Simulation Study on the Effect of Elevated CO2 on Regional Temperature Change on the Loess Plateau
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Resource and Preprocessing
2.3. Model Setup and Experiments
3. Results
3.1. Verification of Simulation Accuracy
3.2. Effect of CO2 Concentration Variation on Annual Variation of Temperature
3.3. Impact of CO2 Concentration on Intra-Annual Temperature
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change. Climate Change 2013—The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar] [CrossRef]
- Intergovernmental Panel on Climate Change. Climate Change 2014—Impacts, Adaptation and Vulnerability: Part A: Global and Sectoral Aspects: Working Group II Contribution to the IPCC Fifth Assessment Report: Volume 1: Global and Sectoral Aspects; Cambridge University Press: Cambridge, UK, 2014; Volume 1. [Google Scholar]
- Li, G. Spatio-temporal change of global land cover and China’s contribution. Acta Geogr. Sin. 2022, 77, 353–368. [Google Scholar]
- Wang, Z.; Yao, W.; Tang, Q.; Yang, E.; Kong, X.; Wang, L.; Xiao, P. Spatio-temporal change analysis of leaf area index in the Loess Plateau during 2000–2014. Sci. Soil Water Conserv. 2017, 15, 71–80. [Google Scholar]
- Li, G.; Sun, S.; Han, J.; Yan, J.; Liu, W.; Wei, Y.; Lu, N.; Sun, Y. Impacts of Chinese Grain for Green program and climate change on vegetation in the Loess Plateau during 1982–2015. Sci. Total Environ. 2019, 660, 177. [Google Scholar] [CrossRef]
- Jach, L.; Warrach-Sagi, K.; Ingwersen, J.; Kaas, E.; Wulfmeyer, V. Land cover impacts on land-atmosphere coupling strength in climate simulations with WRF over Europe. J. Geophys. Res. Atmos. 2020, 125, e2019JD031989. [Google Scholar] [CrossRef]
- Cui, Y.; Xiao, X.; Dong, J.; Zhang, Y.; Qin, Y.; Doughty, R.B.; Wu, X.; Liu, X.; Joiner, J.; Moore, B., III. Continued Increases of Gross Primary Production in Urban Areas during 2000–2016. J. Remote Sens. 2022, 2022, 9868564. [Google Scholar] [CrossRef]
- Wang, H.; Liu, G.; Li, Z.; Ye, X.; Wang, M.; Gong, L. Driving force and changing trends of vegetation phenology in the Loess Plateau of China from 2000 to 2010. J. Mt. Sci. 2016, 13, 844–856. [Google Scholar] [CrossRef]
- Clark, P.U.; Shakun, J.D.; Marcott, S.A.; Mix, A.C.; Eby, M.; Kulp, S.; Levermann, A.; Milne, G.A.; Pfister, P.L.; Santer, B.D.; et al. Consequences of twenty-first-century policy for multi-millennial climate and sea-level change. Nat. Clim. Change 2016, 6, 360–369. [Google Scholar] [CrossRef]
- Eby, M.; Weaver, A.J.; Alexander, K.; Zickfeld, K.; Abe-Ouchi, A.; Cimatoribus, A.A.; Crespin, E.; Drijfhout, S.S.; Edwards, N.R.; Eliseev, A.V.; et al. Historical and idealized climate model experiments: An intercomparison of Earth system models of intermediate complexity. Clim. Past 2013, 9, 1111–1140. [Google Scholar] [CrossRef]
- Loehle, C. A minimal model for estimating climate sensitivity. Ecol. Model. 2014, 276, 80–84. [Google Scholar] [CrossRef]
- de Noblet-Ducoudré, N.; Boisier, J.-P.; Pitman, A.; Bonan, G.B.; Brovkin, V.; Cruz, F.; Delire, C.; Gayler, V.; van den Hurk, B.J.J.M.; Lawrence, P.J.; et al. Determining Robust Impacts of Land-Use-Induced Land Cover Changes on Surface Climate over North America and Eurasia: Results from the First Set of LUCID Experiments. J. Clim. 2012, 25, 3261–3281. [Google Scholar] [CrossRef]
- Pitman, A.J.; de Noblet-Ducoudré, N.; Cruz, F.T.; Davin, E.L.; Bonan, G.B.; Brovkin, V.; Claussen, M.; Delire, C.; Ganzeveld, L.; Gayler, V.; et al. Uncertainties in climate responses to past land cover change: First results from the LUCID intercomparison study. Geophys. Res. Lett. 2009, 36, L14814. [Google Scholar] [CrossRef]
- Lamptey, B.L. Simulation of the relative impact of land cover and carbon dioxide to climate change from 1700 to 2100. J. Geophys. Res. 2005, 110, D20103. [Google Scholar] [CrossRef]
- Jiang, C.; Zhang, H.; Tang, Z.; Labzovskii, L. Evaluating the coupling effects of climate variability and vegetation restoration on ecosystems of the Loess Plateau, China. Land Use Policy 2017, 69, 134–148. [Google Scholar] [CrossRef]
- Chen, F.; Kusaka, H.; Bornstein, R.; Ching, J.; Zhang, C. The integrated WRF/urban modelling system: Development, evaluation, and applications to urban environmental problems. Int. J. Climatol. 2011, 31, 273–288. [Google Scholar] [CrossRef]
- Yan, M.; Liu, J.; Wang, Z. Global Climate Responses to Land Use and Land Cover Changes Over the Past Two Millennia. Atmosphere 2017, 8, 64. [Google Scholar] [CrossRef]
- Hua, W.; Chen, H. Recognition of climatic effects of land use/land cover change under global warming. Chin. Sci. Bull. 2013, 58, 3852–3858. [Google Scholar] [CrossRef]
- Pitman, A.J.; Avila, F.B.; Abramowitz, G.; Wang, Y.P.; Phipps, S.J.; de Noblet-Ducoudré, N. Importance of background climate in determining impact of land-cover change on regional climate. Nat. Clim. Change 2011, 1, 472–475. [Google Scholar] [CrossRef]
- Hu, Z.; Xu, Z.; Ma, Z. The impact of land use/land cover changes under different greenhouse gas concentrations on climate in Europe. Clim. Environ. Res. 2018, 23, 176–184. (In Chinese) [Google Scholar]
- Lawrence, P.J.; Chase, T.N. Investigating the climate impacts of global land cover change in the community climate system model. Int. J. Clim. 2010, 30, 2066–2087. [Google Scholar] [CrossRef]
- Lejeune, Q.; Davin, E.L.; Gudmundsson, L.; Winckler, J.; Seneviratne, S.I. Historical deforestation locally increased the intensity of hot days in northern mid-latitudes. Nat. Clim. Change 2018, 8, 386–390. [Google Scholar] [CrossRef]
- Cui, Y.; Liu, J.; Zhang, X.; Qin, Y.; Dong, J. Modeling urban sprawl effects on regional warming in Beijing-Tianjing-Tangshan urban agglomeration. Acta Ecol. Sin. 2015, 35, 993–1003. [Google Scholar]
- Swann, A.L.S.; Fung, I.Y.; Chiang, J.C.H. Mid-latitude afforestation shifts general circulation and tropical precipitation. Proc. Natl. Acad. Sci. USA 2012, 109, 712–716. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Li, N.; Fu, Y.; Chen, L. Contribution of terrestrial carbon sink to future warming in China, the United States, Russia and Canada. Acta Geogr. Sin. 2021, 76, 167–177. [Google Scholar]
- Joos, F.; Roth, R.; Fuglestvedt, J.S.; Peters, G.P.; Enting, I.G.; von Bloh, W.; Brovkin, V.; Burke, E.J.; Eby, M.; Edwards, N.R.; et al. Carbon dioxide and climate impulse response functions for the computation of greenhouse gas metrics: A multi-model analysis. Atmos. Chem. Phys. 2013, 13, 2793–2825. [Google Scholar] [CrossRef]
- Cao, Q.; Wu, J.; Yu, D.; Wang, W. The biophysical effects of the vegetation restoration program on regional climate metrics in the Loess Plateau, China. Agric. For. Meteorol. 2019, 268, 169–180. [Google Scholar] [CrossRef]
- Zhao, M.; Pitman, A.J. The relative impact of regional scale land cover change and increasing CO2 over China. Adv. Atmos. Sci. 2005, 22, 58–68. [Google Scholar] [CrossRef]
- Sharma, B.; Kumar, J.; Collier, N.; Ganguly, A.R.; Hoffman, F.M. Quantifying Carbon Cycle Extremes and Attributing Their Causes Under Climate and Land Use and Land Cover Change From 1850 to 2300. J. Geophys. Res. Biogeosci. 2022, 127, e2021JG006738. [Google Scholar] [CrossRef]
- Hua, W.; Chen, H.; Li, X. Review of land use and land cover change in China and associated climatic effects. Adv. Earth Sci. 2014, 29, 1025–1036. [Google Scholar]
- Zhao, X.; Ma, P.; Li, W.; Du, Y. Spatiotemporal changes of supply and demand relationships of ecosystem services in the Loess Plateau. Acta Ecol. Sin. 2021, 76, 2780–2796. [Google Scholar]
- Bai, Y.; Jiang, B.; Wang, M.; Li, H.; Alatalo, J.M.; Huang, S. New ecological redline policy (ERP) to secure ecosystem services in China. Land Use Policy 2016, 55, 348–351. [Google Scholar] [CrossRef]
- Shouzhang, P. 1-km Monthly Maximum Temperature Dataset for China (1901–2021); National Tibetan Plateau/Third Pole Environment Data Center: Beijing, China, 2020. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Wen, Z.; Chen, Y.; Cao, Y.; Ren, J. Spatiotemporal change and trend analysis of potential evapotranspiration over the Loess Plateau of China during 2011–2100. Agric. For. Meteorol. 2017, 233, 183–194. [Google Scholar] [CrossRef]
- Peng, S.; Ding, Y.; Liu, W.; Li, Z. 1 km monthly temperature and precipitation dataset for China from 1901 to 2017. Earth Syst. Sci. Data 2019, 11, 1931–1946. [Google Scholar] [CrossRef]
- Peng, S.; Gang, C.; Cao, Y.; Chen, Y. Assessment of climate change trends over the Loess Plateau in China from 1901 to 2100. Int. J. Climatol. 2018, 38, 2250–2264. [Google Scholar] [CrossRef]
- Zhang, J.; Wu, L.; Dong, W. Land-atmosphere coupling and summer climate variability over East Asia. J. Geophys. Res. 2011, 116, D05117. [Google Scholar] [CrossRef]
- Ge, Q.; Zhang, X.; Zheng, J. Simulated effects of vegetation increase/decrease on temperature changes from 1982 to 2000 across the Eastern China. Int. J. Climatol. 2014, 34, 187–196. [Google Scholar] [CrossRef]
- Hall, W.D.; Rasmussen, R.M.; Field, P.R.; Thompson, G. Explicit Forecasts of Winter Precipitation Using an Improved Bulk Microphysics Scheme. Part II: Implementation of a New Snow Parameterization. Mon. Weather Rev. 2008, 136, 5095–5115. [Google Scholar] [CrossRef]
- Mlawer, E.J.; Taubman, S.J.; Brown, P.D.; Iacono, M.J.; Clough, S.A. Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave. J. Geophys. Res. Atmos. 1997, 102, 16663–16682. [Google Scholar] [CrossRef]
- Dudhia, J. Numerical Study of Convection Observed during the Winter Monsoon Experiment Using a Mesoscale Two-Dimensional Model. J. Atmos. Sci. 1989, 46, 3077–3107. [Google Scholar] [CrossRef]
- Sušelj, K.; Sood, A. Improving the Mellor–Yamada–Janjić Parameterization for wind conditions in the marine planetary boundary layer. Bound.-Layer Meteorol. 2010, 136, 301–324. [Google Scholar] [CrossRef]
- Chen, F.; Mitchell, K.; Schaake, J.; Xue, Y.; Pan, H.-L.; Koren, V.; Duan, Q.Y.; Ek, M.; Betts, A. Modeling of land surface evaporation by four schemes and comparison with FIFE observations. J. Geophys. Res. Atmos. 1996, 101, 7251–7268. [Google Scholar] [CrossRef]
- Zhang, Y.; Cheng, S.; Chen, Y.; Wang, W. Application of MM5 in China: Model evaluation, seasonal variations, and sensitivity to horizontal grid resolutions. Atmos. Environ. 2011, 45, 3454–3465. [Google Scholar] [CrossRef]
- Huang, D.; Gao, S. Impact of different reanalysis data on WRF dynamical downscaling over China. Atmos. Res. 2018, 200, 25–35. [Google Scholar] [CrossRef]
- Liu, P.; Zhao, X.N.; Gao, X.D.; Yu, L.Y.; Ren, M. Characteristics of extreme temperature variation in the Loess Plateau and its correlation with average temperature. Chin. J. Appl. Ecol. 2022, 33, 1975–1982. [Google Scholar]
- Tian, L.; Zhang, B.; Wang, X.; Chen, S.; Pan, B. Large-Scale Afforestation Over the Loess Plateau in China Contributes to the Local Warming Trend. J. Geophys. Res. Atmos. 2022, 127, e2021JD035730. [Google Scholar] [CrossRef]
- Tian, L.; Zhang, B.; Chen, S.; Wang, X.; Ma, X.; Pan, B. Large-scale afforestation enhances precipitation by intensifying the atmospheric water cycle over the Chinese Loess Plateau. J. Geophys. Res. Atmos. 2022, 127, e2022JD036738. [Google Scholar] [CrossRef]
- Xuejie, G.; Yong, L.; Wantao, L.; Zongci, Z.; Giorgi, F. Simulation of effects of land use change on climate in China by a regional climate model. Adv. Atmos. Sci. 2003, 20, 583–592. [Google Scholar] [CrossRef]
- Golzio, A.; Ferrarese, S.; Cassardo, C. Land-Use Improvements in the Weather Research and Forecasting Model over Complex Mountainous Terrain and Comparison of Different Grid Sizes. Bound.-Layer Meteorol. 2021, 180, 319–351. [Google Scholar] [CrossRef]
- Kadaverugu, R. A comparison between WRF-simulated and observed surface meteorological variables across varying land cover and urbanization in south-central India. Earth Sci. Inform. 2023, 16, 147–163. [Google Scholar] [CrossRef]
- Zeng, Z.; Wang, D.; Yang, L. Deforestation-induced warming over tropical mountain regions regulated by elevation. Nat. Geosci. 2021, 14, 23–29. [Google Scholar] [CrossRef]
- Zhang, Y.; An, C.B.; Zhang, W.S.; Zheng, L.Y.; Zhang, Y.Z.; Lu, C.; Liu, L.Y. Drivers of mountain soil organic carbon stock dynamics: A review. J. Soils Sediments 2023, 23, 64–76. [Google Scholar] [CrossRef]
- Zhao, Q.Q.; Zhang, J.P.; Zhao, T.B.; Li, J.H. Vegetation Changes and Its Response to Climate Change in China Since 2000. Plateau Meteorol. 2021, 40, 292–301. [Google Scholar]
- Ye, X.; Kang, S.Z.; Zhao, Y.H.; Han, L.; Xiang, X.M.; Li, F. Spatio-temporal relationship between vegetation restoration and ecosystem services in the Loess Plateau of Northern Shaanxi, China. Chin. J. Appl. Ecol. 2022, 33, 2760–2768. [Google Scholar]
- Shao, Q.; Liu, S.; Ning, J.; Liu, G.; Yang, F.; Zhang, X.; Niu, L.; Huang, H.; Fan, J.; Liu, J. Assessment of ecological benefits of key national ecological projects in China in 2000-2019 using remote sensing. Acta Geogr. Sin. 2022, 77, 2133–2153. [Google Scholar]
- Liu, D.; Chen, Y.; Cai, W.; Dong, W.; Xiao, J.; Chen, J.; Zhang, H.; Xia, J.; Yuan, W. The contribution of China’s Grain to Green Program to carbon sequestration. Landsc. Ecol. 2014, 29, 1675–1688. [Google Scholar] [CrossRef]
- Ge, J.; Liu, Q.; Zan, B.; Lin, Z.; Lu, S.; Qiu, B.; Guo, W. Deforestation intensifies daily temperature variability in the northern extratropics. Nat. Commun. 2022, 13, 5955. [Google Scholar] [CrossRef]
- Cui, Y.; Meadows, M.E.; Li, N.; Fu, Y.; Zhao, G.; Dong, J. Land Cover Change Intensifies Actual and Potential Radiative Forcing through CO2 in South and Southeast Asia from 1992 to 2015. Int. J. Environ. Res. Public Health 2019, 16, 2460. [Google Scholar] [CrossRef] [PubMed]
- Feng, X.; Fu, B.; Lu, N.; Zeng, Y.; Wu, B. How ecological restoration alters ecosystem services: An analysis of carbon sequestration in China’s Loess Plateau. Sci. Rep. 2013, 3, 2846. [Google Scholar] [CrossRef]
- Chi, Y.; Shi, H.; Sun, J.; Li, J.; Yang, F.; Fu, Z. Spatio-temporal characteristics and main influencing factors of vegetation net primary productivity in theYellow River Delta in recent 30 years. Acta Ecol. Sin. 2018, 38, 2683–2697. [Google Scholar]
- Fang, L.; Huimin, Y.; Fengxue, G.; Zhongen, N.; Mei, H. Net Primary Productivity Increased on the Loess Plateau Following Implementation of the Grain to Green Program. J. Resour. Ecol. 2017, 8, 413–421. [Google Scholar] [CrossRef]
- Zhu, Z.; Piao, S.; Myneni, R.B.; Huang, M.; Zeng, Z.; Canadell, J.G.; Ciais, P.; Sitch, S.; Friedlingstein, P.; Arneth, A.; et al. Greening of the Earth and its drivers. Nat. Clim. Change 2016, 6, 791–795. [Google Scholar] [CrossRef]
- Cui, Y.; Xiao, X.; Zhang, Y.; Dong, J.; Qin, Y.; Doughty, R.B.; Zhang, G.; Wang, J.; Wu, X.; Qin, Y.; et al. Temporal consistency between gross primary production and solar-induced chlorophyll fluorescence in the ten most populous megacity areas over years. Sci. Rep. 2017, 7, 14963. [Google Scholar] [CrossRef] [PubMed]
- Dass, P.; Rawlins, M.A.; Kimball, J.S.; Kim, Y. Environmental controls on the increasing GPP of terrestrial vegetation across northern Eurasia. Biogeosciences 2016, 13, 45–62. [Google Scholar] [CrossRef]
Grassland | Built-Up Land | Cropland | Forest | Water Body | Barren Land | Total in 2000 | |
---|---|---|---|---|---|---|---|
Grassland | 371,904.39 | 413.32 | 30,864.03 | 15,999.86 | 237.58 | 814.95 | 420,234.13 |
Built-up Land | 89.70 | 10,665.10 | 265.57 | 23.26 | 0.37 | 2.75 | 11,046.76 |
Cropland | 6496.21 | 930.23 | 119,449.90 | 6754.08 | 74.97 | 63.25 | 133,768.65 |
Forest | 3162.24 | 167.00 | 7233.02 | 52,330.64 | 123.34 | 1.45 | 63,017.70 |
Water Body | 46.83 | 0.70 | 3.68 | 53.29 | 503.74 | 18.94 | 627.19 |
Barren Land | 7631.12 | 18.65 | 27.06 | 228.98 | 68.85 | 12,477.76 | 20,452.42 |
Total in 2020 | 389,330.50 | 12,195.00 | 157,843.26 | 75,390.12 | 1008.86 | 13,379.11 | 649,146.85 |
D01 | D02 | |
---|---|---|
Model | ARW-WRFV4.3.1 | |
Centre point coordinates | 38.00°N, 107.50°E | |
Simulated integration steps | 60s | 12s |
Grid spacing | 15 × 15 km | 3 × 3 km |
Number of grids | 212 × 181 | 411 × 331 |
Microphysics | Thompson graupel scheme | Thompson graupel scheme |
Long-wave radiation | Rapid Radiative Transfer Model (RRTM) | Rapid Radiative Transfer Model (RRTM) |
Short-wave radiation | Dudhia scheme | Dudhia scheme |
Near-surface layer physics | Revised MM5 Monin-Obukhov scheme | Revised MM5 Monin-Obukhov scheme |
Land-surface surface | Noah land-surface model | Noah land-surface model |
Planetary boundary layer | Mellor–Yamada–Janjic (Eta) TKE scheme | Mellor–Yamada–Janjic (Eta) TKE scheme |
Experimental Protocol | CO2 Concentration Settings | Land Use Data |
---|---|---|
L1 | CO2 concentration in 2000 | MODIS land subsurface data for 2000 |
L2 | CO2 concentration in 2020 | MODIS land subsurface data for 2000 |
L3 | CO2 concentration in 2000 | MODIS land subsurface data for 2020 |
L4 | CO2 concentration in 2020 | MODIS land subsurface data for 2020 |
Land Use Transition | ∆Tmin | ∆Tmax | ∆Tmean | Land Use Transition | ∆Tmin | ∆Tmax | ∆Tmean |
---|---|---|---|---|---|---|---|
Forest–Forest | −0.20 | 0.26 | 0.06 | Grassland–Forest | −0.15 | 0.25 | 0.06 |
Forest–Grassland | −0.16 | 0.24 | 0.09 | Grassland–Cropland | −0.22 | 0.28 | 0.01 |
Forest–Water Body | −0.11 | 0.22 | 0.09 | Grassland–Water Body | −0.13 | 0.20 | 0.04 |
Forest–Cropland | −0.15 | 0.29 | 0.08 | Grassland–Cropland | −0.17 | 0.28 | 0.05 |
Forest–Built-up Land | −0.08 | 0.21 | 0.11 | Grassland–Built-up Land | −0.12 | 0.24 | 0.02 |
Forest–Barren Land | 0.08 | 0.08 | 0.08 | Grassland–Barren Land | −0.13 | 0.17 | −0.02 |
Barren Land–Forest | −0.05 | 0.09 | 0.03 | Cropland–Forest | −0.17 | 0.28 | 0.02 |
Barren Land–Grassland | −0.14 | 0.15 | −0.02 | Cropland–Grassland | −0.15 | 0.26 | 0.03 |
Barren Land–Water Body | −0.05 | 0.18 | 0.04 | Cropland–Water Body | −0.04 | 0.21 | 0.06 |
Barren Land–Cropland | −0.01 | 0.13 | 0.06 | Cropland–Cropland | −0.20 | 0.30 | 0.04 |
Barren Land–Built-up Land | −0.05 | 0.07 | 0.01 | Cropland–Built-up Land | −0.16 | 0.26 | 0.06 |
Barren Land–Barren Land | −0.17 | 0.21 | −0.03 | Cropland–Barren Land | −0.03 | 0.26 | 0.06 |
Built-up Land–Forest | 0.02 | 0.15 | 0.10 | Water Body–Forest | −0.05 | 0.06 | 0.01 |
Built-up Land–Grassland | −0.08 | 0.21 | 0.00 | Water Body–Grassland | −0.04 | −0.01 | −0.02 |
Built-up Land–Water Body | 0.19 | 0.19 | 0.19 | Water Body–Water Body | −0.09 | 0.22 | 0.01 |
Built-up Land–Cropland | −0.15 | 0.22 | 0.08 | Water Body–Barren Land | 0.00 | 0.00 | 0.00 |
Built-up Land–Built-up Land | −0.17 | 0.25 | 0.05 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Z.; Cui, Y.; Wu, L.; Zhou, Y.; Li, M.; Zhou, S. Simulation Study on the Effect of Elevated CO2 on Regional Temperature Change on the Loess Plateau. Remote Sens. 2023, 15, 2607. https://doi.org/10.3390/rs15102607
Shi Z, Cui Y, Wu L, Zhou Y, Li M, Zhou S. Simulation Study on the Effect of Elevated CO2 on Regional Temperature Change on the Loess Plateau. Remote Sensing. 2023; 15(10):2607. https://doi.org/10.3390/rs15102607
Chicago/Turabian StyleShi, Zhifang, Yaoping Cui, Liyang Wu, Yan Zhou, Mengdi Li, and Shenghui Zhou. 2023. "Simulation Study on the Effect of Elevated CO2 on Regional Temperature Change on the Loess Plateau" Remote Sensing 15, no. 10: 2607. https://doi.org/10.3390/rs15102607
APA StyleShi, Z., Cui, Y., Wu, L., Zhou, Y., Li, M., & Zhou, S. (2023). Simulation Study on the Effect of Elevated CO2 on Regional Temperature Change on the Loess Plateau. Remote Sensing, 15(10), 2607. https://doi.org/10.3390/rs15102607