Feasibility of Using a 300 GHz Radar to Detect Fractures and Lithological Changes in Rocks
Abstract
1. Introduction
2. Materials and Methods
2.1. Samples
- -
- Granite ≈ 0.9 cm and ≈ 1.2 cm;
- -
- Limestone ≈ 1 cm and ≈ 2 cm;
- -
- Dolomite ≈ 0.5 cm and ≈ 0.8 cm.
2.2. FMCW Radar System
2.3. Measurements
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hornby, B.E.; Johnson, D.L.; Winkler, K.W.; Plumb, R.A. Fracture evaluation using reflected Stoneley-wave arrivals. Geophysics 1989, 54, 1274–1288. [Google Scholar] [CrossRef]
- Apel, D.B.; Dezelic, V. Using ground penetrating radar (GPR) in analyzing structural composition of mine roof. Min. Eng. 2005, 57, 56–61. [Google Scholar]
- Baker, D.R.; Mancini, L.; Polacci, M.; Higgins, M.D.; Gualda, G.A.R.; Hill, R.J.; Rivers, M.L. An introduction to the application of X-ray microtomography to the three-dimensional study of igneous rocks. Lithos 2012, 148, 262–276. [Google Scholar] [CrossRef]
- Jol, H.M. (Ed.) Ground Penetrating Radar Theory and Applications; Elsevier: Amsterdam, The Netherlands, 2008. [Google Scholar]
- Lombardi, F.; Podd, F.; Solla, M. From its core to the niche: Insights from GPR applications. Remote Sens. 2022, 14, 3033. [Google Scholar] [CrossRef]
- Szymczyk, P. Classification of geological structure using Ground-Penetrating Radar and Laplace transform artificial neural networks. Neurocomputing 2015, 148, 354–362. [Google Scholar] [CrossRef]
- Panoudakis, N.S.; Vafidis, A.; Papavasiliou, A. Delineating a doline system using 3D Ground-Penetrating Radar (GPR) data, complex trace attributes and neural networks: A case study in Omalos Highlands. In Proceedings of the 1st International Conference on Advances in Mineral Resources Management and Environmental Geotechnology, Hania, Greece, 7–9 June 2004. [Google Scholar]
- Campbell, S.W.; Briggs, M.; Roy, S.G.; Douglas, T.A.; Saari, S. Ground-penetrating radar, electromagnetic induction, terrain, and vegetation observations coupled with machine learning to map permafrost distribution at Twelvemile Lake, Alaska. Permafr. Periglac. Process 2021, 32, 407–426. [Google Scholar] [CrossRef]
- Qian, Y.; Forghani, M.; Lee, J.H.; Farthing, M.; Hesser, T.; Kitanidis, P.; Darve, E. Application of deep learning-based interpolation methods to nearshore bathymetry. arXiv 2020, arXiv:2011.09707. [Google Scholar]
- Ball, A.; O’Connor, L. Geologist in the Loop: A Hybrid Intelligence Model for Identifying Geological Boundaries from Augmented Ground-Penetrating Radar. Geosciences 2021, 11, 284. [Google Scholar] [CrossRef]
- Ivashov, S.I.; Capineri, L.; Bechtel, T.D.; Razevig, V.V.; Inagaki, M.; Gueorguiev, N.L.; Kizilay, A. Design and applications of multi-frequency holographic subsurface radar: Review and case histories. Remote Sens. 2021, 13, 3487. [Google Scholar] [CrossRef]
- Gutiérrez-Cano, J.D.; Catalá-Civera, J.M.; López-Buendía, A.M.; Plaza-González, P.J.; Penaranda-Foix, F.L. High-Resolution Detection of Rock-Forming Minerals by Permittivity Measurements with a Near-Field Scanning Microwave Microscope. Sensors 2022, 22, 1138. [Google Scholar] [CrossRef]
- Monti, T.; Tselev, A.; Udoudo, O.; Ivanov, I.N.; Dodds, C.; Kingman, S.W. High-resolution dielectric characterization of minerals: A step towards understanding the basic interactions between microwaves and rocks. Int. J. Miner. Process. 2016, 151, 8–21. [Google Scholar] [CrossRef][Green Version]
- Schwerdtfeger, M.; Castro-Camus, E.; Krügener, K.; Viöl, W.; Koch, M. Beating the wavelength limit: Three-dimensional imaging of buried subwavelength fractures in sculpture and construction materials by terahertz time-domain reflection spectroscopy. Appl. Opt. 2013, 52, 375–380. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Abina, A.; Puc, U.; Jeglič, A.; Zidanšek, A. Applications of terahertz spectroscopy in the field of construction and building materials. Appl. Spectrosc. Rev. 2015, 50, 279–303. [Google Scholar] [CrossRef]
- Guntoro, P.I.; Ghorbani, Y.; Koch, P.H.; Rosenkranz, J. X-ray microcomputed tomography (μCT) for mineral characterization: A review of data analysis methods. Minerals 2019, 9, 183. [Google Scholar] [CrossRef][Green Version]
- Bassli, A.; Blin, S.; Nouvel, P.; Myara, M.; Roux, J.F.; Benbassou, A.; Belkadid, J.; Pénarier, A. 3-D imaging of materials at 0.1 THz for inner-defect detection using a frequency-modulated continuous-wave radar. IEEE Trans. Instrum. Meas. 2020, 69, 5843–5852. [Google Scholar] [CrossRef]
- Chopard, A.; Fauquet, F.; Goh, J.S.; Pan, M.; Mounaix, P.; Guillet, J.P.; Simonov, A.; Smolyanskaya, O. Teragogic: Open source platform for low cost millimeter wave sensing and terahertz imaging. In Proceedings of the 2021 IEEE Radar Conference (RadarConf21), Atlanta, GA, USA, 7–14 May 2021; pp. 1–6. [Google Scholar]
- Dandolo, C.L.K.; Guillet, J.P.; Ma, X.; Fauquet, F.; Roux, M.; Mounaix, P. Terahertz frequency modulated continuous wave imaging advanced data processing for art painting analysis. Opt. Express 2018, 26, 5358–5367. [Google Scholar] [CrossRef]
- Pan, M.; Chopard, A.; Fauquet, F.; Mounaix, P.; Guillet, J.P. Guided reflectometry imaging unit using millimeter wave FMCW radars. IEEE Trans. Terahertz Sci. Technol. 2020, 10, 647–655. [Google Scholar] [CrossRef]
- Carré, B.; Chopard, A.; Guillet, J.P.; Fauquet, F.; Mounaix, P.; Gellie, P. Terahertz Nondestructive Testing with Ultra-Wideband FMCW Radar. Sensors 2022, 23, 187. [Google Scholar] [CrossRef]
- Biteau, J.J.; Marrec, A.L.; Vot, M.L.; Masset, J.M. The aquitaine basin. Pet. Geosci. 2006, 12, 247–273. [Google Scholar] [CrossRef]
- Chopard, A.; Cassar, Q.; Bou-Sleiman, J.; Guillet, J.P.; Pan, M.; Perraud, J.B.; Susset, A.; Mounaix, P. Terahertz waves for contactless control and imaging in aeronautics industry. NDT Int. 2021, 122, 102473. [Google Scholar] [CrossRef]
- Cristofani, E.; Friederich, F.; Wohnsiedler, S.; Matheis, C.; Jonuscheit, J.; Vandewal, M.; Beigang, R. Nondestructive testing potential evaluation of a terahertz frequency-modulated continuous-wave imager for composite materials inspection. Opt. Eng. 2014, 53, 031211. [Google Scholar] [CrossRef]
- Han, D.; Jo, H.; Ahn, J. Terahertz spectroscopy of natural stone materials. In Proceedings of the 2014 39th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), Tucson, AZ, USA, 14–19 September 2014; pp. 1–2. [Google Scholar]
- Zhan, H.; Wu, S.; Zhao, K.; Bao, R.; Xiao, L. CaCO3, its reaction and carbonate rocks: Terahertz spectroscopy investigation. J. Geophys. Eng. 2016, 13, 768–774. [Google Scholar] [CrossRef][Green Version]
- Bancroft, J.C. A Practical Understanding of Pre-and Poststack Migrations: Volume 2 (Prestack); Society of Exploration Geophysicists: Tulsa, OK, USA, 2007. [Google Scholar]
- Tang, W.; Blanche, J.; Mitchell, D.; Harper, S.; Flynn, D. Characterisation of Composite Materials for Wind Turbines Using Frequency Modulated Continuous Wave Sensing. J. Compos. Sci. 2023, 7, 75. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanjuan, F.; Fauquet, F.; Fasentieux, B.; Mounaix, P.; Guillet, J.-P. Feasibility of Using a 300 GHz Radar to Detect Fractures and Lithological Changes in Rocks. Remote Sens. 2023, 15, 2605. https://doi.org/10.3390/rs15102605
Sanjuan F, Fauquet F, Fasentieux B, Mounaix P, Guillet J-P. Feasibility of Using a 300 GHz Radar to Detect Fractures and Lithological Changes in Rocks. Remote Sensing. 2023; 15(10):2605. https://doi.org/10.3390/rs15102605
Chicago/Turabian StyleSanjuan, Federico, Frédéric Fauquet, Bertrand Fasentieux, Patrick Mounaix, and Jean-Paul Guillet. 2023. "Feasibility of Using a 300 GHz Radar to Detect Fractures and Lithological Changes in Rocks" Remote Sensing 15, no. 10: 2605. https://doi.org/10.3390/rs15102605
APA StyleSanjuan, F., Fauquet, F., Fasentieux, B., Mounaix, P., & Guillet, J.-P. (2023). Feasibility of Using a 300 GHz Radar to Detect Fractures and Lithological Changes in Rocks. Remote Sensing, 15(10), 2605. https://doi.org/10.3390/rs15102605