Supervised Classification of Tree Cover Classes in the Complex Mosaic Landscape of Eastern Rwanda
Abstract
:1. Introduction
- Which methods and input layers lead to the most accurate land cover classification model for eastern Rwanda?
- What is the spatial extent and distribution of the main land cover types that feature trees in the study area?
- How does the distribution of these land cover types relate to rural populations, and what implications does this have for sustainable wood harvests in the study area?
2. Materials and Methods
2.1. Study Area
2.2. Data Acquisition
2.3. Data Preparation and Inputs
- Agroforestry: trees in small woodlots (under 0.25 ha), trees growing in rows, and scattered trees on farms mixed with crops;
- Forest: trees in natural forest or plantations with minimum 10% crown cover;
- Shrubland: natural land cover with small shrubs (height under 7 m) and wooded savannah (height trees over 7 m) with minimum 10% crown cover.
2.4. Spectral Separability of Classes
2.5. Classification Algorithm
2.6. Feature Selection
3. Results
3.1. Spectral Separability
3.2. Model Accuracy
3.3. Feature Selection
3.4. Classification Maps
4. Discussion
4.1. Input Layers and Feature Selection
4.2. Tree Cover Class Distribution
4.3. Comparison to Other Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Keenan, R.J.; Reams, G.A.; Achard, F.; de Freitas, J.V.; Grainger, A.; Lindquist, E. Dynamics of Global Forest Area: Results from the FAO Global Forest Resources Assessment 2015. For. Ecol. Manag. 2015, 352, 9–20. [Google Scholar] [CrossRef]
- Curtis, P.G.; Slay, C.M.; Harris, N.L.; Tyukavina, A.; Hansen, M.C. Classifying Drivers of Global Forest Loss. Science 2018, 361, 1108–1111. [Google Scholar] [CrossRef] [PubMed]
- Williams, B.A.; Venter, O.; Allan, J.R.; Atkinson, S.C.; Rehbein, J.A.; Ward, M.; Marco, M.D.; Grantham, H.S.; Ervin, J.; Goetz, S.J.; et al. Change in Terrestrial Human Footprint Drives Continued Loss of Intact Ecosystems. One Earth 2020, 3, 371–382. [Google Scholar] [CrossRef]
- Hosonuma, N.; Herold, M.; Sy, V.D.; Fries, R.S.D.; Brockhaus, M.; Verchot, L.; Angelsen, A.; Romijn, E. An Assessment of Deforestation and Forest Degradation Drivers in Developing Countries. Environ. Res. Lett. 2012, 7, 044009. [Google Scholar] [CrossRef]
- Nishimwe, G.; Rugema, D.M.; Uwera, C.; Graveland, C.; Stage, J.; Munyawera, S.; Ngabirame, G. Natural Capital Accounting for Land in Rwanda. Sustainability 2020, 12, 5070. [Google Scholar] [CrossRef]
- Ndoli, A.; Mukuralinda, A.; Schut, A.G.T.; Iiyama, M.; Ndayambaje, J.D.; Mowo, J.G.; Giller, K.E.; Baudron, F. On-Farm Trees Are a Safety Net for the Poorest Households Rather than a Major Contributor to Food Security in Rwanda. Food Secur. 2021, 13, 685–699. [Google Scholar] [CrossRef]
- Ministry of Lands and Forestry. Rwanda National Forestry Policy 2018; Ministry of Lands and Forestry: Kigali, Rwanda, 2018.
- Cooper, M.; Zvoleff, A.; Gonzalez-Roglich, M.; Tusiime, F.; Musumba, M.; Noon, M.; Alele, P.; Nyiratuza, M. Geographic Factors Predict Wild Food and Nonfood NTFP Collection by Households across Four African Countries. For. Policy Econ. 2018, 96, 38–53. [Google Scholar] [CrossRef]
- Mutandwa, E.; Kanyarukiga, R. Understanding the Role of Forests in Rural Household Economies: Experiences from the Northern and Western Provinces of Rwanda. South. For. A J. For. Sci. 2016, 78, 115–122. [Google Scholar] [CrossRef]
- Nahayo, A.; Ekise, I.; Niyigena, D. Assessment of the Contribution of Non Timber Forest Products to the Improvement of Local People’s Livelihood in Kinigi Sector, Musanze District, Rwanda. Ethiop. J. Environ. Stud. Manag. 2013, 6, 698–706. [Google Scholar] [CrossRef]
- Rurangwa, F.; Kinyanjui, M.J.; Bazimaziki, F.; Peeters, J.; Munyehirwe, A.; Musoke, F.; Habiyaremye, G.N.; Bakundukize, D.; Ngabonziza, P.; Uwase, J. Developing a Forest Management Plan (DFMP) for Gatsibo District in the Eastern Province of Rwanda. Open J. For. 2018, 8, 247. [Google Scholar] [CrossRef]
- Kiyani, P.; Andoh, J.; Lee, Y.; Koo Lee, D. Forest Science and Technology Benefits and Challenges of Agroforestry Adoption: A Case of Musebeya Sector, Nyamagabe District in Southern Province of Rwanda Benefits and Challenges of Agroforestry Adoption: A Case of Musebeya Sector, Nyamagabe District in Southern Province of Rwanda. For. Sci. Technol. 2017, 13, 174–180. [Google Scholar] [CrossRef]
- Iiyama, M.; Mukuralinda, A.; Ndayambaje, J.; Musana, B.; Ndoli, A.; Mowo, J.; Garrity, D.; Ling, S.; Ruganzu, V. Tree-Based Ecosystem Approaches (TBEAs) as Multi-Functional Land Management Strategies—Evidence from Rwanda. Sustainability 2018, 10, 1360. [Google Scholar] [CrossRef]
- Ndayambaje, J.D.; Mugiraneza, T.; Mohren, G.M.J. Woody Biomass on Farms and in the Landscapes of Rwanda. Agrofor. Syst. 2014, 88, 101–124. [Google Scholar] [CrossRef]
- Ndayisaba, F.; Guo, H.; Bao, A.; Guo, H.; Karamage, F.; Kayiranga, A. Understanding the Spatial Temporal Vegetation Dynamics in Rwanda. Remote Sens. 2016, 8, 129. [Google Scholar] [CrossRef]
- Bagstad, K.J.; Ingram, J.C.; Lange, G.-M.; Masozera, M.; Ancona, Z.H.; Bana, M.; Kagabo, D.; Musana, B.; Nabahungu, N.L.; Rukundo, E.; et al. Towards Ecosystem Accounts for Rwanda: Tracking 25 Years of Change in Flows and Potential Supply of Ecosystem Services. People Nat. 2020, 2, 163–188. [Google Scholar] [CrossRef]
- Ndayambaje, J.D.; Mohren, G.M.J. Fuelwood Demand and Supply in Rwanda and the Role of Agroforestry. Agrofor. Syst. 2011, 83, 303–320. [Google Scholar] [CrossRef]
- Drigo, R.; Munyehirwe, A.; Nzabanita, V.; Munyampundu, A. Rwanda Supply Master Plan for Fuelwood and Charcoal; Ministry of Natural Resources: Kigali, Rwanda, 2013. [Google Scholar]
- Akinyemi, F.O. Land Change in the Central Albertine Rift: Insights from Analysis and Mapping of Land Use-Land Cover Change in North-Western Rwanda. Appl. Geogr. 2017, 87, 127–138. [Google Scholar] [CrossRef]
- Basnet, B.; Vodacek, A. Monitoring the Dynamics of Land Cover in the Lake Kivu Region Using Multi-Temporal Landsat Imagery. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 4250–4253. [Google Scholar]
- Hawinkel, P. Modeling Vegetation Dynamics Driven by Climate Variability and Lan. Ph.D. Thesis, KU Leuven, Leuven, Belgium, 2019. [Google Scholar]
- Mugiraneza, T.; Haas, J.; Ban, Y. Spatiotemporal Analysis of Urban Land Cover Changes in Kigali, Rwanda Using Multitemporal Landsat Data and Landscape Metrics. In Proceedings of the International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences—ISPRS Archives, Tshwane, South Africa, 8–12 May 2017; pp. 137–144. [Google Scholar]
- Mugiraneza, T.; Nascetti, A.; Ban, Y. Continuous Monitoring of Urban Land Cover Change Trajectories with Landsat Time Series and Landtrendr-Google Earth Engine Cloud Computing. Remote Sens. 2020, 12, 2883. [Google Scholar] [CrossRef]
- Mugabowindekwe, M.; Brandt, M.; Chave, J.; Reiner, F.; Skole, D.L.; Kariryaa, A.; Igel, C.; Hiernaux, P.; Ciais, P.; Mertz, O.; et al. Nation-Wide Mapping of Tree-Level Aboveground Carbon Stocks in Rwanda. Nat. Clim. Chang. 2023, 13, 91–97. [Google Scholar] [CrossRef]
- Phiri, D.; Simwanda, M.; Salekin, S.; Nyirenda, V.R.; Murayama, Y.; Ranagalage, M. Sentinel-2 Data for Land Cover/Use Mapping: A Review. Remote Sens. 2020, 12, 2291. [Google Scholar] [CrossRef]
- Li, W.; Buitenwerf, R.; Munk, M.; Bøcher, P.K.; Svenning, J.-C. Deep-Learning Based High-Resolution Mapping Shows Woody Vegetation Densification in Greater Maasai Mara Ecosystem. Remote Sens. Environ. 2020, 247, 111953. [Google Scholar] [CrossRef]
- Nomura, K.; Mitchard, E. More Than Meets the Eye: Using Sentinel-2 to Map Small Plantations in Complex Forest Landscapes. Remote Sens. 2018, 10, 1693. [Google Scholar] [CrossRef]
- Ouattara, B.; Forkuor, G.; Zoungrana, B.J.B.; Dimobe, K.; Danumah, J.; Saley, B.; Tondoh, J.E. Crops Monitoring and Yield Estimation Using Sentinel Products in Semi-Arid Smallholder Irrigation Schemes. Int. J. Remote Sens. 2020, 41, 6527–6549. [Google Scholar] [CrossRef]
- Van Der Meer, F.; Bakker, W.; Scholte, K.; Skidmore, A.; De Jong, S.; Clevers, J.; Addink, E.; Epema, G. Spatial Scale Variations in Vegetation Indices and Above-Ground Biomass Estimates: Implications for MERIS. Int. J. Remote Sens. 2001, 22, 3381–3396. [Google Scholar] [CrossRef]
- Rahman Sarker, L.; Nichol, J.E. Improved Forest Biomass Estimates Using ALOS AVNIR-2 Texture Indices. Remote Sens. Environ. 2011, 115, 968–977. [Google Scholar] [CrossRef]
- Ghebrezgabher, M.G.; Yang, T.; Yang, X.; Wang, X.; Khan, M. Extracting and Analyzing Forest and Woodland Cover Change in Eritrea Based on Landsat Data Using Supervised Classification. Egypt. J. Remote Sens. Space Sci. 2016, 19, 37–47. [Google Scholar] [CrossRef]
- Nandasena, W.D.K.V.; Brabyn, L.; Serrao-Neumann, S. Using Google Earth Engine to Classify Unique Forest and Agroforest Classes Using a Mix of Sentinel 2a Spectral Data and Topographical Features: A Sri Lanka Case Study. Geocarto Int. 2021, 37, 9544–9559. [Google Scholar] [CrossRef]
- Dobrinić, D.; Gašparović, M.; Medak, D. Evaluation of Feature Selection Methods for Vegetation Mapping Using Multitemporal Sentinel Imagery. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2022, XLIII-B3-2022, 485–491. [Google Scholar] [CrossRef]
- Stromann, O.; Nascetti, A.; Yousif, O.; Ban, Y. Dimensionality Reduction and Feature Selection for Object-Based Land Cover Classification Based on Sentinel-1 and Sentinel-2 Time Series Using Google Earth Engine. Remote Sens. 2020, 12, 76. [Google Scholar] [CrossRef]
- Rodriguez-Galiano, V.F.; Ghimire, B.; Rogan, J.; Chica-Olmo, M.; Rigol-Sanchez, J.P. An Assessment of the Effectiveness of a Random Forest Classifier for Land-Cover Classification. ISPRS J. Photogramm. Remote Sens. 2012, 67, 93–104. [Google Scholar] [CrossRef]
- Thanh Noi, P.; Kappas, M. Comparison of Random Forest, k-Nearest Neighbor, and Support Vector Machine Classifiers for Land Cover Classification Using Sentinel-2 Imagery. Sensors 2018, 18, 18. [Google Scholar] [CrossRef] [PubMed]
- Eskandari, S.; Reza Jaafari, M.; Oliva, P.; Ghorbanzadeh, O.; Blaschke, T. Mapping Land Cover and Tree Canopy Cover in Zagros Forests of Iran: Application of Sentinel-2, Google Earth, and Field Data. Remote Sens. 2020, 12, 1912. [Google Scholar] [CrossRef]
- Shelestov, A.; Lavreniuk, M.; Kussul, N.; Novikov, A.; Skakun, S. Exploring Google Earth Engine Platform for Big Data Processing: Classification of Multi-Temporal Satellite Imagery for Crop Mapping. Front. Earth Sci. 2017, 5, 17. [Google Scholar] [CrossRef]
- Gorelick, N.; Hancher, M.; Dixon, M.; Ilyushchenko, S.; Thau, D.; Moore, R. Google Earth Engine: Planetary-Scale Geospatial Analysis for Everyone. Remote Sens. Environ. 2017, 202, 18–27. [Google Scholar] [CrossRef]
- Kumar, L.; Mutanga, O. Google Earth Engine Applications Since Inception: Usage, Trends, and Potential. Remote Sens. 2018, 10, 1509. [Google Scholar] [CrossRef]
- National Institute of Statistics Rwanda. 5th Rwanda Population and Housing Census (PHC) Main Indicators Report; National Institute of Statistics Rwanda: Kigali, Rwanda, 2023.
- United Nations Environment Programme Rwanda. From Post-Conflict to Environmentally Sustainable Development; United Nations Environment Programme Rwanda: Kigali, Rwanda, 2011. [Google Scholar]
- Farr, T.G.; Rosen, P.A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; et al. The Shuttle Radar Topography Mission. Rev. Geophys. 2007, 45, 2005RG000183. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The Climate Hazards Infrared Precipitation with Stations—A New Environmental Record for Monitoring Extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed]
- National Institute of Statistics Rwanda. Upgraded Seasonal Agricultural Survey; National Institute of Statistics Rwanda: Kigali, Rwanda, 2020.
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; Cadau, E.; Gascon, F. SENTINEL-2 SEN2COR: L2A Processor for Users. In Proceedings of the Living Planet Symposium 2016, Prague, Czech Republic, 9–13 May 2016; Ouwehand, L., Ed.; Spacebooks Online: Prague, Czech Republic, 2016; Volume SP-740, pp. 1–8. [Google Scholar]
- Van Passel, J.; De Keersmaecker, W.; Somers, B. Monitoring Woody Cover Dynamics in Tropical Dry Forest Ecosystems Using Sentinel-2 Satellite Imagery. Remote Sens. 2020, 12, 1276. [Google Scholar] [CrossRef]
- Center for International Earth Science Information Network, F.C.L. Rwanda: High Resolution Population Density Maps + Demographic Estimates—Humanitarian Data Exchange. Available online: https://data.humdata.org/dataset/highresolutionpopulationdensitymaps-rwa (accessed on 25 January 2023).
- Biswas, S.; Huang, Q.; Anand, A.; Mon, M.S.; Arnold, F.-E.; Leimgruber, P. A Multi Sensor Approach to Forest Type Mapping for Advancing Monitoring of Sustainable Development Goals (SDG) in Myanmar. Remote Sens. 2020, 12, 3220. [Google Scholar] [CrossRef]
- Cheng, K.; Wang, J. Forest Type Classification Based on Integrated Spectral-Spatial-Temporal Features and Random Forest Algorithm—A Case Study in the Qinling Mountains. Forests 2019, 10, 559. [Google Scholar] [CrossRef]
- Sjöström, M.; Ardö, J.; Arneth, A.; Boulain, N.; Cappelaere, B.; Eklundh, L.; de Grandcourt, A.; Kutsch, W.L.; Merbold, L.; Nouvellon, Y.; et al. Exploring the Potential of MODIS EVI for Modeling Gross Primary Production across African Ecosystems. Remote Sens. Environ. 2011, 115, 1081–1089. [Google Scholar] [CrossRef]
- Zhang, T.; Su, J.; Liu, C.; Chen, W.-H.; Liu, H.; Liu, G. Band Selection in Sentinel-2 Satellite for Agriculture Applications. In Proceedings of the 2017 23rd International Conference on Automation and Computing (ICAC), Huddersfield, UK, 7–8 September 2017; pp. 1–6. [Google Scholar]
- Azuma, D.L.; Gray, A. Effects of Changing Forest Land Definitions on Forest Inventory on the West Coast, USA. Environ. Monit. Assess. 2014, 186, 1001–1007. [Google Scholar] [CrossRef]
- Ministry of Environment. Forest Cover Mapping Report; Ministry of Environment: Kigali, Rwanda, 2019.
- Rwanda Natural Resources Authority. Detailed Results—National Forest Inventory; Rwanda Natural Resources Authority: Kigali, Rwanda, 2016. [Google Scholar]
- Somers, B.; Delalieux, S.; Stuckens, J.; Verstraeten, W.W.; Coppin, P. A Weighted Linear Spectral Mixture Analysis Approach to Address Endmember Variability in Agricultural Production Systems. Int. J. Remote Sens. 2009, 30, 139–147. [Google Scholar] [CrossRef]
- Canty, M.J. Image Analysis, Classification, and Change Detection in Remote Sensing with Algorithms for Python, 4th ed.; CDC Press: Boca Raton, FL, USA, 2019; ISBN 978-85-7811-079-6. [Google Scholar]
- Li, H. Smile Random Forests (Java Code). 2023. Available online: https://github.com/haifengl/smile/blob/master/core/src/main/java/smile/classification/RandomForest.java (accessed on 25 January 2023).
- Nembrini, S.; König, I.R.; Wright, M.N. The Revival of the Gini Importance? Bioinformatics 2018, 34, 3711–3718. [Google Scholar] [CrossRef] [PubMed]
- Liaw, A.; Wiener, M. Classification and Regression by RandomForest. R News 2002, 2, 18–22. [Google Scholar]
- Marín Del Valle, T.; Jiang, P. Comparison of Common Classification Strategies for Large-Scale Vegetation Mapping over the Google Earth Engine Platform. Int. J. Appl. Earth Obs. Geoinf. 2022, 115, 103092. [Google Scholar] [CrossRef]
- Spracklen, B.D.; Spracklen, D.V. Identifying European Old-Growth Forests Using Remote Sensing: A Study in the Ukrainian Carpathians. Forests 2019, 10, 127. [Google Scholar] [CrossRef]
- Duro, D.C.; Franklin, S.E.; Dubé, M.G. Multi-Scale Object-Based Image Analysis and Feature Selection of Multi-Sensor Earth Observation Imagery Using Random Forests. Int. J. Remote Sens. 2012, 33, 4502–4526. [Google Scholar] [CrossRef]
- Zhang, F.; Yang, X. Improving Land Cover Classification in an Urbanized Coastal Area by Random Forests: The Role of Variable Selection. Remote Sens. Environ. 2020, 251, 112105. [Google Scholar] [CrossRef]
- Deng, X.; Guo, S.; Sun, L.; Chen, J. Identification of Short-Rotation Eucalyptus Plantation at Large Scale Using Multi-Satellite Imageries and Cloud Computing Platform. Remote Sens. 2020, 12, 2153. [Google Scholar] [CrossRef]
- Liu, Y.; Gong, W.; Hu, X.; Gong, J. Forest Type Identification with Random Forest Using Sentinel-1A, Sentinel-2A, Multi-Temporal Landsat-8 and DEM Data. Remote Sens. 2018, 10, 946. [Google Scholar] [CrossRef]
- Hurskainen, P.; Adhikari, H.; Siljander, M.; Pellikka, P.K.E.; Hemp, A. Auxiliary Datasets Improve Accuracy of Object-Based Land Use/Land Cover Classification in Heterogeneous Savanna Landscapes. Remote Sens. Environ. 2019, 233, 111354. [Google Scholar] [CrossRef]
- Ndayambaje, J.D.; Heijman, W.J.M.; Mohren, G.M.J. Household Determinants of Tree Planting on Farms in Rural Rwanda. Small-Scale For. 2012, 11, 477–508. [Google Scholar] [CrossRef]
- Mananze, S.; Pôças, I.; Cunha, M. Mapping and Assessing the Dynamics of Shifting Agricultural Landscapes Using Google Earth Engine Cloud Computing, a Case Study in Mozambique. Remote Sens. 2020, 12, 1279. [Google Scholar] [CrossRef]
- Shafizadeh-Moghadam, H.; Khazaei, M.; Alavipanah, S.K.; Weng, Q. Google Earth Engine for Large-Scale Land Use and Land Cover Mapping: An Object-Based Classification Approach Using Spectral, Textural and Topographical Factors. GISci. Remote Sens. 2021, 58, 914–928. [Google Scholar] [CrossRef]
- Hall-Beyer, M. Practical Guidelines for Choosing GLCM Textures to Use in Landscape Classification Tasks over a Range of Moderate Spatial Scales. Int. J. Remote Sens. 2017, 38, 1312–1338. [Google Scholar] [CrossRef]
- Wronski, T.; Bariyanga, J.D.; Sun, P.; Plath, M.; Apio, A. Pastoralism versus Agriculturalism—How Do Altered Land-Use Forms Affect the Spread of Invasive Plants in the Degraded Mutara Rangelands of North-Eastern Rwanda? Plants 2017, 6, 19. [Google Scholar] [CrossRef]
- Zanaga, D.; Van De Kerchove, R.; De Keersmaecker, W.; Souverijns, N.; Brockmann, C.; Quast, R.; Wevers, J.; Grosu, A.; Paccini, A.; Vergnaud, S.; et al. ESA WorldCover 10 m 2020 V100. Zenodo 2021. [Google Scholar] [CrossRef]
- Xu, F.; Somers, B. Unmixing-Based Sentinel-2 Downscaling for Urban Land Cover Mapping. ISPRS J. Photogramm. Remote Sens. 2021, 171, 133–154. [Google Scholar] [CrossRef]
- Cota, G.; Sagan, V.; Maimaitijiang, M.; Freeman, K. Forest Conservation with Deep Learning: A Deeper Understanding of Human Geography around the Betampona Nature Reserve, Madagascar. Remote Sens. 2021, 13, 3495. [Google Scholar] [CrossRef]
- Donkor, E.; Jnr, E.M.O.; Adu-Bredu, S.; Andam-Akorful, S.A.; Kwarteng, E.V.S.; Yevugah, L.L. Application of Parametric and Non Parametric Classifiers for Assessing Land Use/Land Cover Categories in Cocoa Landscape of Juaboso and Bia West Districts of Ghana. J. Geosci. Environ. Prot. 2022, 10, 265–281. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, W.; Li, F.; Shao, Z.; Fu, X. Vegetation Type Classification Based on 3D Convolutional Neural Network Model: A Case Study of Baishuijiang National Nature Reserve. Forests 2022, 13, 906. [Google Scholar] [CrossRef]
Sensing Date (Dry Season) | Sensing Date (Rainy Season) | ||||||
---|---|---|---|---|---|---|---|
01/06 α,γ,δ 08/06 α,γ,δ 11/06 α,β,γ,δ 13/06 δ 21/06 γ 23/06 α,γ 26/06 α,β,γ,δ | 28/06 α,γ,δ 01/07 α,β,γ,δ 03/07 γ,δ 06/07 α,β,γ,δ 08/07 γ,δ 11/07 γ 23/07 α,γ,δ | 26/07 α,β,γ,δ 31/07 α,β 02/08 α,γ,δ 07/08 α,γ,δ 15/08 γ 17/08 δ | 25/08 α,β,γ,δ 27/08 α,γ,δ 01/09 γ,δ 11/09 γ 14/09 γ,δ 21/09 α,γ,δ | 03/02 α,γ,δ 06/02 α,γ 21/02 α 26/02 β,δ 28/02 α,γ,δ 10/03 α,γ,δ | 20/03 α,γ 25/03 α 28/03 α,γ,δ 02/04 δ 04/04 δ 14/04 δ | 17/04 α,β,γ 19/04 α 27/04 α,β,γ,δ 04/05 γ 14/05 α | 22/05 α,β,γ 24/05 α,γ,δ 27/05 α,β,γ,δ 29/05 α,γ,δ |
Index | Equation | Citation |
---|---|---|
Enhanced Vegetation Index | [51] | |
Normalized Difference Vegetation Index (Band 8) | [26] | |
Normalized Difference Vegetation Index (Band 8A) | [52] | |
Normalized Difference Vegetation Index (Red Edge) | [26] | |
Normalized Difference Water Index | [31] | |
Red–Green Chlorophyll Index | [32] | |
Soil Adjusted Vegetation Index | [31] | |
NDVI texture | Standard deviation of NDVI (5 × 5 pixel moving window) | [27] |
GLCM texture metrics (5 × 5 pixel moving window per band) | Dissimilarity, contrast, variance, sum average, difference variance, inertia, correlation | [32,49,50] |
numberOfTrees | 100 | 500 | 1000 | |||||||
---|---|---|---|---|---|---|---|---|---|---|
bagFraction | 0.25 | 0.873 | 0.858 | 0.852 | 0.875 | 0.864 | 0.858 | 0.874 | 0.865 | 0.858 |
0.5 | 0.868 | 0.867 | 0.867 | 0.873 | 0.870 | 0.864 | 0.872 | 0.871 | 0.865 | |
1 | 0.866 | 0.866 | 0.867 | 0.870 | 0.870 | 0.869 | 0.870 | 0.873 | 0.870 | |
minLeafPopulation | 1 | 25 | 50 | 1 | 25 | 50 | 1 | 25 | 50 |
Input Layers | F1 Scores | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Model Name | Spectral Bands (Dry) | Spectral Bands (Rainy) | Vegetation Indices | PCA | Population | Slope | DEM | GLCM Metrics | AF | F | SH |
M1 | ✔ | 0.549 | 0.814 | 0.600 | |||||||
M2 | ✔ | 0.422 | 0.642 | 0.482 | |||||||
M3 | ✔ | ✔ | 0.548 | 0.790 | 0.572 | ||||||
M4 | ✔ | ✔ | ✔ | 0.586 | 0.798 | 0.644 | |||||
M5 | ✔ | ✔ | ✔ | ✔ | 0.636 | 0.864 | 0.678 | ||||
M6 | ✔ | ✔ | ✔ | ✔ | ✔ | 0.656 | 0.874 | 0.707 | |||
M7 | ✔ | ✔ | ✔ | ✔ | ✔ | 0.646 | 0.896 | 0.698 | |||
M8 | ✔ | ✔ | ✔ | ✔ | ✔ | 0.645 | 0.883 | 0.718 | |||
M9 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | 0.674 | 0.904 | 0.753 | |
M10 | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | ✔ | 0.711 | 0.872 | 0.782 |
Predicted Land Cover | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Crop | Agroforestry | Forest | Shrubland | Grassland | Urban | Wetland | Water | Total | PA | ||
Actual Land Cover | Cropland | 2880 | 791 | 3 | 266 | 95 | 0 | 0 | 0 | 4035 | 71.4 |
Agroforestry | 192 | 3141 | 489 | 253 | 3 | 22 | 0 | 0 | 4100 | 76.6 | |
Forest | 2 | 218 | 3676 | 121 | 16 | 0 | 0 | 0 | 4033 | 91.1 | |
Shrubland | 200 | 405 | 139 | 3086 | 180 | 0 | 7 | 0 | 4017 | 76.8 | |
Grassland | 68 | 55 | 0 | 75 | 4135 | 0 | 0 | 0 | 4333 | 95.4 | |
Urban | 0 | 19 | 0 | 0 | 0 | 4010 | 0 | 0 | 4029 | 99.5 | |
Wetland | 0 | 0 | 0 | 0 | 0 | 0 | 4156 | 0 | 4156 | 100 | |
Water | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 4075 | 4075 | 100 | |
Total | 3342 | 4629 | 4307 | 3801 | 4429 | 4032 | 4163 | 4075 | |||
UA | 94.0 | 67.9 | 85.3 | 81.2 | 93.4 | 99.5 | 99.8 | 100 |
Model Name | Agroforestry | Forest | Shrubland |
---|---|---|---|
M10 | 397,092 (38.7%) | 119,917 (11.7%) | 167,868 (16.3%) |
M10-84 | 374,593 (36.5%) | 139,658 (13.6%) | 185,664 (18.1%) |
M10-44 | 362,740 (35.3%) | 139,725 (13.6%) | 197,211 (19.2%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gutkin, N.; Uwizeyimana, V.; Somers, B.; Muys, B.; Verbist, B. Supervised Classification of Tree Cover Classes in the Complex Mosaic Landscape of Eastern Rwanda. Remote Sens. 2023, 15, 2606. https://doi.org/10.3390/rs15102606
Gutkin N, Uwizeyimana V, Somers B, Muys B, Verbist B. Supervised Classification of Tree Cover Classes in the Complex Mosaic Landscape of Eastern Rwanda. Remote Sensing. 2023; 15(10):2606. https://doi.org/10.3390/rs15102606
Chicago/Turabian StyleGutkin, Nick, Valens Uwizeyimana, Ben Somers, Bart Muys, and Bruno Verbist. 2023. "Supervised Classification of Tree Cover Classes in the Complex Mosaic Landscape of Eastern Rwanda" Remote Sensing 15, no. 10: 2606. https://doi.org/10.3390/rs15102606
APA StyleGutkin, N., Uwizeyimana, V., Somers, B., Muys, B., & Verbist, B. (2023). Supervised Classification of Tree Cover Classes in the Complex Mosaic Landscape of Eastern Rwanda. Remote Sensing, 15(10), 2606. https://doi.org/10.3390/rs15102606