Prediction of Plant Diversity Using Multi-Seasonal Remotely Sensed and Geodiversity Data in a Mountainous Area
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Sampling Design
2.2. Data Preparation
2.2.1. Remotely Sensed Variables
2.2.2. Geodiversity Variables
2.3. Statistical Analysis
2.3.1. Statistical Workflow
2.3.2. Preparation of Variables
2.4. Modeling Species Diversity by Random Forest
Evaluation of the Models’ Performance
3. Results
3.1. Multicollinearity of Independent Variables
3.2. Relationship between Species and Spectral Diversity
3.3. Performance of Plant Diversity Prediction and Mapping Accuracy
3.4. The Most Predictive Independent Variables
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Time Scale | Model | Variable |
---|---|---|
February | Geodiversity | TRI, TPI, MRVBF, MRRTF, MBI, Silt, ALT, pH, OM, EC, TWI, Rain, PRC, PLC, N, ASP |
Remotely sensed | NDWI, NDVIre2, NDre1, VSDI, SI, SATVI, MSI, HI, GNDVI, FeI, EVI, CRSI, CI, CalcI, CaI | |
All data | VSDI, SI, SATVI, NDWI, NDVIre2, NDre1, MSI, HI, GNDVI, FeI, EVI, CRSI, CI, CalcI, CaI, TRI, TPI, MRVBF, MRRTF, MBI, Silt, ALT, pH, OM, LST, CN, EC, CLY, TWI, Rain, PRC, PLC, N, ASP | |
April | Geodiversity | ASP, ALT, PLC, PRC, Rain, Silt, TWI, EC, N OM, MBI, MRRTF, MRVBF, TPI, TRI, Lithology, Cly |
Remotely sensed | EVI, BI2, CalcI, CRSI, FeI, HI, NDVIre2, NMDI, SATVI, S3, TCIre1, LST, NDre2 | |
All data | NDVI, ASP, ALT, CN, EVI, EC, N, OM, PH, PLC, PRC, Rain, Silt, TWI, MBI, MRRTF, MRVBF, TPI, TRI, BI2, CalcI, CRSI, FeI, HI, NDVIre2, NMDI, SATVI, S3, TCIre1, Lithology, Clay, LST, NDre2 | |
July | Geodiversity | ASP, ALT, Clay, EC, N, OM, pH, PLC, PRC, RN, SLP, SLT, TWI, NMDI, GRVI, Lithology, MBI, MRRTF, MRVBF, TPI |
Remotely sensed | EVI, FeI, GSI, HI, N, NDVI, LST, NDre2, S3, V, VDSI, NDVIre2, TCIre1, SATVI, CRSI | |
All data | ASP, ALT, Clay, EC, EVI, FeI, GSI, HI, N, NDVI, OM, PH, LST, PLC, PRC, RN, SLP, SLT, TWI, NDre2, NMDI, GRVI, MSI, TVI, S3, V, VDSI, Lithology, NDVIre2, TCIre1, SATVI, MBI, MRRTF, MRVBF, TPI, CN, CRSI | |
Multi seasonal | Geodiversity | ASP, ALT, Cly, EC, N, OC, pH, PLC, PRC, Rain, SLP, Silt, TWI, MBI, MRRTF, MRVBF, TPI, TRI, CN |
Remotely sensed | BI2_April, CalcI_April, CaI_April, EVI_April, HI_April, LST_April, NDVI_April, NDre2_April, NMDI_April, NDWI_April, CRSI_April, MSAVI_April, SAVI_July, SMMI_July, TVI_July, V_July, VDSI_July, NDVIre1_July, TCIre1_July, SAVI_July, CRSI_July, LSTJ, LST_July, BI2_April, CalcI_April, FeI_April, GSI_April, NDVIre2_April, NMDI_April, SMMI_April, TCIre1_April, LST_April, BI_Feb, BI2_Feb, CaI_Feb, CalcI_Feb, CRSI_Feb, EVI_Feb, FeI_Feb, GNDVI_Feb, GSI_Feb, MSI_Feb, NDre2_Feb, NDVIre2_Feb, NDWI_Feb, SATVI_Feb, SMMI_Feb | |
All data | ASP, ALT, BI, CaI, CalcI, CLY, EC, EVI, HI, LST, N, NDVI, OC, PH, PLC, PRC, Rain, SLP, Silt, TWI, NDre2_July, NMDI_July, NDWI_July, CRSI_July, LSWI_July, MSAVI_July, SAVI_July, SMMI_July, TVI_July, V_July, VDSI_July, Lithology, NDVIre2_July, TCIRE1_July, SATVI_July, MBI, MRRTF, MRVBF, TPI, TRI, CN, CRSI_July, LST_July, BI2_April, CalcI_April, FeI_April, GSI_April, NDVIre2_April, NMDI_April, SMMI_April, TCIre1_April, LST_April, BI_Feb, BI2_Feb, CaI_Feb, CalcI_Feb, CRSI_Feb, EVI_Feb, FeI_Feb, GNDVI_Feb, GSI_Feb, MSI_Feb, NDre2_Feb, NDVIre2_Feb, NDWI_Feb, SATVI_Feb, SMMI_Feb |
References
- Kissling, W.D.; Walls, R.; Bowser, A.; Jones, M.O.; Kattge, J.; Agosti, D.; Amengual, J.; Basset, A.; van Bodegom, P.M.; Cornelissen, J.H.C.; et al. Towards global data products of Essential Biodiversity Variables on species traits. Nat. Ecol. Evol. 2018, 2, 1531–1540. [Google Scholar] [CrossRef] [Green Version]
- Rahmanian, S.; Hejda, M.; Ejtehadi, H.; Farzam, M.; Pyšek, P.; Memariani, F. Effects of livestock grazing on plant species diversity vary along a climatic gradient in northeastern Iran. Appl. Veg. Sci. 2020, 23, 551–561. [Google Scholar] [CrossRef]
- Gotelli, N.J.; Colwell, R.K. Quantifying biodiversity: Procedures and pitfalls in the measurement and comparison of species richness. Ecol. Lett. 2001, 4, 379–391. [Google Scholar] [CrossRef] [Green Version]
- Rahmanian, S.; Hejda, M.; Ejtehadi, H.; Farzam, M.; Memariani, F.; Pyšek, P. Effects of livestock grazing on soil, plant functional diversity, and ecological traits vary between regions with different climates in northeastern Iran. Ecol. Evol. 2019, 9, 8225–8237. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- He, K.S.; Bradley, B.A.; Cord, A.F.; Rocchini, D.; Tuanmu, M.-N.; Schmidtlein, S.; Turner, W.; Wegmann, M.; Pettorelli, N. Will remote sensing shape the next generation of species distribution models? Remote Sens. Ecol. Conserv. 2015, 1, 4–18. [Google Scholar] [CrossRef] [Green Version]
- Rocchini, D.; Boyd, D.S.; Féret, J.-B.; Foody, G.M.; He, K.S.; Lausch, A.; Nagendra, H.; Wegmann, M.; Pettorelli, N. Satellite remote sensing to monitor species diversity: Potential and pitfalls. Remote Sens. Ecol. Conserv. 2016, 2, 25–36. [Google Scholar] [CrossRef]
- Pettorelli, N.; Laurance, W.F.; O’Brien, T.G.; Wegmann, M.; Nagendra, H.; Turner, W. Satellite remote sensing for applied ecologists: Opportunities and challenges. J. Appl. Ecol. 2014, 51, 839–848. [Google Scholar] [CrossRef]
- Jetz, W.; Cavender-Bares, J.; Pavlick, R.; Schimel, D.; Davis, F.W.; Asner, G.P.; Guralnick, R.; Kattge, J.; Latimer, A.M.; Moorcroft, P.; et al. Monitoring plant functional diversity from space. Nat. Plants 2016, 2, 16024. [Google Scholar] [CrossRef] [Green Version]
- Cavender-Bares, J.; Gamon, J.A.; Hobbie, S.E.; Madritch, M.D.; Meireles, J.E.; Schweiger, A.K.; Townsend, P.A. Harnessing plant spectra to integrate the biodiversity sciences across biological and spatial scales. Am. J. Bot. 2017, 104, 966–969. [Google Scholar] [CrossRef] [Green Version]
- Luque, S.; Pettorelli, N.; Vihervaara, P.; Wegmann, M. Improving biodiversity monitoring using satellite remote sensing to provide solutions towards the 2020 conservation targets. Methods Ecol. Evol. 2018, 9, 1784–1786. [Google Scholar] [CrossRef]
- Schimel, D.; Townsend, P.A.; Pavlick, R. Prospects and pitfalls for spectroscopic remote sensing of biodiversity at the global scale. In Remote Sensing of Plant Biodiversity; Gamon, J.A., Townsend, P.A., Eds.; Springer: Cham, Switzerland, 2020; pp. 503–518. [Google Scholar]
- Lefsky, M.A.; Cohen, W.B.; Parker, G.G.; Harding, D.J. Lidar remote sensing for ecosystem studies: Lidar, an emerging remote sensing technology that directly measures the three-dimensional distribution of plant canopies, can accurately estimate vegetation structural attributes and should be of particular interest to forest, landscape, and global ecologists. BioScience 2002, 52, 19–30. [Google Scholar]
- Wedeux, B.; Dalponte, M.; Schlund, M.; Hagen, S.; Cochrane, M.; Graham, L.; Usup, A.; Thomas, A.; Coomes, D. Dynamics of a human-modified tropical peat swamp forest revealed by repeat lidar surveys. Glob. Chang. Biol. 2020, 26, 3947–3964. [Google Scholar] [CrossRef] [PubMed]
- Newton, A.C.; Cayuela, L.; Echeverría, C.; Armesto, J.J.; Del Castillo, R.F.; Golicher, D.; Geneletti, D.; Gonzalez-Espinosa, M.; Huth, A.; López-Barrera, F.; et al. Toward integrated analysis of human impacts on forest biodiversity: Lessons from Latin America. Ecol. Soc. 2009, 14, 2. [Google Scholar] [CrossRef] [Green Version]
- Stereńczak, K.; Laurin, G.V.; Chirici, G.; Coomes, D.A.; Dalponte, M.; Latifi, H.; Puletti, N. Global airborne laser scanning data providers database (GlobALS)—A new tool for monitoring ecosystems and biodiversity. Remote Sens. 2020, 12, 1877. [Google Scholar] [CrossRef]
- Pettorelli, N.; Ryan, S.; Mueller, T.; Bunnefeld, N.; Jędrzejewska, B.; Lima, M.; Kausrud, K. The Normalized Difference Vegetation Index (NDVI): Unforeseen successes in animal ecology. Clim. Res. 2011, 46, 15–27. [Google Scholar] [CrossRef]
- Tucker, C.J. Red and photographic infrared linear combinations for monitoring vegetation. Remote Sens. Environ. 1979, 8, 127–150. [Google Scholar] [CrossRef] [Green Version]
- Rocchini, D.; Chiarucci, A.; Loiselle, S.A. Testing the spectral variation hypothesis by using satellite multispectral images. Acta Oecologica 2004, 26, 117–120. [Google Scholar] [CrossRef]
- Tucker, C.J.; Sellers, P.J. Satellite remote sensing of primary production. Int. J. Remote Sens. 1986, 7, 1395–1416. [Google Scholar] [CrossRef] [Green Version]
- Mittelbach, G.G.; Steiner, C.F.; Scheiner, S.M.; Gross, K.L.; Reynolds, H.L.; Waide, R.B.; Willig, M.R.; Gough, L. What is the observed relationship between species richness and productivity? Ecology 2001, 82, 2381–2396. [Google Scholar] [CrossRef]
- Farwell, L.S.; Gudex-Cross, D.; Anise, I.E.; Bosch, M.J.; Olah, A.M.; Radeloff, V.C.; Razenkova, E.; Rogova, N.; Silveira, E.M.; Smith, M.M.; et al. Satellite image texture captures vegetation heterogeneity and explains patterns of bird richness. Remote Sens. Environ. 2021, 253, 112175. [Google Scholar] [CrossRef]
- Schmidtlein, S.; Fassnacht, F.E. The spectral variability hypothesis does not hold across landscapes. Remote Sens. Environ. 2017, 192, 114–125. [Google Scholar] [CrossRef]
- Rocchini, D.; Luque, S.; Pettorelli, N.; Bastin, L.; Doktor, D.; Faedi, N.; Feilhauer, H.; Féret, J.-B.; Foody, G.M.; Gavish, Y.; et al. Measuring β-diversity by remote sensing: A challenge for biodiversity monitoring. Methods Ecol. Evol. 2018, 9, 1787–1798. [Google Scholar] [CrossRef] [Green Version]
- Xu, C.; Zeng, Y.; Zheng, Z.; Zhao, D.; Liu, W.; Ma, Z.; Wu, B. Assessing the Impact of Soil on Species Diversity Estimation Based on UAV Imaging Spectroscopy in a Natural Alpine Steppe. Remote Sens. 2022, 14, 671. [Google Scholar] [CrossRef]
- Rossi, C.; Kneubühler, M.; Schütz, M.; Schaepman, M.E.; Haller, R.M.; Risch, A.C. Remote sensing of spectral diversity: A new methodological approach to account for spatio-temporal dissimilarities between plant communities. Ecol. Indic. 2021, 130, 108106. [Google Scholar] [CrossRef]
- Silveira, E.M.; Radeloff, V.C.; Martinuzzi, S.; Pastur, G.J.M.; Rivera, L.O.; Politi, N.; Lizarraga, L.; Farwell, L.S.; Elsen, P.R.; Pidgeon, A.M. Spatio-temporal remotely sensed indices identify hotspots of biodiversity conservation concern. Remote Sens. Environ. 2021, 258, 112368. [Google Scholar] [CrossRef]
- Reddy, C.S. Remote sensing of biodiversity: What to measure and monitor from space to species? Biodivers. Conserv. 2021, 30, 2617–2631. [Google Scholar] [CrossRef]
- Oldeland, J.; Wesuls, D.; Rocchini, D.; Schmidt, M.; Jürgens, N. Does using species abundance data improve estimates of species diversity from remotely sensed spectral heterogeneity? Ecol. Indic. 2010, 10, 390–396. [Google Scholar] [CrossRef]
- Féret, J.B.; Asner, G.P. Mapping tropical forest canopy diversity using high-fidelity imaging spectroscopy. Ecol. Appl. 2014, 24, 1289–1296. [Google Scholar] [CrossRef] [Green Version]
- Schäfer, E.; Heiskanen, J.; Heikinheimo, V.; Pellikka, P. Mapping tree species diversity of a tropical montane forest by unsupervised clustering of airborne imaging spectroscopy data. Ecol. Indic. 2016, 64, 49–58. [Google Scholar] [CrossRef]
- Wang, R.; Gamon, J.A.; Schweiger, A.K.; Cavender-Bares, J.; Townsend, P.A.; Zygielbaum, A.I.; Kothari, S. Influence of species richness, evenness, and composition on optical diversity: A simulation study. Remote Sens. Environ. 2018, 211, 218–228. [Google Scholar] [CrossRef]
- Fuhlendorf, S.D.; Fynn, R.W.; McGranahan, D.A.; Twidwell, D. Heterogeneity as the basis for rangeland management. In Rangeland Systems; Briske, D.D., Ed.; Springer: Cham, Switzerland, 2017; pp. 169–196. [Google Scholar]
- Karami, S.; Khosravi, A.R. A Floristic Study of Kuh-e Dakal in Mamasani County, Fars Province. J. Taxon. Biosyst. 2019, 11, 1–12. [Google Scholar]
- Scudiero, E.; Skaggs, T.H.; Corwin, D.L. Regional-scale soil salinity assessment using Landsat ETM+ canopy reflectance. Remote Sens. Environ. 2015, 169, 335–343. [Google Scholar] [CrossRef]
- Chen, Y.; Qiu, Y.; Zhang, Z.; Zhang, J.; Chen, C.; Han, J.; Liu, D. Estimating salt content of vegetated soil at different depths with Sentinel-2 data. PeerJ 2020, 8, e10585. [Google Scholar] [CrossRef]
- Gitelson, A.A.; Kaufman, Y.J.; Merzlyak, M.N. Use of a green channel in remote sensing of global vegetation from EOS-MODIS. Remote Sens. Environ. 1996, 58, 289–298. [Google Scholar] [CrossRef]
- Rouse, J.W., Jr.; Haas, R.H.; Deering, D.W.; Schell, J.A.; Harlan, J.C. Monitoring the Vernal Advancement and Retrogradation (Green Wave Effect) of Natural Vegetation; NASA/GSFCT Type III Final Report; No. E75-10354; NASA: Greenbelt, MD, USA, 1974.
- Khalid, H.W.; Khalil, R.M.Z.; Qureshi, M.A. Evaluating spectral indices for water bodies extraction in western Tibetan Plateau. Egypt. J. Remote Sens. Space Sci. 2021, 24, 619–634. [Google Scholar]
- Marsett, R.C.; Qi, J.; Heilman, P.; Biedenbender, S.H.; Watson, M.C.; Amer, S.; Weltz, M.; Goodrich, D.; Marsett, R. Remote sensing for grassland management in the arid southwest. Rangel. Ecol. Manag. 2006, 59, 530–540. [Google Scholar] [CrossRef]
- Qi, J.; Chehbouni, A.; Huete, A.R.; Kerr, Y.H.; Sorooshian, S. A modified soil adjusted vegetation index. Remote Sens. Environ. 1994, 48, 119–126. [Google Scholar] [CrossRef]
- Yue, J.; Tian, J.; Tian, Q.; Xu, K.; Xu, N. Development of soil moisture indices from differences in water absorption between shortwave-infrared bands. ISPRS J. Photogramm. Remote Sens. 2019, 154, 216–230. [Google Scholar] [CrossRef]
- Jordan, C.F. Derivation of leaf-area index from quality of light on the forest floor. Ecology 1969, 50, 663–666. [Google Scholar] [CrossRef]
- Raya, S.S.; Singhb, J.P.; Dasa, G.; Panigrahyb, S. Use of high resolution remote sensing data for generating site-specific soil mangement plan. Red 2004, 550, 727. [Google Scholar]
- Amen, A.; Blaszczynski, J. Integrated Landscape Analysis; US Department of the Interior, Bureau of Land Management, National Science and Technology Center: Denver, CO, USA, 2001.
- Nield, S.J.; Boettinger, J.L.; Ramsey, R.D. Digitally mapping gypsic and natric soil areas using Landsat ETM data. Soil Sci. Soc. Am. J. 2007, 71, 245–252. [Google Scholar] [CrossRef] [Green Version]
- Xiao, J.; Shen, Y.; Tateishi, R.; Bayaer, W. Development of topsoil grain size index for monitoring desertification in arid land using remote sensing. Int. J. Remote Sens. 2006, 27, 2411–2422. [Google Scholar] [CrossRef]
- Triki Fourati, H.; Bouaziz, M.; Benzina, M.; Bouaziz, S. Modeling of soil salinity within a semi-arid region using spectral analysis. Arab. J. Geosci. 2015, 8, 11175–11182. [Google Scholar] [CrossRef]
- Rock, B.N.; Hoshizaki, T.; Miller, J.R. Comparison of in situ and airborne spectral measurements of the blue shift associated with forest decline. Remote Sens. Environ. 1988, 24, 109–127. [Google Scholar] [CrossRef]
- Allbed, A.; Kumar, L.; Aldakheel, Y.Y. Assessing soil salinity using soil salinity and vegetation indices derived from IKONOS high-spatial resolution imageries: Applications in a date palm dominated region. Geoderma 2014, 230, 1–8. [Google Scholar] [CrossRef]
- Escadafal, R.; Girard, M.C.; Courault, D. Munsell soil color and soil reflectance in the visible spectral bands of Landsat MSS and TM data. Remote Sens. Environ. 1989, 27, 37–46. [Google Scholar] [CrossRef]
- Williams, D. Landsat-7 Science Data User’s Handbook; National Aeronautics and Space Administration: Greenbelt, MD, USA, 2009; p. 186. [Google Scholar]
- Wilson, J.P.; Gallant, J.C. Digital Terrain Analysis. In Terrain Analysis: Principles and Applications; Wilson, J.P., Gallant, J.C., Eds.; John Wiley Sons: New York, NY, USA, 2000; pp. 1–27. [Google Scholar]
- Gallant, J.C.; Dowling, T.I. A multi resolution index of valley bottom flatness for mapping depositional areas. Water Resour. Res. 2003, 39, 1347–1360. [Google Scholar] [CrossRef]
- Moore, I.D.; Gessler, P.; Nielsen, G.; Peterson, G. Soil attribute prediction using terrain analysis. Soil Sci. Soc. Am. J. 1993, 57, 443–452. [Google Scholar] [CrossRef]
- Weiss, J.B.; Suyama, K.L.; Lee, H.H.; Scott, M.P. Jelly belly: A Drosophila LDL receptor repeat-containing signal required for mesoderm migration and differentiation. Cell 2001, 107, 387–398. [Google Scholar] [CrossRef] [Green Version]
- Riley, S.J.; DeGloria, S.D.; Elliot, R. Index that quantifies topographic heterogeneity. Intermt. J. Sci. 1999, 5, 23–27. [Google Scholar]
- Lu, G.Y.; Wong, D.W. An adaptive inverse-distance weighting spatial interpolation technique. Comput. Geosci. 2008, 34, 1044–1055. [Google Scholar] [CrossRef]
- Tuanmu, M.N.; Jetz, W. A global, remote sensing-based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 2015, 24, 1329–1339. [Google Scholar] [CrossRef]
- Kim, J.H. Multicollinearity and misleading statistical results. Korean J. Anesthesiol. 2019, 72, 558–569. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pielou, E.C. Shannon’s formula as a measure of specific diversity: Its use and misuse. Am. Nat. 1966, 100, 463–465. [Google Scholar] [CrossRef]
- Simpson, E.H. Measurement of diversity. Nature 1949, 163, 688. [Google Scholar] [CrossRef]
- Hooper, D.U.; Solan, M.; Symstad, A.; Diaz, S.; Gessner, M.O.; Buchmann, N.; Degrange, V.; Grime, P.; Hulot, F.; Mermillod-Blondin, F.; et al. Species diversity, functional diversity and ecosystem functioning. In Biodiversity and Ecosystem Functioning: Synthesis and Perspectives; Oxford University Press: Oxford, UK, 2002; pp. 195–208. [Google Scholar]
- Pearson, K.X. Contributions to the mathematical theory of evolution.—II. Skew variation in homogeneous material. Philos. Trans. R. Soc. Lond. A 1895, 186, 343–414. [Google Scholar]
- Bowman, D.T. Contemporary issues. J. Cotton Sci. 2001, 5, 137–141. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Rahmanian, S.; Pourghasemi, H.R.; Pouyan, S.; Karami, S. Habitat potential modelling and mapping of Teucrium polium using machine learning techniques. Environmental Monitoring and Assessment 2021, 193, 1–21. [Google Scholar] [CrossRef]
- Nasiri, V.; Sadeghi, S.M.M.; Moradi, F.; Afshari, S.; Deljouei, A.; Griess, V.C.; Maftei, C.; Borz, S.A. The Influence of Data Density and Integration on Forest Canopy Cover Mapping Using Sentinel-1 and Sentinel-2 Time Series in Mediterranean Oak Forests. ISPRS Int. J. Geo-Inf. 2022, 11, 423. [Google Scholar] [CrossRef]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- Kuhn, M. A Short Introduction to the caret Package. R Found Stat Comput 2015, 1, 1–10. [Google Scholar]
- Wei, P.; Lu, Z.; Song, J. Variable importance analysis: A comprehensive review. Reliab. Eng. Syst. Saf. 2015, 142, 399–432. [Google Scholar] [CrossRef]
- Uyanık, T.; Karatuğ, Ç.; Arslanoğlu, Y. Machine learning approach to ship fuel consumption: A case of container vessel. Transp. Res. Part D: Transp. Environ. 2020, 84, 102389. [Google Scholar] [CrossRef]
- Wang, W.; Lu, Y. Analysis of the mean absolute error (MAE) and the root mean square error (RMSE) in assessing rounding model. IOP Conf. Ser. Mater. Sci. Eng. 2018, 324, 012049. [Google Scholar] [CrossRef]
- Chrysafis, I.; Mallinis, G.; Tsakiri, M.; Patias, P. Evaluation of single-date and multi-seasonal spatial and spectral information of Sentinel-2 imagery to assess growing stock volume of a Mediterranean forest. Int. J. Appl. Earth Obs. Geoinf. 2019, 77, 1–14. [Google Scholar] [CrossRef]
- Chrysafis, I.; Korakis, G.; Kyriazopoulos, A.P.; Mallinis, G. Predicting Tree Species Diversity Using Geodiversity and Sentinel-2 Multi-Seasonal Spectral Information. Sustainability 2020, 12, 9250. [Google Scholar] [CrossRef]
- Senf, C.; Leitão, P.J.; Pflugmacher, D.; van der Linden, S.; Hostert, P. Mapping land cover in complex Mediterranean landscapes using Landsat: Improved classification accuracies from integrating multi-seasonal and synthetic imagery. Remote Sens. Environ. 2015, 156, 527–536. [Google Scholar] [CrossRef]
- Ehrlinger, J. ggRandomForests: Exploring random forest survival. arXiv 2016, arXiv:1612.08974. [Google Scholar]
- Wolter, P.T.; Mladenoff, D.J.; Host, G.E.; Crow, T.R. Using multi-temporal landsat imagery. Photogramm. Eng. Remote Sens 1995, 61, 1129–1143. [Google Scholar]
- Hill, R.A.; Wilson, A.K.; George, M.; Hinsley, S.A. Mapping tree species in temperate deciduous woodland using time-series multi-spectral data. Appl. Veg. Sci. 2010, 13, 86–99. [Google Scholar] [CrossRef]
- Kampouri, M.; Kolokoussis, P.; Argialas, D.; Karathanassi, V. Mapping of Forest Tree Distribution and Estimation of Forest Biodiversity using Sentinel-2 Imagery in the University Research Forest Taxiarchis in Chalkidiki, Greece. Geocarto Int. 2019, 34, 1273–1285. [Google Scholar] [CrossRef]
- Torresani, M.; Rocchini, D.; Sonnenschein, R.; Zebisch, M.; Marcantonio, M.; Ricotta, C.; Tonon, G. Estimating tree species diversity from space in an alpine conifer forest: The Rao’s Q diversity index meets the spectral variation hypothesis. Ecol. Inform. 2019, 52, 26–34. [Google Scholar] [CrossRef] [Green Version]
- Arekhi, M.; Yılmaz, O.Y.; Yılmaz, H.; Akyüz, Y.F. Can tree species diversity be assessed with Landsat data in a temperate forest? Environ. Monit. Assess. 2017, 189, 586. [Google Scholar] [CrossRef]
- Hernández-Stefanoni, J.L.; Gallardo-Cruz, J.A.; Meave, J.A.; Rocchini, D.; Bello-Pineda, J.; López-Martínez, J.O. Modeling α-and β-diversity in a tropical forest from remotely sensed and spatial data. Int. J. Appl. Earth Obs. Geoinf. 2012, 19, 359–368. [Google Scholar] [CrossRef]
- Hurlbert, A.H.; Haskell, J.P. The effect of energy and seasonality on avian species richness and community composition. Am. Nat. 2003, 161, 83–97. [Google Scholar] [CrossRef] [PubMed]
- Feeley, K.J.; Gillespie, T.W.; Terborgh, J.W. The Utility of Spectral Indices from Landsat ETM+ for Measuring the Structure and Composition of Tropical Dry Forests 1. Biotropica J. Biol. Conserv. 2005, 37, 508–519. [Google Scholar]
- Lassau, S.A.; Cassis, G.; Flemons, P.K.; Wilkie, L.; Hochuli, D.F. Using high-resolution multi-spectral imagery to estimate habitat complexity in open-canopy forests: Can we predict ant community patterns? Ecography 2005, 28, 495–504. [Google Scholar] [CrossRef]
- Prăvălie, R.; Sîrodoev, I.; Nita, I.A.; Patriche, C.; Dumitraşcu, M.; Roşca, B.; Tişcovschi, A.; Bandoc, G.; Săvulescu, I.; Mănoiu, V.; et al. NDVI-based ecological dynamics of forest vegetation and its relationship to climate change in Romania during 1987–2018. Ecol. Indic. 2022, 136, 108629. [Google Scholar] [CrossRef]
- Scherrer, D.; Körner, C. Topographically controlled thermal-habitat differentiation buffers alpine plant diversity against climate warming. J. Biogeogr. 2011, 38, 406–416. [Google Scholar] [CrossRef]
- Opedal, Ø.H.; Armbruster, W.S.; Graae, B.J. Linking small-scale topography with microclimate, plant species diversity and intra-specific trait variation in an alpine landscape. Plant Ecol. Divers. 2015, 8, 305–315. [Google Scholar] [CrossRef] [Green Version]
- Robinson, C.; Saatchi, S.; Clark, D.; Astaiza, J.H.; Hubel, A.F.; Gillespie, T.W. Topography and three-dimensional structure can estimate tree diversity along a tropical elevational gradient in Costa Rica. Remote Sens. 2018, 10, 629. [Google Scholar] [CrossRef]
- Read, Q.D.; Zarnetske, P.L.; Record, S.; Dahlin, K.M.; Costanza, J.K.; Finley, A.O.; Gaddis, K.D.; Grady, J.M.; Hobi, M.L.; Latimer, A.M.; et al. Beyond counts and averages: Relating geodiversity to dimensions of biodiversity. Glob. Ecol. Biogeogr. 2020, 29, 696–710. [Google Scholar] [CrossRef] [Green Version]
- Galvão, L.S.; Breunig, F.M.; Teles, T.S.; Gaida, W.; Balbinot, R. Investigation of terrain illumination effects on vegetation indices and VI-derived phenological metrics in subtropical deciduous forests. GIScience Remote Sens. 2016, 53, 360–381. [Google Scholar] [CrossRef]
- Goirán, S.B.; Aranibar, J.N.; Gomez, M.L. Heterogeneous spatial distribution of traditional livestock settlements and their effects on vegetation cover in arid groundwater coupled ecosystems in the Monte Desert (Argentina). J. Arid. Environ. 2012, 87, 188–197. [Google Scholar] [CrossRef]
- Hagen, M.; Kissling, W.D.; Rasmussen, C.; De Aguiar, M.A.M.; Brown, L.E.; Carstensen, D.W.; Alves-Dos-Santos, I.; Dupont, Y.L.; Edwards, F.K.; Genini, J.; et al. Biodiversity, species interactions and ecological networks in a fragmented world. In Advances in Ecological Research; Academic Press: Cambridge, MA, USA, 2012; Volume 46, pp. 89–210. [Google Scholar]
- Pettorelli, N.; Bühne, H.S.T.; Tulloch, A.; Dubois, G.; Macinnis-Ng, C.; Queirós, A.M.; Keith, D.A.; Wegmann, M.; Schrodt, F.; Stellmes, M.; et al. Satellite remote sensing of ecosystem functions: Opportunities, challenges and way forward. Remote Sens. Ecol. Conserv. 2018, 4, 71–93. [Google Scholar] [CrossRef]
- Turner, W.; Spector, S.; Gardiner, N.; Fladeland, M.; Sterling, E.; Steininger, M. Remote sensing for biodiversity science and conservation. Trends Ecol. Evol. 2003, 18, 306–314. [Google Scholar] [CrossRef]
Sentinel-2 Features | Formulae | Reference |
---|---|---|
Canopy Response Salinity Index (CRSI) | [34] | |
Enhanced Vegetation Index (EVI) | [35] | |
Green-Red Vegetation Index (GRVI) | B3 − B4/B3 + B4 | [21] |
Green Normalized Difference Vegetation Index (GNDVI) | B8 − B3/B8 + B3 | [36] |
Normalized Difference Vegetation Index (NDVI) | B8 − B4/B8 + B4 | [37] |
Normalized Difference Vegetation Index red-edge 2 (NDVIre2) | B8A − B6/B8A + B6 | [35] |
Normalized Difference red-edge 1 (NDre1) | B8 − B5/B8 + B5 | [35] |
Normalized Multiband Drought Index (NMDI) | (B8A − B11 − B12)/(B8A + B11 + B12) | [35] |
Normalized Difference Water Index (NDWI) | B8A − B11/B8A + B11 | [38] |
Soil-Adjusted Total Vegetation Index (SATVI) | [39] | |
Modified Soil Adjusted Vegetation Index (MASVI) | [40] | |
Normalized Shortwave-infrared Difference SM Index 3 (NSDSI3) | B11 − B12/B11 + B12 | [41] |
Triangular Chlorophyll Index red-edge 1 (TCIrel) | 1.2 × (B5 − B3) − 1.5 × (B4 − B3) × | [35] |
Transformed Vegetation Index (TVI) | ((B8 − B4/B8 + B4) + 0.5)0.5 | [21] |
Vegetation (V) | B8/B4 | [42] |
Brightness Index (BI) | [43] | |
Carbonate index (CaI) | B4/B3 | [44] |
Calcareous Sedimentary rocks index (CalcI) | B11 − B3/B11 + B3 | [45] |
Coloration index (CI) | B4 − B3/B4 + B3 | [43] |
Ferrous iron (FeI) | B4/B11 | [44] |
Geological response index (GeoI) | B11 − B12/B11 + B12 | [45] |
Grain size index (GSI) | (B4 − B2)/(B4 + B3 + B2) | [46] |
Hue Index (HI) | (2 B4 − B3 − B2)/(B3 − B2) | [43] |
Intensity index 1 (Int1) | B3 + B4/2 | [47] |
Intensity index 2 (Int2) | B3 + B4 + B8A/2 | [35] |
Moisture Stress Index (MSI) | B11/B8 | [48] |
Salinity Index (S3) | B3×B4/B2 | [49] |
Saturation Index-T (SI-T) | B4 − B2/B4 + B2 | [43] |
Second Brightness Index (BI2) | [50] | |
Soil Moisture Monitoring Index (SMMI) | [35] | |
Visible and Shortwave Drought Index (VSDI) | 1 − (B12, B4 − 2×B2) | [35] |
Landsat-8 Features | Formulas | Reference |
Land Surface Temperature (LST) | - | [51] |
Geodiversity variables | ||
Altitude (ALT) | Elevation above sea level | [52] |
Slope degree (SLP) | Gradient of the slope steepness | [53] |
Aspect | Direction of the line of the steepest descent (r = width/height) | [53] |
Plan curvature (PLC) | Rate of change of aspect along a contour | [53] |
Profile curvature (PRC) | Rate of change of slope down a slope line | [53] |
Stream power index (SPI) | A measure of the topographic control on the sediment transport (USLE’s LS factor) | [54] |
Multiresolution Index of the Ridge Top Flatnes (MRRTF) | Measure of flatness and lowness | [53] |
Topographic position index (TPI) | Difference between a cell elevation value and the average elevation of the neighborhood around that cell | [55] |
Topographic Ruggedness Index (TRI) | The amount of elevation difference between adjacent cells of a digital elevation model | [56] |
Ultiresolution index of valley bottom flatness (MRVBF) | Measure of flatness and lowness | [53] |
Mass Balance Index (MBI) | Balance between soil mass deposited and eroded | [51] |
Mean annual rainfall (Rain) | The monthly average rainfall | |
pH | Potential of hydrogen: scale used to specify the acidity or basicity of an aqueous solution. | |
Electrical conductivity (EC) | The total of soil anions and cations | |
Sand percentage (Sand) | Share of sand in the soil particle size distribution | |
Clay percentage (Clay) | Share of clay in the soil particle size distribution | - |
Silt percentage (Silt) | Share of silt in the soil particle size distribution | - |
Soil organic carbon content (OC) | Decayed plant residues and microorganisms | |
Soil organic matter content (OM) | Detritus of plant and animal, soil microbes, and substances that soil microbes synthesize at various stages of decomposition. | |
Soil Nitrogen content (N) | Both organic and inorganic forms of Nitrogen in the soil |
Shannon | Simpson | |||||||||||||||||
February | April | July | February | April | July | |||||||||||||
R | R2 | p value | R | R2 | p value | R | R2 | p value | R | R2 | p value | R | R2 | p value | R | R2 | p value | |
GNDVI | 0.15 | 0.02 | 0.08 | 0.27 | 0.11 | 0.002 | 0.15 | 0.03 | 0.058 | 0.06 | 0.01 | 0.13 | 0.26 | 0.08 | 0.005 | 0.13 | 0.01 | 0.15 |
GRVI | 0.13 | 0.01 | 0.13 | 0.28 | 0.07 | 0.01 | 0.14 | 0.025 | 0.09 | 0.18 | 0.03 | 0.06 | 0.25 | 0.05 | 0.025 | 0.21 | 0.05 | 0.02 |
MASVI | 0.32 | 0.08 | 0.006 | 0.48 | 0.18 | <0.001 | 0.24 | 0.08 | 0.007 | 0.34 | 0.13 | 0.001 | 0.47 | 0.16 | <0.001 | 0.37 | 0.14 | <0.001 |
Ndre1 | 0.15 | 0.02 | 0.09 | 0.36 | 0.15 | <0.001 | 0.20 | 0.046 | 0.035 | 0.08 | 0.02 | 0.11 | 0.36 | 0.13 | <0.001 | 0.16 | 0.02 | 0.116 |
NDVIre2 | 0.16 | 0.02 | 0.09 | 0.35 | 0.15 | <0.001 | 0.19 | 0.045 | 0.03 | 0.1 | 0.02 | 0.09 | 0.35 | 0.13 | <0.001 | 0.16 | 0.01 | 0.126 |
SATVI | 0.24 | 0.06 | 0.01 | 0.44 | 0.17 | <0.001 | 0.24 | 0.084 | 0.006 | 0.32 | 0.15 | 0.002 | 0.47 | 0.18 | <0.001 | 0.37 | 0.15 | <0.001 |
NDVI | 0.07 | 0.006 | 0.46 | 0.28 | 0.06 | 0.02 | 0.19 | 0.04 | 0.047 | 0.28 | 0.08 | 0.008 | 0.35 | 0.11 | 0.002 | 0.23 | 0.03 | 0.051 |
TCIre1 | 0.12 | 0.002 | 0.37 | 0.34 | 0.13 | <0.001 | 0.17 | 0.007 | 0.21 | 0.14 | 0.01 | 0.15 | 0.38 | 0.14 | <0.001 | 0.11 | 0.008 | 0.21 |
VSDI | 0.14 | 0.01 | 0.12 | 0.33 | 0.13 | <0.001 | 0.18 | 0.016 | 0.14 | 0.12 | 0.04 | 0.04 | 0.33 | 0.12 | 0.001 | 0.14 | 0.01 | 0.17 |
V | 0.07 | 0.006 | 0.46 | 0.28 | 0.06 | 0.02 | 0.12 | 0.016 | 0.14 | 0.28 | 0.08 | 0.008 | 0.35 | 0.11 | 0.002 | 0.16 | 0.01 | 0.16 |
TVI | 0.19 | 0.04 | 0.03 | 0.34 | 0.13 | <0.001 | 0.13 | 0.007 | 0.512 | 0.13 | 0.03 | 0.07 | 0.37 | 0.14 | <0.001 | 0.08 | −0.01 | 0.72 |
EVI | 0.006 | −0.01 | 0.78 | 0.19 | 0.02 | 0.09 | 0.12 | 0.012 | 0.168 | 0.25 | 0.07 | 0.01 | 0.32 | 0.08 | 0.005 | 0.20 | 0.03 | 0.05 |
CRSI | 0.40 | 0.16 | 0.001 | 0.49 | 0.19 | <0.001 | 0.05 | 0.013 | 0.80 | 0.32 | 0.14 | 0.001 | 0.41 | 0.14 | <0.001 | 0.13 | −0.01 | 0.83 |
Richness | Vegetation cover | |||||||||||||||||
February | April | July | February | April | July | |||||||||||||
R | R2 | p value | R | R2 | p value | R | R2 | p value | R | R2 | p value | R | R2 | p value | R | R2 | p value | |
GNDVI | 0.06 | 0.001 | 0.34 | 0.10 | 0.02 | 0.13 | 0.10 | 0.006 | 0.23 | 0.005 | 0.01 | 0.64 | 0.04 | 0.003 | 0.39 | 0.01 | 0.03 | 0.87 |
GRVI | 0.22 | 0.049 | 0.03 | 0.33 | 0.12 | 0.001 | 0.37 | 0.14 | <0.001 | 0.11 | 0.07 | 0.2 | 0.16 | 0.04 | 0.03 | 0.08 | 0.005 | 0.44 |
MASVI | 0.22 | 0.03 | 0.06 | 0.27 | 0.06 | 0.01 | 0.29 | 0.09 | 0.005 | 0.06 | 0.01 | 0.61 | 0.06 | 0.004 | 0.41 | 0.05 | 0.008 | 0.52 |
Ndre1 | 0.10 | 0.005 | 0.24 | 0.22 | 0.06 | 0.01 | 0.16 | 0.023 | 0.10 | 0.05 | 0.01 | 0.4 | 0.09 | 0.001 | 0.29 | 0.06 | 0.008 | 0.52 |
NDVIre2 | 0.11 | 0.005 | 0.23 | 0.21 | 0.06 | 0.01 | 0.17 | 0.025 | 0.09 | 0.04 | 0.01 | 0.41 | 0.09 | 0.002 | 0.27 | 0.07 | 0.007 | 0.49 |
SATVI | 0.20 | 0.03 | 0.06 | 0.25 | 0.05 | 0.02 | 0.26 | 0.08 | 0.008 | 0.09 | 0.03 | 0.51 | 0.06 | 0.005 | 0.43 | 0.05 | 0.007 | 0.51 |
NDVI | 0.15 | 0.02 | 0.09 | 0.21 | 0.06 | 0.14 | 0.17 | 0.03 | 0.06 | 0.11 | 0.04 | 0.93 | 0.04 | 0.007 | 0.21 | 0.06 | 0.013 | 0.97 |
TCIre1 | 0.12 | 0.002 | 0.36 | 0.22 | 0.07 | 0.01 | 0.05 | 0.009 | 0.57 | 0.04 | 0.01 | 0.5 | 0.07 | 0.001 | 0.35 | 0.03 | 0.009 | 0.57 |
VSDI | 0.09 | 0.005 | 0.23 | 0.20 | 0.06 | 0.02 | 0.18 | 0.016 | 0.14 | 0.04 | 0.02 | 0.42 | 0.10 | 0.005 | 0.24 | 0.09 | 0.003 | 0.38 |
V | 0.15 | 0.02 | 0.09 | 0.22 | 0.07 | 0.01 | 0.08 | 0.002 | 0.27 | 0.01 | 0.01 | 0.93 | 0.04 | 0.006 | 0.22 | 0.14 | 0.008 | 0.52 |
TVI | 0.13 | 0.004 | 0.25 | 0.21 | 0.05 | 0.03 | 0.02 | 0.013 | 0.95 | 0.01 | 0.01 | 0.65 | 0.03 | 0.008 | 0.54 | 0.22 | 0.03 | 0.07 |
EVI | 0.11 | 0.003 | 0.27 | 0.15 | 0.02 | 0.11 | 0.12 | 0.005 | 0.30 | 0.13 | 0.07 | 0.51 | 0.01 | 0.01 | 0.62 | 0.09 | 0.007 | 0.50 |
CRSI | 0.21 | 0.03 | 0.06 | 0.24 | 0.05 | 0.03 | 0.26 | 0.019 | 0.12 | 0.06 | 0.01 | 0.59 | 0.06 | 0.004 | 0.42 | 0.18 | 0.005 | 0.33 |
Time Scale | Multi-Seasonal | April | |||||||
---|---|---|---|---|---|---|---|---|---|
Diversity Metrics | Variables | RMSE | R2 | MAE | Tuning Parameters | RMSE | R2 | MAE | Tuning Parameters |
Richness | All | 0.075 | 0.27 | 0.058 | mtry = 67; ntree = 600 | 0.08 | 0.26 | 0.06 | mtry = 2; ntree = 500 |
Geodiversity | 0.087 | 0.2 | 0.060 | mtry = 21; ntree = 500 | 0.08 | 0.25 | 0.061 | mtry = 2; ntree = 500 | |
Remotely sensed | 0.091 | 0.20 | 0.062 | mtry = 49; ntree = 550 | 0.08 | 0.19 | 0.062 | mtry = 2; ntree = 500 | |
Vegetation cover | All | 0.110 | 0.20 | 0.092 | mtry = 67; ntree = 550 | 0.112 | 0.17 | 0.085 | mtry = 32; ntree = 550 |
Geodiversity | 0.119 | 0.19 | 0.089 | mtry = 11; ntree = 600 | 0.112 | 0.17 | 0.086 | mtry = 2; ntree = 500 | |
Remotely sensed | 0.117 | 0.19 | 0.089 | mtry = 49; ntree = 550 | 0.11 | 0.21 | 0.085 | mtry = 2; ntree = 500 | |
Shannon | All | 0.290 | 0.28 | 0.237 | mtry = 34; ntree = 500 | 0.312 | 0.28 | 0.239 | mtry = 17; ntree = 550 |
Geodiversity | 0.290 | 0.18 | 0.201 | mtry = 21; ntree = 500 | 0.338 | 0.26 | 0.27 | mtry = 10; ntree = 500 | |
Remotely sensed | 0.310 | 0.25 | 0.228 | mtry = 25; ntree = 500 | 0.368 | 0.20 | 0.293 | mtry = 2; ntree = 500 | |
Simpson | All | 0.021 | 0.44 | 0.018 | mtry = 2; ntree = 500 | 0.023 | 0.43 | 0.019 | mtry = 2; ntree = 450 |
Geodiversity | 0.020 | 0.40 | 0.017 | mtry = 2; ntree = 500 | 0.024 | 0.39 | 0.018 | mtry = 2; ntree = 450 | |
Remotely sensed | 0.020 | 0.26 | 0.019 | mtry = 4; ntree = 500 | 0.027 | 0.25 | 0.022 | mtry = 2; ntree = 450 | |
February | July | ||||||||
Diversity Metrics | Variables | RMSE | R2 | MAE | Tuning parameters | RMSE | R2 | MAE | Tuning parameters |
Richness | All | 0.080 | 0.25 | 0.063 | mtry = 32; ntree = 500 | 0.083 | 0.22 | 0.064 | mtry = 9; ntree = 500 |
Geodiversity | 0.085 | 0.24 | 0.063 | mtry = 10; ntree = 500 | 0.083 | 0.21 | 0.064 | mtry = 2; ntree = 450 | |
Remotely sensed | 0.080 | 0.18 | 0.063 | mtry = 2; ntree = 500 | 0.089 | 0.22 | 0.069 | mtry = 9; ntree = 450 | |
Vegetation cover | All | 0.118 | 0.17 | 0.093 | mtry = 2; ntree = 500 | 0.124 | 0.21 | 0.095 | mtry = 2; ntree = 500 |
Geodiversity | 0.124 | 0.17 | 0.098 | mtry = 2; ntree = 450 | 0.127 | 0.20 | 0.094 | mtry = 2; ntree = 500 | |
Remotely sensed | 0.121 | 0.17 | 0.095 | mtry = 2; ntree = 450 | 0.122 | 0.20 | 0.095 | mtry = 2; ntree = 500 | |
Shannon | All | 0.330 | 0.27 | 0.248 | mtry = 28; ntree = 500 | 0.321 | 0.27 | 0.244 | mtry = 19; ntree = 500 |
Geodiversity | 0.309 | 0.30 | 0.241 | mtry = 2; ntree = 400 | 0.325 | 0.27 | 0.243 | mtry = 2; ntree = 500 | |
Remotely sensed | 0.406 | 0.28 | 0.314 | mtry = 2; ntree = 400 | 0.336 | 0.25 | 0.264 | mtry = 2; ntree = 500 | |
Simpson | All | 0.023 | 0.42 | 0.018 | mtry = 2; ntree = 500 | 0.025 | 0.38 | 0.021 | mtry = 2; ntree = 500 |
Geodiversity | 0.023 | 0.53 | 0.017 | mtry = 2; ntree = 500 | 0.025 | 0.37 | 0.021 | mtry = 11; ntree = 500 | |
Remotely sensed | 0.023 | 0.51 | 0.018 | mtry = 2; ntree = 500 | 0.027 | 0.24 | 0.0226 | mtry = 9; ntree = 500 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rahmanian, S.; Nasiri, V.; Amindin, A.; Karami, S.; Maleki, S.; Pouyan, S.; Borz, S.A. Prediction of Plant Diversity Using Multi-Seasonal Remotely Sensed and Geodiversity Data in a Mountainous Area. Remote Sens. 2023, 15, 387. https://doi.org/10.3390/rs15020387
Rahmanian S, Nasiri V, Amindin A, Karami S, Maleki S, Pouyan S, Borz SA. Prediction of Plant Diversity Using Multi-Seasonal Remotely Sensed and Geodiversity Data in a Mountainous Area. Remote Sensing. 2023; 15(2):387. https://doi.org/10.3390/rs15020387
Chicago/Turabian StyleRahmanian, Soroor, Vahid Nasiri, Atiyeh Amindin, Sahar Karami, Sedigheh Maleki, Soheila Pouyan, and Stelian Alexandru Borz. 2023. "Prediction of Plant Diversity Using Multi-Seasonal Remotely Sensed and Geodiversity Data in a Mountainous Area" Remote Sensing 15, no. 2: 387. https://doi.org/10.3390/rs15020387
APA StyleRahmanian, S., Nasiri, V., Amindin, A., Karami, S., Maleki, S., Pouyan, S., & Borz, S. A. (2023). Prediction of Plant Diversity Using Multi-Seasonal Remotely Sensed and Geodiversity Data in a Mountainous Area. Remote Sensing, 15(2), 387. https://doi.org/10.3390/rs15020387