The Role of Changbai Mountain in an Extreme Precipitation Event in Liaoning Province, China
Abstract
:1. Introduction
2. Model, Data and Methodology
2.1. Study Area
2.2. Model Configuration and Experiment Design
2.3. Observational and Reanalysis Data
2.4. Methodology
3. Results
3.1. Synoptic Background of the Precipitation Event
3.2. Evaluation of Simulated Precipitation in the EXP1
3.3. Impacts of Changbai Mountain on Precipitation
3.4. The Drag Effect of Changbai Mountain on Horizontal Wind
3.5. The Effect of Topography on Vertical Wind
3.6. Impacts of Changbai Mountain on Cold Pool
4. Discussion
4.1. Thermal and Dynamic Mechanisms Supporting the Extreme Precipitation
4.2. Limitations of the Research
5. Conclusions
- (1)
- The topography obstructed the eastward progression of the cold front as the convective system advanced eastward towards the vicinity of Changbai Mountain, thus prolonging the duration of rainfall.
- (2)
- On the eastern slope of Changbai Mountain, precipitation was intensified by the uplifting effect of the topography on the warm and moist low-level airflow. On the western slope, orographic downslope winds converged with the southwest and northwest winds, further enhancing the upward motion.
- (3)
- The topography hindered the eastward movement of the cold pool and amplified its intensity, leading to a delicate balance between the cold pool, southeasterly wind, and vertical wind shear. This equilibrium facilitated the development of convection and sustained precipitation for several hours near Changbai Mountain.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jayesh, P. Role of Eastern Ghats Orography and Cold Pool in an Extreme Rainfall Event over Chennai on 1 December 2015. Mon. Weather Rev. 2018, 4, 943–965. [Google Scholar]
- Akkoyunlu, B.-O.; Baltaci, H.; Tayanc, M. Atmospheric conditions of extreme precipitation events in western Turkey for the period 2006–2015. Nat. Hazards Earth Syst. Sci. 2019, 1, 107–119. [Google Scholar] [CrossRef]
- Luo, L.-P.; Xue, M.; Zhu, K.-F. The Initiation and Organization of a Severe Hail-Producing Mesoscale Convective System in East China: A Numerical Study. J. Geophys. Res. Atmos. 2020, 17, e2020JD032606. [Google Scholar]
- Hock, N.; Zhang, F.-M.; Pu, Z.-X. Numerical Simulations of a Florida Sea Breeze and Its Interactions with Associated Convection: Effects of Geophysical Representation and Model Resolution. Adv. Atmos. Sci. 2022, 39, 697–713. [Google Scholar] [CrossRef]
- Zhu, D.; Zhi, X.; Wang, N.; Chen, C.; Tian, X.; Yu, Y. Impacts of Changbai Mountain Topography on the Extreme Precipitation From Super Typhoon Maysak. Front. Environ. Sci. 2022, 9, 818402. [Google Scholar] [CrossRef]
- Brian, H. A potential vorticity view of synoptic development. Meteorol. Appl. 1997, 4, 325–334. [Google Scholar]
- Xin, X.; Ming, X.; Yuan, W.; Hao, H. Mechanisms of secondary convection within a Mei-Yu frontal mesoscale convective system in eastern China. J. Geophys. Res. Atmos. 2017, 1, 47–64. [Google Scholar]
- Wang, Y.; Wu, J. Overview of the Application of Orographic Data in Numerical Weather Prediction in Complex Orographic Areas. Adv. Meteorol. 2022, 2022, 1279625. [Google Scholar] [CrossRef]
- Lapenta, K.-D.; McNaught, B.-J.; Capriola, S.-J.; Giordano, L.-A.; Little, C.-D.; Hrebenach, S.-D.; Carter, G.-M.; Valverde, M.-D.; Frey, D.-S. The challenge of forecasting heavy rain and flooding throughout the Eastern Region of the National Weather Service. Part I: Characteristics and events. Weather Forecast. 1995, 1, 78–90. [Google Scholar] [CrossRef]
- Agyakwah, W.; Lin, Y. Generation and enhancement mechanisms for extreme orographic rainfall associated with Typhoon Morakot (2009) over the Central Mountain Range of Taiwan. Atmos. Res. 2021, 247, 105160. [Google Scholar] [CrossRef]
- Yu, R.; Zhou, T.; Xiong, A.; Zhu, Y.; Li, J. Diurnal variations of summer precipitation over contiguous China. Geophys. Res. Lett. 2007, 1, L1704. [Google Scholar] [CrossRef]
- Nishizawa, S.; Yamaura, T.; Kajikawa, Y. Influence of sub-mesoscale topography on daytime precipitation associated with thermally driven local circulations over a mountainous region. J. Atmos. Sci. 2021, 8, 2511–2532. [Google Scholar] [CrossRef]
- He, H.; Zhang, H. Diurnal Variations of Warm-Season Precipitation over Northern China. Mon. Weather Rev. 2010, 4, 1017–1025. [Google Scholar]
- Richard, R.; Robert, A.-H. Lessons on orographic precipitation from the Mesoscale Alpine Programme. Q. J. R. Meteorol. Soc. 2007, 625, 811–830. [Google Scholar]
- Luis, G.; Francina, D.; Raquel, N.; Ricardo, T.; Anita, D.; Chris, J.-C.-R.; Andréa, S.-T.; Alexandre, M.-R.; Ramesh, K.; José, M. Major Mechanisms of Atmospheric Moisture Transport and Their Role in Extreme Precipitation Events. Annu. Rev. Environ. Resour. 2016, 1, 117–141. [Google Scholar]
- Katurji, M.; Zhong, S. The Influence of Topography and Ambient Stability on the Characteristics of Cold-Air Pools: A Numerical Investigation. J. Appl. Meteorol. Climatol. 2012, 10, 1740–1749. [Google Scholar]
- Chu, Z.; Guo, J.; Zhao, J. Impacts of future climate change on agroclimatic resources in Northeast China. J. Geogr. Sci. 2017, 9, 1044–1058. [Google Scholar] [CrossRef]
- Tao, C.; Jiang, C.; Sun, J. Prediction of future change in climate in Northeast China using a CMIP5 multi-model ensemble. Chin. J. Geophys. 2016, 10, 3580–3591. [Google Scholar]
- Zhang, L.; Meng, X.; Wang, H.; Yang, M.; Cai, S. Investigate the Applicability of CMADS and CFSR Reanalysis in Northeast China. Water 2020, 4, 996. [Google Scholar] [CrossRef]
- Villarini, G.; Krajewski, W.-F. Review of the Different Sources of Uncertainty in Single Polarization Radar-Based Estimates of Rainfall. Surv. Geophys. 2010, 1, 23. [Google Scholar]
- Liu, Y.; Liang, Z.; Li, Y. Observational and Simulative Study of a Local Severe Precipitation Event Caused by a Cold Vortex over Northeast China. Adv. Meteorol. 2017, 2017, 2764340. [Google Scholar] [CrossRef]
- He, H.; Sun, J.; Yu, E.; Wang, H.; Zhang, M.; Hua, W. Simulation Study on the Influence of the Great Khingan Strip and Changbai Mountain on Summer Rainfall in Northeast China. Clim. Environ. Res. 2020, 25, 268–280. [Google Scholar]
- Li, N.; Jiao, B.; Ran, L.; Gao, Z.; Gao, S. Influence of the Upstream Terrain on the Formation of a Cold Frontal Snowband in Northeast China. Asia Pac. J. Atmos. Sci. 2022, 2, 243–264. [Google Scholar] [CrossRef]
- Wu, Y.; Cui, J.; Li, C.; Li, D.; Duan, Y.; Xu, S. Analysis of Environmental Conditions and Predictability of a Strong Wind Process in Shenyang City after the Cold Vortex. For. Chem. Rev. 2022, 488–503. Available online: https://forestchemicalsreview.com/index.php/JFCR/article/view/563 (accessed on 23 July 2023).
- Geng, S.; Cai, K.; Wang, Y.; Zhou, F.; Xiao, G.; Huang, H.; Chai, X. Observational analysis of EF4 tornadic supercell storm in Kaiyuan of Liaoning province on 3 July 2019. J. Meteorol. Environ. 2022, 3, 1–10. (In Chinese) [Google Scholar]
- Yang, X.-J.; Xu, Z.-X.; Liu, W.-F.; Liu, L. Spatiotemporal characteristics of extreme precipitation at multiple timescales over Northeast China during 1961–2014. J. Water Clim. Chang. 2017, 3, 535–556. [Google Scholar] [CrossRef]
- Long, J. Regional tourism cooperation in triangle zone of liaoning province. Chin. Geogr. Sci. 2005, 4, 361–367. [Google Scholar] [CrossRef]
- Guan, Y.; Li, X.; Yang, J.; Li, S.; Tian, S. Spatial differentiation of comprehensive suitability of urban human settlements based on GIS: A case study of Liaoning Province, China. Environ. Dev. Sustain. 2021, 24, 4150–4174. [Google Scholar] [CrossRef]
- Qian, F.; Chi, Y.; Lal, R.; Lorenz, K. Spatio-temporal characteristics of cultivated land fragmentation in different landform areas with a case study in Northeast China. Ecosyst. Health Sustain. 2020, 1, 1800415. [Google Scholar] [CrossRef]
- Li, Y.; Liu, M.; Sun, J.; Zhao, Y. Analysis of extreme precipitation event characteristics and typical events based on the intensity–area–duration method in Liaoning Province. Theor. Appl. Climatol. 2023, 152, 201–211. [Google Scholar] [CrossRef]
- Sun, F.; Yuan, J. Recent 40 years inter-decadal fluctuation of dry and wet climate boundary and its cause in Liaoning Province. J. Appl. Ecol. Chin. 2006, 17, 1274–1279. [Google Scholar]
- Vlado, S.; Julian, B.; Bosko, T.; Boro, J. Prediction of extreme convective rainfall intensities using a free-running 3-D sub-km-scale cloud model initialized from WRF km-scale NWP forecasts. J. Atmos. Sol. Terr. Phys. 2020, 209, 105401. [Google Scholar]
- Neyestani, A.; Gustafsson, N.; Ghader, S.; Mohebalhojeh, A.-R.; Körnich, H. Operational convective-scale data assimilation over Iran: A comparison between WRF and HARMONIE-AROME. Dyn. Atmos. Ocean. 2021, 95, 101242. [Google Scholar] [CrossRef]
- Zhu, K.; Yu, B.; Xue, M.; Zhou, B.; Hu, X. Summer Season Precipitation Biases in 4 km WRF Forecasts Over Southern China: Diagnoses of the Causes of Biases. J. Geophys. Res. Atmos. 2021, 126, e2021JD035530. [Google Scholar] [CrossRef]
- Gao, Y.; Wu, T.; Chen, B.; Wang, J.; Liu, Y. A Numerical Simulation of Microphysical Structure of Cloud Associated with the 2008 Winter Freezing Rain over Southern China. J. Meteorol. Soc. Japan Ser. II 2013, 2, 101–117. [Google Scholar]
- Nakanishi, M.; Niino, H. Development of an Improved Turbulence Closure Model for the Atmospheric Boundary Layer. J. Meteorol. Soc. Japan Ser. II 2009, 5, 895–912. [Google Scholar] [CrossRef]
- Iacono, M.-J.; Delamere, J.-S.; Mlawer, E.-J.; Shephard, M.-W.; Clough, S.-A.; Collins, W.-D. Radiative forcing by long-lived greenhouse gases: Calculations with the AER radiative transfer models. J. Geophys. Res. 2008, 113. [Google Scholar] [CrossRef]
- Niu, G.-Y.; Yang, Z.-L.; Mitchell, K.-E.; Chen, F.; Ek, M.-B.; Barlage, M.; Kumar, A.; Manning, K.; Niyogi, D.; Rosero, E.; et al. The community Noah land surface model with multiparameterization options (Noah-MP): 1. Model description and evaluation with local-scale measurements. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Zhang, C.; Gu, M.; Hu, Y.; Huang, P.; Yang, T.; Huang, S.; Yang, C.; Shao, C. A Study on the Retrieval of Temperature and Humidity Profiles Based on FY-3D/HIRAS Infrared Hyperspectral Data. Remote Sens. 2021, 11, 2157. [Google Scholar] [CrossRef]
- Pérez-Planells, L.; García-Santos, V.; Caselles, V. Comparing different profiles to characterize the atmosphere for three MODIS TIR bands. Atmos. Res. 2015, 161, 108–115. [Google Scholar] [CrossRef]
- Silva, N.-A.; Webber, B.-G.-M.; Matthews, A.-J.; Feist, M.-M.; Stein, T.-H.-M.; Holloway, C.-E.; Abdullah, M.-F.-A.-B. Validation of GPM IMERG Extreme Precipitation in the Maritime Continent by Station and Radar Data. Earth Space Sci. 2021, 7, e1738E–e2021E. [Google Scholar] [CrossRef]
- Moazami, S.; Najafi, M.-R. A Comprehensive Evaluation of GPM-IMERG V06 and MRMS with Hourly Ground-Based Precipitation Observations across Canada. J. Hydrol. 2020, 594, 125929. [Google Scholar] [CrossRef]
- Robert, A.-H. Orographic effects on precipitating clouds. Rev. Geophys. 2012, 1, G1001. [Google Scholar]
- Piotr, K.-S.; Richard, R. Low Froude Number Flow Past Three-Dimensional Obstacles. Part I: Baroclinically Generated Lee Vortices. Am. Meteorol. Soc. 1988, 8, 1154–1164. [Google Scholar]
- Buzzi, A.; Tartaglione, N.; Piero, M. Numerical simulations of the 1994 Piedmont flood: Role of orography and moist processes. Mon. Weather Rev. 1998, 9, 2369–2383. [Google Scholar] [CrossRef]
- Xie, Z.-W.; Bueh, C.; Ji, L.-R.; Sun, S.-Q. The Cold Vortex Circulation over Northeastern China and Regional Rainstorm Events. Atmos. Ocean. Sci. Lett. 2015, 2, 134–139. [Google Scholar]
- Yang, L.; Jiang, D.; Ying, W.; Kuizhi, C.; Li, S. Analysis of Atmospheric Precipitable Water Vapor Characteristics During Flood Season in Liaoning Province Based on GPS Remote Sensing Data. J. Arid Meteorol. 2016, 34, 82–87. [Google Scholar]
- Wei, P.; Xu, X.; Xue, M.; Zhang, C.; Wang, Y.; Zhao, K.; Zhou, A.; Zhang, S.; Zhu, K. On the Key Dynamical Processes Supporting the 21.7 Zhengzhou Record-breaking Hourly Rainfall in China. Adv. Atmos. Sci. 2023, 40, 337–349. [Google Scholar] [CrossRef]
- Coniglio, M.-C.; Corfidi, S.-F.; Kain, J.-S. Views on Applying RKW Theory: An Illustration Using the 8 May 2009 Derecho-Producing Convective System. Mon. Weather Rev. 2012, 3, 1023–1043. [Google Scholar] [CrossRef]
- Zhang, D.; Yang, M.; Ma, M.; Tang, G.; Wang, T.; Zhao, X.; Ma, S.; Wu, J.; Wang, W. Can GPM IMERG Capture Extreme Precipitation in North China Plain? Remote Sens. 2022, 4, 928. [Google Scholar] [CrossRef]
- Ehsan, S.; Reinhold, S.; Bahram, S. Assessment of GPM-IMERG and Other Precipitation Products against Gauge Data under Different Topographic and Climatic Conditions in Iran: Preliminary Results. Remote Sens. 2016, 8, 135. [Google Scholar] [CrossRef]
- Sahlu, D.; Nikolopoulos, E.-I.; Moges, S.-A.; Anagnostou, E.-N.; Hailu, D. First Evaluation of the Day-1 IMERG over the Upper Blue Nile Basin. J. Hydrometeorol. 2016, 17, 2875–2882. [Google Scholar] [CrossRef]
- Yang, G.; Wu, Y.; Lin, M. Evaluating the Applicability of GPM Satellite Precipitation Data. J. Shenyang Agric. Univ. Chin. 2020, 5, 559–567. [Google Scholar]
- Leena, K.; Sandeep, P. Impact of initial conditions and cloud parameterization on the heavy rainfall event of Kerala (2018). Model. Earth Syst. Environ. 2021, 7, 2809–2822. [Google Scholar]
- Stergiou, I.; Tagaris, E.; Sotiropoulou, R.-P. Investigating the WRF Temperature and Precipitation Performance Sensitivity to Spatial Resolution over Central Europe. Atmosphere 2021, 2, 278. [Google Scholar] [CrossRef]
- Dario, C.; Silvio, G.; Piero, L. Effect of Model Resolution on Intense and Extreme Precipitationinthe Mediterranean Region. Atmosphere 2020, 11, 699. [Google Scholar] [CrossRef]
Description | EXP1 (CTL) | EXP2 |
---|---|---|
Altitude of Changbai Mountain | Default altitude | Default altitude × 0.1 |
Horizontal resolution (grid dimensions) | d01: 9 km (308 × 300) d02: 3 km (481 × 481) | |
Vertical levels (Top pressure) | 48 (10 hPa) | |
Cloud microphysics | Morrison | |
Atmospheric surface layer | MYNN | |
Planetary boundary layer scheme | MYNN | |
Short-/Longwave radiation scheme | RRTMG | |
Land surface | unified Noah | |
Cumulus parameterization | None |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, J.; Huang, Y.; Luo, L.; Li, Y. The Role of Changbai Mountain in an Extreme Precipitation Event in Liaoning Province, China. Remote Sens. 2023, 15, 4381. https://doi.org/10.3390/rs15184381
Yang J, Huang Y, Luo L, Li Y. The Role of Changbai Mountain in an Extreme Precipitation Event in Liaoning Province, China. Remote Sensing. 2023; 15(18):4381. https://doi.org/10.3390/rs15184381
Chicago/Turabian StyleYang, Jing, Ya Huang, Liping Luo, and Yanping Li. 2023. "The Role of Changbai Mountain in an Extreme Precipitation Event in Liaoning Province, China" Remote Sensing 15, no. 18: 4381. https://doi.org/10.3390/rs15184381
APA StyleYang, J., Huang, Y., Luo, L., & Li, Y. (2023). The Role of Changbai Mountain in an Extreme Precipitation Event in Liaoning Province, China. Remote Sensing, 15(18), 4381. https://doi.org/10.3390/rs15184381