground-Penetrating Radar: A Case Study of the Qinghai–Tibet Highway. Remote Sens. 2023, 15, 2651. https://doi.org/10.3390/rs15102651
Qi S, Li G, Chen D, Niu F, Sun Z, Wu G, Du Q, Chai M, Cao Y, Yue J. Research on the Characteristics of Thermosyphon Embankment Damage and Permafrost Distribution Based on Ground-Penetrating Radar: A Case Study of the Qinghai–Tibet Highway. Remote Sensing. 2023; 15(10):2651. https://doi.org/10.3390/rs15102651
Chicago/Turabian StyleQi, Shunshun, Guoyu Li, Dun Chen, Fujun Niu, Zhizhong Sun, Gang Wu, Qingsong Du, Mingtang Chai, Yapeng Cao, and Jianwei Yue. 2023. "Research on the Characteristics of Thermosyphon Embankment Damage and Permafrost Distribution Based on Ground-Penetrating Radar: A Case Study of the Qinghai–Tibet Highway" Remote Sensing 15, no. 10: 2651. https://doi.org/10.3390/rs15102651
APA StyleQi, S., Li, G., Chen, D., Niu, F., Sun, Z., Wu, G., Du, Q., Chai, M., Cao, Y., & Yue, J. (2023). Research on the Characteristics of Thermosyphon Embankment Damage and Permafrost Distribution Based on Ground-Penetrating Radar: A Case Study of the Qinghai–Tibet Highway. Remote Sensing, 15(10), 2651. https://doi.org/10.3390/rs15102651