Mangrove Biodiversity Assessment Using UAV Lidar and Hyperspectral Data in China’s Pinglu Canal Estuary
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Materials and Method
2.2.1. UAV Hyperspectral and Laser-Point Cloud Data Acquisition
- (1)
- Spectrum Patrol HSG-1 UAV Hyperspectral Data Acquisition
- (2)
- Laser Radar Data Acquisition for a Bumblebee Unmanned Aerial Vehicle
- (3)
- UAV hyperspectral and laser point-cloud data extraction
2.2.2. Classification of Ecosystem Types and Construction of Biodiversity Indicators
- (1)
- Classification of ecosystem types
- (2)
- Selection of the biodiversity indicator system
- (3)
- Construction of biodiversity indicators (BI)
2.3. Technical Process
3. Results and Analysis
3.1. Classification Accuracy of Different Mangrove Tree Species
3.2. Biodiversity Index Characteristics of Different Mangrove Tree Species
3.3. Spatial Distribution of the Mangrove Biodiversity index
3.4. Mangrove Biodiversity Zoning Scheme
4. Discussion
4.1. Selection of Biodiversity Indicators
4.2. Applicability of UAV Hyperspectral and Lidar in Biodiversity Assessment
4.3. Uncertainty of Model Evaluation Results and Future Research Directions
4.4. Recommendations for the Protection of Mangrove Biodiversity
5. Conclusions
- (1)
- The weight of mangrove landscape diversity has the highest value of 0.5577, followed by species diversity indicators with a weight of 0.4116, and ecosystem diversity has the lowest weight with a value of 0.0307.
- (2)
- The mangrove biodiversity index ranges from 0 to 0.63, with an average value of 0.29. High-biodiversity areas are mainly concentrated in the southwest of the study area, while low-biodiversity areas are mainly concentrated in the north of the study area.
- (3)
- The most suitable distribution area for the mangrove biodiversity index is mainly concentrated in the distance range with an elevation of 1.43–1.59 m and an offshore distance of 150.08–204.28 m.
- (4)
- The core area for mangrove biodiversity conservation is relatively small, accounting for only 2.32%, while the buffer zone and experimental zone account for a larger proportion, with values of 35.99% and 61.69%, respectively.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Trégarot, E.; Caillaud, A.; Cornet, C.C.; Taureau, F.; Catry, T.; Cragg, S.M.; Failler, P. Mangrove ecological services at the forefront of coastal change in the French overseas territories. Sci. Total. Environ. 2021, 763, 143004. [Google Scholar] [CrossRef]
- Hu, W.; Wang, Y.; Zhang, D.; Yu, W.; Chen, G.; Xie, T.; Liu, Z.; Ma, Z.; Du, J.; Chao, B. Mapping the potential of mangrove forest restoration based on species distribution models: A case study in China. Sci. Total. Environ. 2020, 748, 142321. [Google Scholar] [CrossRef]
- Damastuti, E.; de Groot, R.; Debrot, A.O.; Silvius, M.J. Effectiveness of community-based mangrove management for biodiversity conservation: A case study from Central Java, Indonesia. Trees For. People 2022, 7, 100202. [Google Scholar] [CrossRef]
- Alongi, D.M. Mangrove forests: Resilience, protection from tsunamis, and responses to global climate change. Estuar. Coast. Shelf Sci. 2008, 76, 1–13. [Google Scholar] [CrossRef]
- Richards, D.R.; Friess, D.A. Rates and drivers of mangrove deforestation in Southeast Asia, 2000–2012. Proc. Natl. Acad. Sci. USA 2016, 113, 344–349. [Google Scholar] [CrossRef]
- Valiela, I.; Bowen, J.L.; York, J.K. Mangrove Forests: One of the World’s Threatened Major Tropical Environments: At least 35% of the area of mangrove forests has been lost in the past two decades, losses that exceed those for tropical rain forests and coral reefs, two other well-known threatened environments. Bioscience 2001, 51, 807–815. [Google Scholar]
- Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef]
- Duke, N.C.; Meynecke, J.O.; Dittmann, S.; Ellison, A.M.; Anger, K.; Berger, U.; Cannicci, S.; Diele, K.; Ewel, K.C.; Field, C.D. A world without mangroves? Science 2007, 317, 41–42. [Google Scholar] [CrossRef] [PubMed]
- Friess, D.A.; Rogers, K.; Lovelock, C.E.; Krauss, K.W.; Hamilton, S.E.; Lee, S.Y.; Lucas, R.; Primavera, J.; Rajkaran, A.; Shi, S. The state of the world’s mangrove forests: Past, present, and future. Annu. Rev. Environ. Resour. 2019, 44, 89–115. [Google Scholar] [CrossRef]
- Hoban, S.; Bruford, M.; Jackson, J.D.U.; Lopes-Fernandes, M.; Heuertz, M.; Hohenlohe, P.A.; Paz-Vinas, I.; Sjögren-Gulve, P.; Segelbacher, G.; Vernesi, C. Genetic diversity targets and indicators in the CBD post-2020 Global Biodiversity Framework must be improved. Biol. Conserv. 2020, 248, 108654. [Google Scholar] [CrossRef]
- Donald, P.F.; Buchanan, G.M.; Balmford, A.; Bingham, H.; Couturier, A.R.; de la Rosa, G.E., Jr.; Gacheru, P.; Herzog, S.K.; Jathar, G.; Kingston, N. The prevalence, characteristics and effectiveness of Aichi Target 11′ s “other effective area-based conservation measures” (OECMs) in Key Biodiversity Areas. Conserv. Lett. 2019, 12, e12659. [Google Scholar] [CrossRef]
- Maxwell, S.L.; Cazalis, V.; Dudley, N.; Hoffmann, M.; Rodrigues, A.S.L.; Stolton, S.; Visconti, P.; Woodley, S.; Kingston, N.; Lewis, E. Area-based conservation in the twenty-first century. Nature 2020, 586, 217–227. [Google Scholar] [CrossRef] [PubMed]
- Yang, R.; Cao, Y.; Hou, S.; Peng, Q.; Wang, X.; Wang, F.; Tseng, T.-H.; Yu, L.; Carver, S.; Convery, I. Cost-effective priorities for the expansion of global terrestrial protected areas: Setting post-2020 global and national targets. Sci. Adv. 2020, 6, eabc3436. [Google Scholar] [CrossRef]
- Venter, O.; Magrach, A.; Outram, N.; Klein, C.J.; Possingham, H.P.; Di Marco, M.; Watson, J.E.M. Bias in protected-area location and its effects on long-term aspirations of biodiversity conventions. Conserv. Biol. 2018, 32, 127–134. [Google Scholar] [CrossRef]
- Guo, S.-Z.; Bai, H.-Y.; Huang, X.-Y.; Meng, Q.; Zhao, T. Remote sensing phenology of Larix chinensis forest in response to climate change in Qinling Mountains. Chin. J. Ecol. 2019, 38, 1123. [Google Scholar]
- Tian, Y.; Huang, H.; Zhou, G.; Zhang, Q.; Tao, J.; Zhang, Y.; Lin, J. Aboveground mangrove biomass estimation in Beibu Gulf using machine learning and UAV remote sensing. Sci. Total. Environ. 2021, 781, 146816. [Google Scholar] [CrossRef]
- Tian, Y.; Zhang, Q.; Huang, H.; Huang, Y.; Tao, J.; Zhou, G.; Zhang, Y.; Yang, Y.; Lin, J. Aboveground biomass of typical invasive mangroves and its distribution patterns using UAV-LiDAR data in a subtropical estuary: Maoling River estuary, Guangxi, China. Ecol. Indic. 2022, 136, 108694. [Google Scholar] [CrossRef]
- Giri, C.; Ochieng, E.; Tieszen, L.L.; Zhu, Z.; Singh, A.; Loveland, T.; Masek, J.; Duke, N. Status and distribution of mangrove forests of the world using earth observation satellite data. Glob. Ecol. Biogeogr. 2011, 20, 154–159. [Google Scholar] [CrossRef]
- Hernández-Stefanoni, J.L.; Gallardo-Cruz, J.A.; Meave, J.A.; Rocchini, D.; Bello-Pineda, J.; López-Martínez, J.O. Modeling α-and β-diversity in a tropical forest from remotely sensed and spatial data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 359–368. [Google Scholar] [CrossRef]
- Wang, D.; Qiu, P.; Wan, B.; Cao, Z.; Zhang, Q. Mapping α-and β-diversity of mangrove forests with multispectral and hyperspectral images. Remote Sens. Environ. 2022, 275, 113021. [Google Scholar] [CrossRef]
- Tian, Y.; Yang, Z.; Yu, X.; Jia, Z.; Rosso, M.; Dedman, S.; Zhu, J.; Xia, Y.; Zhang, G.; Yang, J. Can we quantify the aquatic environmental plastic load from aquaculture? Water Res. 2022, 219, 118551. [Google Scholar] [CrossRef]
- Yang, Z.; Yu, X.; Dedman, S.; Rosso, M.; Zhu, J.; Yang, J.; Xia, Y.; Tian, Y.; Zhang, G.; Wang, J. UAV remote sensing applications in marine monitoring: Knowledge visualization and review. Sci. Total Environ. 2022, 838, 155939. [Google Scholar] [CrossRef]
- Hu, J.B.; Zhang, J. Unmanned Aerial Vehicle remote sensing in ecology: Advances and prospects. Acta Ecol. Sin. 2018, 38, 20–30. [Google Scholar]
- Turner, W. Sensing biodiversity. Science 2014, 346, 301–302. [Google Scholar] [CrossRef]
- Jiang, Y.; Zhang, L.; Yan, M.; Qi, J.; Fu, T.; Fan, S.; Chen, B. High-resolution mangrove forests classification with machine learning using worldview and uav hyperspectral data. Remote Sens. 2021, 13, 1529. [Google Scholar] [CrossRef]
- Otero, V.; Van De Kerchove, R.; Satyanarayana, B.; Martínez-Espinosa, C.; Fisol, M.A.B.; Ibrahim, M.R.B.; Sulong, I.; Mohd-Lokman, H.; Lucas, R.; Dahdouh-Guebas, F. Managing mangrove forests from the sky: Forest inventory using field data and Unmanned Aerial Vehicle (UAV) imagery in the Matang Mangrove Forest Reserve, peninsular Malaysia. For. Ecol. Manag. 2018, 411, 35–45. [Google Scholar] [CrossRef]
- Zhu, X.; Hou, Y.; Weng, Q.; Chen, L. Integrating UAV optical imagery and LiDAR data for assessing the spatial relationship between mangrove and inundation across a subtropical estuarine wetland. ISPRS J. Photogramm. Remote Sens. 2019, 149, 146–156. [Google Scholar] [CrossRef]
- Cao, J.; Leng, W.; Liu, K.; Liu, L.; He, Z.; Zhu, Y. Object-based mangrove species classification using unmanned aerial vehicle hyperspectral images and digital surface models. Remote Sens. 2018, 10, 89. [Google Scholar] [CrossRef]
- Tian, J.; Wang, L.; Li, X.; Gong, H.; Shi, C.; Zhong, R.; Liu, X. Comparison of UAV and WorldView-2 imagery for mapping leaf area index of mangrove forest. Int. J. Appl. Earth Obs. Geoinf. 2017, 61, 22–31. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, J.; Xia, A.; Zhang, K.; Dong, X.; Wu, K.; Wu, G. Continuous wavelet analysis of leaf reflectance improves classification accuracy of mangrove species. Remote Sens. Environ. 2019, 11, 254. [Google Scholar] [CrossRef]
- Zeming, Z.; Benqing, C.; Ran, X.; Wei, F. Identification of the mangrove species using UAV hyperspectral images: A case study of Zhangjiangkou mangrove national nature reserve. Haiyang Xuebao 2021, 43, 137–145. [Google Scholar]
- Qiu, P.; Wang, D.; Zou, X.; Yang, X.; Xie, G.; Xu, S.; Zhong, Z. Finer resolution estimation and mapping of mangrove biomass using UAV LiDAR and worldview-2 data. Forests 2019, 10, 871. [Google Scholar] [CrossRef]
- Zhu, Y.; Liu, K.; Myint, S.W.; Du, Z.; Li, Y.; Cao, J.; Liu, L.; Wu, Z. Integration of GF2 optical, GF3 SAR, and UAV data for estimating aboveground biomass of China’s largest artificially planted mangroves. Remote Sens. 2020, 12, 2039. [Google Scholar] [CrossRef]
- Heumann, B.W.; Hackett, R.A.; Monfils, A.K. Testing the spectral diversity hypothesis using spectroscopy data in a simulated wetland community. Ecol. Inform. 2015, 25, 29–34. [Google Scholar] [CrossRef]
- Palmer, M.W.; Earls, P.G.; Hoagland, B.W.; White, P.S.; Wohlgemuth, T. Quantitative tools for perfecting species lists. Environmetrics 2002, 13, 121–137. [Google Scholar] [CrossRef]
- Bongalov, B.; Burslem, D.F.R.P.; Jucker, T.; Thompson, S.E.D.; Rosindell, J.; Swinfield, T.; Nilus, R.; Clewley, D.; Phillips, O.L.; Coomes, D.A. Reconciling the contribution of environmental and stochastic structuring of tropical forest diversity through the lens of imaging spectroscopy. Ecol. Lett. 2019, 22, 1608–1619. [Google Scholar] [CrossRef]
- Gholizadeh, H.; Gamon, J.A.; Helzer, C.J.; Cavender-Bares, J. Multi-temporal assessment of grassland α-and β-diversity using hyperspectral imaging. Ecol. Appl. 2020, 30, e02145. [Google Scholar] [CrossRef]
- Xu, C.; Zeng, Y.; Zheng, Z.; Zhao, D.; Liu, W.; Ma, Z.; Wu, B. Assessing the impact of soil on species diversity estimation based on UAV imaging spectroscopy in a natural alpine steppe. Remote Sens. 2022, 14, 671. [Google Scholar] [CrossRef]
- Torresani, M.; Rocchini, D.; Sonnenschein, R.; Zebisch, M.; Hauffe, H.C.; Heym, M.; Pretzsch, H.; Tonon, G. Height variation hypothesis: A new approach for estimating forest species diversity with CHM LiDAR data. Earth Syst. Sci. Data 2020, 117, 106520. [Google Scholar] [CrossRef]
- Asner, G.P.; Martin, R.E.; Knapp, D.E.; Tupayachi, R.; Anderson, C.B.; Sinca, F.; Vaughn, N.R.; Llactayo, W. Airborne laser-guided imaging spectroscopy to map forest trait diversity and guide conservation. Science 2017, 355, 385–389. [Google Scholar] [CrossRef]
- Zheng, Z.; Zeng, Y.; Schneider, F.D.; Zhao, Y.; Zhao, D.; Schmid, B.; Schaepman, M.E.; Morsdorf, F. Mapping functional diversity using individual tree-based morphological and physiological traits in a subtropical forest. Remote Sens. Environ. 2021, 252, 112170. [Google Scholar] [CrossRef]
- Pal, S.K.; Majumdar, T.J.; Bhattacharya, A.K. ERS-2 SAR and IRS-1C LISS III data fusion: A PCA approach to improve remote sensing based geological interpretation. ISPRS J. Photogramm. Remote Sens. 2007, 61, 281–297. [Google Scholar] [CrossRef]
- Behera, M.D.; Barnwal, S.; Paramanik, S.; Das, P.; Bhattyacharya, B.K.; Jagadish, B.; Roy, P.S.; Ghosh, S.M.; Behera, S.K. Species-level classification and mapping of a mangrove forest using random forest—Utilisation of AVIRIS-NG and sentinel data. Remote Sens. 2021, 13, 2027. [Google Scholar] [CrossRef]
- Guo, Q.; Su, Y.; Hu, T.; Zhao, X.; Wu, F.; Li, Y.; Liu, J.; Chen, L.; Xu, G.; Lin, G. An integrated UAV-borne lidar system for 3D habitat mapping in three forest ecosystems across China. Int. J. Remote Sens. 2017, 38, 2954–2972. [Google Scholar] [CrossRef]
- Li, C.-F.; Dai, Y.-Y.; Zhao, J.-J.; Yin, J.-Y.; Dong, J.-S. Volcanic ash cloud detection from remote sensing images using principal component analysis. Comput. Electr. Eng. 2014, 40, 204–214. [Google Scholar] [CrossRef]
- Zhao, X.; Yue, C.-R.; Li, C.; Limei, Z.; Lei., G. Estimation of mean forest stand height based on airborne LiDAR data. J. For. Res. 2020, 33, 59–66. [Google Scholar]
- Qu, Y.; Shaker, A.; Silva, C.A.; Klauberg, C.; Pinagé, E.R. Remote sensing of leaf area index from LiDAR height percentile metrics and comparison with MODIS product in a selectively logged tropical forest area in Eastern Amazonia. Remote Sens. 2018, 10, 970. [Google Scholar] [CrossRef]
- Wang, Y.; Fang, H. Estimation of LAI with the LiDAR technology: A review. Remote Sens. 2020, 12, 3457. [Google Scholar] [CrossRef]
- Mielcarek, M.; Stereńczak, K.; Khosravipour, A. Testing and evaluating different LiDAR-derived canopy height model generation methods for tree height estimation. Int. J. Appl. Earth Obs. Geoinf. 2018, 71, 132–143. [Google Scholar] [CrossRef]
- Zhang, X.; Liu, L.; Chen, X.; Gao, Y.; Xie, S.; Mi, J. GLC_FCS30: Global land-cover product with fine classification system at 30 m using time-series Landsat imagery. Earth Syst. Sci. Data 2021, 13, 2753–2776. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Zur, Y.; Chivkunova, O.B.; Merzlyak, M.N. Assessing carotenoid content in plant leaves with reflectance spectroscopy. Photochem. Photobiol. 2002, 75, 272–281. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Tilman, D.; Wedin, D.; Knops, J. Productivity and sustainability influenced by biodiversity in grassland ecosystems. Nature 1996, 379, 718–720. [Google Scholar] [CrossRef]
- Hector, A.; Schmid, B.; Beierkuhnlein, C.; Caldeira, M.C.; Diemer, M.; Dimitrakopoulos, P.G.; Finn, J.A.; Freitas, H.; Giller, P.S.; Good, J. Plant diversity and productivity experiments in European grasslands. Science 1999, 286, 1123–1127. [Google Scholar] [CrossRef]
- Naeem, S.; Thompson, L.J.; Lawler, S.P.; Lawton, J.H.; Woodfin, R.M. Declining biodiversity can alter the performance of ecosystems. Nature 1994, 368, 734–737. [Google Scholar] [CrossRef]
- Wu, P.; Ren, G.; Zhang, C.; Wang, H.; Liu, S.; Ma, Y. Fine identification and biomass estimation of mangroves based on UAV multispectral and LiDAR. Natl. Remote Sens. Bull. 2022, 26, 1169–1181. [Google Scholar]
- Bojie, F.; Liding, C. Landscape diversity types and their ecological significance. Acta Geogr. Sin. 1996, 51, 454–462. [Google Scholar]
- Peng, Y.; Wang, W.-T.; Lu, Y.-T.; Dong, J.-H.; Zhou, Y.-Q.; Shang, J.-X.; Li, X.; Mi, K. Multiscale influences of urbanized landscape metrics on the diversity of indigenous plant species: A case study in Shunyi District of Beijing, China. J. Appl. Ecol. 2020, 31, 4058–4066. [Google Scholar]
- Xu, Q.; Zhang, F.; Xu, Z.; Jia, Y.; You, J. Some characteristics of Simpson index and the Shannon-Wiener index and their dilution effect. Pratacultural Sci. 2011, 28, 527–531. [Google Scholar]
- Dogan, H.M.; Dogan, M. A new approach to diversity indices–modeling and mapping plant biodiversity of Nallihan (A3-Ankara/Turkey) forest ecosystem in frame of geographic information systems. Biodivers. Conserv. 2006, 15, 855–878. [Google Scholar] [CrossRef]
- Yao, Q.X.; Xie, J.J.; Liu, J.X.; Tang, L. Multi-Index optimization for saponification experiment of selective adsorbent BLPAMA. Chin. J. Chem. Eng. 2014, 42, 40–44. [Google Scholar]
- Zalba, B.; Marın, J.M.; Cabeza, L.F.; Mehling, H. Review on thermal energy storage with phase change: Materials, heat transfer analysis and applications. Appl. Therm. Eng. 2003, 23, 251–283. [Google Scholar] [CrossRef]
- Chang, L.J. The Study of Urban Economic and Social Development Evaluation System. Ph.D. Thesis, Dalian University of Technology, Dalian, China, 2009. [Google Scholar]
- Ba, Y.; Guo, J.; Lu, S.; Xu, Q.; Hu, X. Assessing ecological health of open water region from Bostenhu Lake during last 20 years. China Environ. Sci. 2013, 33, 503–507. [Google Scholar]
- Leite, J.V.; Campos, J.C.; Gangkofner, U.; Vale, C.G.; Brito, J.C. Remote Sensing indicators and vertebrate biodiversity distribution in global drylands: An assessment with ESA diversity II products. J. Arid Environ. 2019, 166, 51–59. [Google Scholar] [CrossRef]
- Jiao, Q.; Sun, Q.; Zhang, B.; Huang, W.; Ye, H.; Zhang, Z.; Zhang, X.; Qian, B. A random forest algorithm for retrieving canopy chlorophyll content of wheat and soybean trained with PROSAIL simulations using adjusted average leaf angle. Remote Sens. 2021, 14, 98. [Google Scholar] [CrossRef]
- Ye, H.; Huang, W.; Huang, S.; Wu, B.; Dong, Y.; Cui, B. Remote estimation of nitrogen vertical distribution by consideration of maize geometry characteristics. Remote Sens. 2018, 10, 1995. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, C.; Jiang, R.; Wang, Z.; Zhu, M.; Shen, G. UAV-based hyperspectral images and monitoring of canopy tree diversity. Biodivers. Sci. 2021, 29, 647. [Google Scholar] [CrossRef]
- Dalla Corte, A.P.; Souza, D.V.; Rex, F.E.; Sanquetta, C.R.; Mohan, M.; Silva, C.A.; Zambrano, A.M.A.; Prata, G.; de Almeida, D.R.A.; Trautenmüller, J.W. Forest inventory with high-density UAV-Lidar: Machine learning approaches for predicting individual tree attributes. Comput. Electron. Agric. 2020, 179, 105815. [Google Scholar] [CrossRef]
- Liu, X.; Hao, Y.; Widagdo, F.R.A.; Xie, L.; Dong, L.; Li, F. Predicting height to crown base of Larix olgensis in Northeast China Using UAV-LiDAR data and nonlinear mixed effects models. Remote Sens. 2021, 13, 1834. [Google Scholar] [CrossRef]
- Pinton, D.; Canestrelli, A.; Wilkinson, B.; Ifju, P.; Ortega, A. Estimating ground elevation and vegetation characteristics in coastal salt marshes using UAV-based LiDAR and digital aerial photogrammetry. Remote Sens. 2021, 13, 4506. [Google Scholar] [CrossRef]
- Slavík, M.; Kuželka, K.; Modlinger, R.; Tomášková, I.; Surový, P. UAV laser scans allow detection of morphological changes in tree canopy. Remote Sens. 2020, 12, 3829. [Google Scholar] [CrossRef]
- Xu, W.; Deng, S.; Liang, D.; Cheng, X. A crown morphology-based approach to individual tree detection in subtropical mixed broadleaf urban forests using UAV LiDAR data. Remote Sens. Environ. 2021, 13, 1278. [Google Scholar] [CrossRef]
- Liu, L. Estimation of Tree Species Diversity in Subtropical Forests Based on Multi-Source Remote Sensing Data. Ph.D. Thesis, Chinese Academy of Forestry, Beijing, China, 2017. [Google Scholar]
- George-Chacon, S.P.; Dupuy, J.M.; Peduzzi, A.; Hernandez-Stefanoni, J.L. Combining high resolution satellite imagery and lidar data to model woody species diversity of tropical dry forests. Ecol. Indic. 2019, 101, 975–984. [Google Scholar] [CrossRef]
- Mohammadi, J.; Shataee, S.; Næsset, E. Modeling tree species diversity by combining ALS data and digital aerial photogrammetry. Sci. Remote Sens. 2020, 2, 100011. [Google Scholar] [CrossRef]
- Gould, W. Remote sensing of vegetation, plant species richness, and regional biodiversity hotspots. Ecol. Appl. 2000, 10, 1861–1870. [Google Scholar] [CrossRef]
- Torresani, M.; Rocchini, D.; Sonnenschein, R.; Zebisch, M.; Marcantonio, M.; Ricotta, C.; Tonon, G. Estimating tree species diversity from space in an alpine conifer forest: The Rao’s Q diversity index meets the spectral variation hypothesis. Ecol. Inform. 2019, 52, 26–34. [Google Scholar] [CrossRef]
- Vaglio Laurin, G.; Chan, J.C.-W.; Chen, Q.; Lindsell, J.A.; Coomes, D.A.; Guerriero, L.; Frate, F.D.; Miglietta, F.; Valentini, R. Biodiversity mapping in a tropical West African forest with airborne hyperspectral data. PLoS ONE 2014, 9, e97910. [Google Scholar] [CrossRef] [PubMed]
- Lucas, K.L.; Carter, G.A. The use of hyperspectral remote sensing to assess vascular plant species richness on Horn Island, Mississippi. Remote Sens. Environ. 2008, 112, 3908–3915. [Google Scholar] [CrossRef]
- Coops, N.C.; Tompaski, P.; Nijland, W.; Rickbeil, G.J.M.; Nielsen, S.E.; Bater, C.W.; Stadt, J.J. A forest structure habitat index based on airborne laser scanning data. Ecol. Indic. 2016, 67, 346–357. [Google Scholar] [CrossRef]
- Fahey, R.T.; Atkins, J.W.; Gough, C.M.; Hardiman, B.S.; Nave, L.E.; Tallant, J.M.; Nadehoffer, K.J.; Vogel, C.; Scheuermann, C.M.; Stuart-Haëntjens, E. Defining a spectrum of integrative trait-based vegetation canopy structural types. Ecol. Lett. 2019, 22, 2049–2059. [Google Scholar] [CrossRef]
- Simonson, W.D.; Allen, H.D.; Coomes, D.A. Use of an airborne lidar system to model plant species composition and diversity of Mediterranean oak forests. Conserv. Biol. 2012, 26, 840–850. [Google Scholar] [CrossRef] [PubMed]
- Asner, G.P.; Martin, R.E.; Carranza-Jiménez, L.; Sinca, F.; Tupayachi, R.; Anderson, C.B.; Martinez, P. Functional and biological diversity of foliar spectra in tree canopies throughout the Andes to Amazon region. New Phytol. 2014, 204, 127–139. [Google Scholar] [CrossRef] [PubMed]
Features | Vegetation Index | Formula | References |
---|---|---|---|
BGI2 | Blue Green Pigment Index 2 | [28] | |
NDVI | Normalized Difference Vegetation Index | [43] | |
RDVI | Reformed Difference Vegetation Index | [40] | |
TCARI | Transformed Chlorophyll Absorption in Reflectance Index | [41] | |
OSAVI | Optimized Soil Adjusted Vegetation Index | [10] | |
MCARI1 | Modified Chlorophyll Absorption Ratio Index 1 | [40] | |
MCARI2 | Modified Chlorophyll Absorption Ratio Index 2 | [41] | |
PRI | Photochemical Reflectance Index | [10] | |
SR | Simple Ratio Index | [44] | |
CI | Clumping Index | [45] |
Features | Texture Features | Formula | References |
---|---|---|---|
TM | Textural Mean | [16] | |
HOM | Homogeneity | ||
Dis | Dissimilarity | ||
Cor | Correlation | ||
Var | Variance | ||
Ent | Entropy | ||
Con | Contrast |
Biodiversity Levels | Vegetation Index | Index |
---|---|---|
Species diversity (SD) | LiDAR-based canopy structure variables | H95% |
CC | ||
LAI | ||
Based on hyperspectral variables | PRI | |
BGI2 | ||
CI | ||
Ecosystem diversity (ED) | AGB | |
Landscape diversity (LD) | SIDI | |
SPLIT | ||
CONTAG |
Truth | Predicted (Pixels) | Total | UA (%) | |||||
---|---|---|---|---|---|---|---|---|
SA | AI | CM | AC | KC | MF | |||
SA | 121 | 0 | 0 | 0 | 0 | 0 | 121 | 100 |
AI | 0 | 235 | 48 | 0 | 0 | 112 | 395 | 59.49 |
CM | 0 | 6 | 282 | 0 | 0 | 23 | 311 | 90.68 |
AC | 0 | 0 | 0 | 342 | 7 | 0 | 349 | 97.99 |
KC | 8 | 0 | 0 | 23 | 262 | 0 | 293 | 89.42 |
MF | 0 | 0 | 0 | 0 | 0 | 247 | 247 | 100 |
Total | 129 | 241 | 330 | 365 | 269 | 382 | 1716 | |
PA (%) | 93.80 | 97.51 | 85.45 | 93.70 | 97.40 | 64.66 | ||
Kappa (%) | 83.97 | OA (%) | 86.77 |
Landscape | SD | ED | LD | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Canopy Structure Variables | Hyperspectral Variables | ||||||||||
LAI | H95 | CC | PRI | BGI2 | CI | AGB | SPLIT | CONTAG | SIDI | ||
AI | range | 0~2.445 | 0.03519~8.5045 | 0~1 | 0.1798~0.2222 | 0.2688~1.1701 | 0.3318~2.6129 | 5.6~26.4 | 1~11.3636 | 0~72.6204 | 0~0.784 |
mean | 0.4414 | 1.6475 | 0.5338 | 0.0313 | 0.6332 | 1.0533 | 16.8 | 2.5406 | 26.6774 | 0.4787 | |
SA | range | 0~3.1651 | 0.1488~10.7132 | 0~1 | 0.1093~0.1369 | 0.2208~0.9873 | 0.7214~1.7 | 0~138.4 | 1~5.3419 | 0~64.7213 | 0~0.7648 |
mean | 1.2319 | 6.5329 | 0.8671 | 0.0313 | 0.3986 | 1.3701 | 86 | 1.4622 | 22.6995 | 0.2059 | |
AC | range | 0~3.4685 | 0.0413~9.6681 | 0~1 | 0.1541~0.2471 | 0.1111~1.0991 | 0.3127~2.0153 | 17.6~37.3 | 1~9.9206 | 0~71.6011 | 0~0.7968 |
mean | 0.9409 | 2.2381 | 0.8219 | 0.0776 | 0.3815 | 1.2096 | 28.5 | 1.8601 | 31.7659 | 0.3414 | |
KC | range | 0~3.4685 | 0.0764~9.6681 | 0~1 | 0.1012~0.3077 | 0.1155~0.9221 | 0.5099~2.1814 | 12.4~30.9 | 1~10.9649 | 0~72.3656 | 0~0.7936 |
mean | 0.9448 | 2.486 | 0.8298 | 0.0884 | 0.3407 | 1.3116 | 23.2 | 2.039 | 25.0976 | 0.4007 | |
CM | range | 0~2.445 | 0.0370~6.8239 | 0~1 | 0.1607~0.2027 | 0.2731~1.2165 | 0.3015~2.0921 | 20~37.3 | 1~9.6154 | 0~69.1964 | 0~0.7968 |
mean | 0.3498 | 1.5634 | 0.4454 | 0.0287 | 0.6499 | 1.0289 | 28.65 | 2.567 | 25.1932 | 0.4679 | |
MF | range | 0~1.3526 | 0~2.5179 | 0~1 | 0.0960~0.1475 | 0.1813~1.1995 | 0.0933~1.6695 | 0 | 1~7.9114 | 0~69.5627 | 0~0.7904 |
mean | 0.01856 | 0.2485 | 0.029 | 0.0273 | 0.2792 | 0.5316 | 0 | 1.419 | 13.9131 | 0.1598 |
Index | SD | ED | LD | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Canopy Structure Variables | Hyperspectral Variables | |||||||||
LAI | H95 | FVC | PRI | SR | CI | AGB | SPLIT | DIVISION | SIDI | |
Entropy weight | 0.1192 | 0.0360 | 0.0608 | 0.0085 | 0.1704 | 0.0167 | 0.0307 | 0.2749 | 0.1454 | 0.1374 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tian, Y.; Huang, H.; Zhou, G.; Zhang, Q.; Xie, X.; Ou, J.; Zhang, Y.; Tao, J.; Lin, J. Mangrove Biodiversity Assessment Using UAV Lidar and Hyperspectral Data in China’s Pinglu Canal Estuary. Remote Sens. 2023, 15, 2622. https://doi.org/10.3390/rs15102622
Tian Y, Huang H, Zhou G, Zhang Q, Xie X, Ou J, Zhang Y, Tao J, Lin J. Mangrove Biodiversity Assessment Using UAV Lidar and Hyperspectral Data in China’s Pinglu Canal Estuary. Remote Sensing. 2023; 15(10):2622. https://doi.org/10.3390/rs15102622
Chicago/Turabian StyleTian, Yichao, Hu Huang, Guoqing Zhou, Qiang Zhang, Xiaokui Xie, Jinhai Ou, Yali Zhang, Jin Tao, and Junliang Lin. 2023. "Mangrove Biodiversity Assessment Using UAV Lidar and Hyperspectral Data in China’s Pinglu Canal Estuary" Remote Sensing 15, no. 10: 2622. https://doi.org/10.3390/rs15102622
APA StyleTian, Y., Huang, H., Zhou, G., Zhang, Q., Xie, X., Ou, J., Zhang, Y., Tao, J., & Lin, J. (2023). Mangrove Biodiversity Assessment Using UAV Lidar and Hyperspectral Data in China’s Pinglu Canal Estuary. Remote Sensing, 15(10), 2622. https://doi.org/10.3390/rs15102622