GBB-Nadir and KLIMA: Two Full Physics Codes for the Computation of the Infrared Spectrum of the Planetary Radiation Escaping to Space
Abstract
:1. Introduction
2. The GBB-Nadir Code
2.1. The Main Body of the GBB-Nadir Code
2.1.1. Absorption Cross-Section Calculation
2.1.2. Calculation of the Optical Depth of Each Atmospheric Layer
2.2. Scattering Properties
2.3. Radiative Transfer Solver
- and are the Planck functions at temperature at the surface and at the layer at altitude z representing the thermal emission of the surface and source function of the atmospheric layer;
- is the surface emissivity;
- is the optical depth of the layer at altitude z;
- is the transmittance of the atmosphere from z up to the top of the atmosphere ();
- is the total transmittance of the atmospheric column along the vertical direction;
- is the so-called airmass factor, with as the angle between the viewing geometry and the vertical direction;
- is the atmospheric thermal radiation emitted downwards that reaches the surface in the point intercepted by the line of sight (LOS), reflected back towards the observer and attenuated by the atmosphere along the optical path.
3. The KLIMA Code
- The radiative transfer calculation is performed as described in Section 2.3. Both the reflection of the atmospheric radiation emitted downward and the surface thermal emission are modelled as in GBB-Nadir;
- The atmosphere is represented by homogeneous layers and the status of each layer is evaluated using the Curtis–Godson approximation [30,31], as described in Section 2.1;
- Atmospheric gas absorption cross-sections are calculated using the line shape modelled with the Voigt profile [34] (see Equation (1)). The Voigt function is switched to the Lorentz function when the frequency distance from the line centre is larger than 30 times the Doppler half-width, guaranteeing an accuracy better than 0.05% on the radiance. The line shape function is calculated up to ±25 cm from the line centre. In this case GBB-Nadir uses a different approach.
- As for GBB-Nadir, the atmospheric continuum model included in KLIMA is the routine MT_CKD_3.5, or earlier versions if needed, which considers the contribution of lines external to the region of ±25 cm from the line centre. The gases used to simulate the continuum are N, O, O, HO, and CO;
- As for GBB-Nadir, the spectroscopic databases adopted for the simulations are the AER version aer_v_3.8.1 (http://rtweb.aer.com/line_param_frame.html, accessed on 23 March 2023) and HITRAN 2020 [49], or earlier if needed;
- As for GBB-Nadir, a dedicated spectroscopic database and line shape have been adopted for CO, to take into account the line mixing effect both when using the AER (http://rtweb.aer.com/line_param_frame.html, accessed on 23 March 2023) and HITRAN databases [35,50].
- A scattering model is not implemented in KLIMA, while GBB-Nadir can simulate the multiple scattering effect.
Validation of the Radiance Calculated with the KLIMA Code
4. Comparisons between GBB-Nadir and KLIMA
4.1. Comparison of the Optical Depths
4.2. Validation of the Spectra
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Clough, S.A.; Iacono, M.J. Line-by-line calculation of atmospheric fluxes and cooling rates: 2. Application to carbon dioxide, ozone, methane, nitrous oxide and the halocarbons. J. Geophys. Res. Atmos. 1995, 100, 16519–16535. [Google Scholar] [CrossRef]
- Turner, D.; Mlawer, E. The Radiative Heating in Underexplored Bands Campaigns. Bull. Am. Meteorol. Soc. 2010, 91, 911–923. [Google Scholar] [CrossRef]
- Harries, J.; Carli, B.; Rizzi, R.; Serio, C.; Mlynczak, M.; Palchetti, L.; Maestri, T.; Brindley, H.; Masiello, G. The Far-infrared Earth. Rev. Geophys. 2008, 46. [Google Scholar] [CrossRef]
- Loeb, N.G.; Mayer, M.; Kato, S.; Fasullo, J.T.; Zuo, H.; Senan, R.; Lyman, J.M.; Johnson, G.C.; Balmaseda, M. Evaluating CERES: Twenty-Year Trends in Earth’s Energy Flows From Observations and Reanalyses. J. Geophys. Res. Atmos. 2022, 127, e2022JD036686. [Google Scholar] [CrossRef]
- Maestri, T.; Arosio, C.; Rizzi, R.; Palchetti, L.; Bianchini, G.; Del Guasta, M. Antarctic Ice Cloud Identification and Properties Using Downwelling Spectral Radiance from 100 to 1400 cm-1. J. Geophys. Res. Atmos. 2019, 124, 4761–4781. [Google Scholar] [CrossRef]
- Cox, C.V.; Harries, J.E.; Taylor, J.P.; Green, P.D.; Baran, A.J.; Pickering, J.C.; Last, A.E.; Murray, J. Measurement and simulation of mid- and far-infrared spectra in the presence of cirrus. Q. J. R. Meteorol. Soc. 2010, 136, 718–739. [Google Scholar] [CrossRef]
- Lubin, D.; Chen, B.; Bromwich, D.; Somerville, R.; Lee, W.H.; Hines, K. The Impact of Antarctic Cloud Radiative Properties on a GCM Climate Simulation. J. Clim. 1998, 11, 447–462. [Google Scholar] [CrossRef]
- Baran, A.J. A review of the light scattering properties of cirrus. J. Quant. Spectrosc. Radiat. Transf. 2009, 110, 1239–1260. [Google Scholar] [CrossRef]
- Huang, X.; Yang, W.; Loeb, N.G.; Ramaswamy, V. Spectrally resolved fluxes derived from collocated AIRS and CERES measurements and their application in model evaluation: Clear sky over the tropical oceans. J. Geophys. Res. Atmos. 2008, 113. [Google Scholar] [CrossRef]
- Turner, E.C.; Lee, H.T.; Tett, S.F.B. Using IASI to simulate the total spectrum of outgoing long-wave radiances. Atmos. Chem. Phys. 2015, 15, 6561–6575. [Google Scholar] [CrossRef]
- Formisano, V.; Angrilli, F.; Arnold, G.; Atreya, S.; Bianchini, G.; Biondi, D.; Blanco, A.; Blecka, M.; Coradini, A.; Colangeli, L.; et al. The Planetary Fourier Spectrometer (PFS) onboard the European Mars Express mission. Planet. Space Sci. 2005, 53, 963–974. [Google Scholar] [CrossRef]
- Jennings, D.E.; Flasar, F.M.; Kunde, V.G.; Nixon, C.A.; Segura, M.E.; Romani, P.N.; Gorius, N.; Albright, S.; Brasunas, J.C.; Carlson, R.C.; et al. Composite infrared spectrometer (CIRS) on Cassini. Appl. Opt. 2017, 56, 5274–5294. [Google Scholar] [CrossRef] [PubMed]
- Palchetti, L.; Brindley, H.; Bantges, R.; Buehler, S.A.; Camy-Peyret, C.; Carli, B.; Cortesi, U.; Bianco, S.D.; Natale, G.D.; Dinelli, B.M.; et al. FORUM: Unique Far-Infrared Satellite Observations to Better Understand How Earth Radiates Energy to Space. Bull. Am. Meteorol. Soc. 2020, 101, E2030–E2046. [Google Scholar] [CrossRef]
- Dong, Y.; Proistosescu, C.; Armour, K.; Battisti, D. Attributing Historical and Future Evolution of Radiative Feedbacks to Regional Warming Patterns using a Green’s Function Approach: The Preeminence of the Western Pacific. J. Clim. 2019, 32, 5471–5491. [Google Scholar] [CrossRef]
- Clough, S.; Shephard, M.; Mlawer, E.; Delamere, J.; Iacono, M.; Cady-Pereira, K.; Boukabara, S.; Brown, P. Atmospheric radiative transfer modeling: A summary of the AER codes. J. Quant. Spectrosc. Radiat. Transf. 2005, 91, 233–244. [Google Scholar] [CrossRef]
- Coustenis, A.; Achterberg, R.K.; Conrath, B.J.; Jennings, D.E.; Marten, A.; Gautier, D.; Nixon, C.A.; Flasar, F.M.; Teanby, N.A.; Bézard, B.; et al. The composition of Titan’s stratosphere from Cassini/CIRS mid-infrared spectra. Icarus 2007, 189, 35–62. [Google Scholar] [CrossRef]
- Bampasidis, G.; Coustenis, A.; Achterberg, R.K.; Vinatier, S.; Lavvas, P.; Nixon, C.A.; Jennings, D.E.; Teanby, N.A.; Flasar, F.M.; Carlson, R.C.; et al. Thermal and Chemical Structure Variations in Titan’s Stratosphere during the Cassini Mission. Astrophys. J. 2012, 760, 144. [Google Scholar] [CrossRef]
- Liuzzi, G.; Masiello, G.; Serio, C.; Venafra, S.; Camy-Peyret, C. Physical inversion of the full IASI spectra: Assessment of atmospheric parameters retrievals, consistency of spectroscopy and forward modelling. J. Quant. Spectrosc. Radiat. Transf. 2016, 182, 128–157. [Google Scholar] [CrossRef]
- Saunders, R.; Hocking, J.; Turner, E.; Rayer, P.; Rundle, D.; Brunel, P.; Vidot, J.; Roquet, P.; Matricardi, M.; Geer, A.; et al. An update on the RTTOV fast radiative transfer model (currently at version 12). Geosci. Model Dev. 2018, 11, 2717–2737. [Google Scholar] [CrossRef]
- Ignatiev, N.; Grassi, D.; Zasova, L. Planetary Fourier spectrometer data analysis: Fast radiative transfer models. Planet. Space Sci. 2005, 53, 1035–1042. [Google Scholar] [CrossRef]
- Casadio, S.; Castelli, E.; Papandrea, E.; Dinelli, B.; Pisacane, G.; Burini, A.; Bojkov, B. Total column water vapour from along track scanning radiometer series using thermal infrared dual view ocean cloud free measurements: The Advanced Infra-Red Water Vapour Estimator (AIRWAVE) algorithm. Remote Sens. Environ. 2016, 172, 1–14. [Google Scholar] [CrossRef]
- Castelli, E.; Papandrea, E.; Roma, A.D.; Dinelli, B.; Casadio, S.; Bojkov, B. The Advanced Infra-Red WAter Vapour Estimator (AIRWAVE) version 2: Algorithm evolution, dataset description and performance improvements. Atmos. Meas. Tech. 2019, 12, 371–388. [Google Scholar] [CrossRef]
- Del Bianco, S.; Carli, B.; Gai, M.; Laurenza, L.M.; Cortesi, U. XCO2 retrieved from IASI using KLIMA algorithm. Ann. Geophys. 2013, 56. [Google Scholar] [CrossRef]
- Carlotti, M.; Dinelli, B.M.; Raspollini, P.; Ridolfi, M. Geo-fit approach to the analysis of limb-scanning satellite measurements. Appl. Opt. 2001, 40, 1872–1885. [Google Scholar] [CrossRef] [PubMed]
- Ridolfi, M.; Carli, B.; Carlotti, M.; Clarmann, T.V.; Dinelli, B.M.; Dudhia, A.; Flaud, J.; Höpfner, M.; Morris, P.; Raspollini, P.; et al. Optimized forward model and retrieval scheme for MIPAS near-real-time data processing. Appl. Opt. 2000, 39, 1323–1340. [Google Scholar] [CrossRef]
- Stamnes, K.; Tsay, S.; Wiscombe, W.; Jayaweera, K. Numerically stable algorithm for Discrete-Ordinate-Method radiative transfer in multiple scattering and emitting layered media. Appl. Opt. 1988, 27, 2502–2509. [Google Scholar] [CrossRef]
- Spurr, R. LIDORT and VLIDORT: Linearized pseudo-spherical scalar and vector discrete ordinate radiative transfer models for use in remote sensing retrieval problems. In Light Scattering Reviews 3: Light Scattering and Reflection; Springer: Berlin/Heidelberg, Germany, 2008; pp. 229–275. [Google Scholar]
- Rothman, L. History of the HITRAN Database. Nat. Rev. Phys. 2021, 3, 302–304. [Google Scholar] [CrossRef]
- Mishchenko, M.I.; Travis, L.D.; Lacis, A.A. Scattering, Absorption, and Emission of Light by Small Particles; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Curtis, A. A statistical model for water-vapour absorption. Q. J. R. Meteorol. Soc. 1952, 78, 638–640. [Google Scholar] [CrossRef]
- Godson, W. The evaluation of infra-red radiative fluxes due to atmospheric water vapour. Q. J. R. Meteorol. Soc. 1953, 79, 367–379. [Google Scholar] [CrossRef]
- Gordon, I.; Rothman, L.; Hill, C.; Kochanov, R.; Tan, Y.; Bernath, P.; Birk, M.; Boudon, V.; Campargue, A.; Chance, K.; et al. The HITRAN2016 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 3–69. [Google Scholar] [CrossRef]
- Gamache, R.; Roller, C.; Lopes, E.; Gordon, I.; Rothman, L.; Polyansky, O.; Zobov, N.; Kyuberis, A.; Tennyson, J.; Yurchenko, S.; et al. Total internal partition sums for 166 isotopologues of 51 molecules important in planetary atmospheres: Application to HITRAN2016 and beyond. J. Quant. Spectrosc. Radiat. Transf. 2017, 203, 70–87. [Google Scholar] [CrossRef]
- Humlícek, J. Optimized Computation of the Voigt and Complex Probability Functions. J. Quant. Spectrosc. Radiat. Transf. 1982, 27, 437–444. [Google Scholar] [CrossRef]
- Lamouroux, J.; Regalia, L.; Thomas, X.; Auwera, J.V.; Gamache, R.; Hartmann, J.M. CO2 line-mixing database and software update and its tests in the 2.1 μm and 4.3 μm regions. J. Quant. Spectrosc. Radiat. Transf. 2015, 151, 88–96. [Google Scholar] [CrossRef]
- Clough, S.A.; Iacono, M.J.; Moncet, J.L. Line-by-line calculations of atmospheric fluxes and cooling rates: Application to water vapor. J. Geophys. Res. Atmos. 1992, 97, 15761–15785. [Google Scholar] [CrossRef]
- Carli, B.; Bazzini, G.; Castelli, E.; Cecchi-Pestellini, C.; Del Bianco, S.; Dinelli, B.; Gai, M.; Magnani, L.; Ridolfi, M.; Santurri, L. MARC: A code for the retrieval of atmospheric parameters from millimeter-wave limb measurements. J. Quant. Spectrosc. Radiat. Transf. 2007, 105, 476–491. [Google Scholar] [CrossRef]
- Del Bianco, S.; Carli, B.; Cecchi-Pestellini, C.; Dinelli, B.M.; Gai, M.; Santurri, L. Retrieval of minor constituents in a cloudy atmosphere with remote-sensing millimetre-wave measurements. Q. J. R. Meteorol. Soc. 2007, 133, 163–170. [Google Scholar] [CrossRef]
- Dinelli, B.M.; Castelli, E.; Carli, B.; Del Bianco, S.; Gai, M.; Santurri, L.; Moyna, B.P.; Oldfield, M.; Siddans, R.; Gerber, D.; et al. Technical Note: Measurement of the tropical UTLS composition in presence of clouds using millimetre-wave heterodyne spectroscopy. Atmos. Chem. Phys. 2009, 9, 1191–1207. [Google Scholar] [CrossRef]
- Belotti, C.; Barbara, F.; Barucci, M.; Bianchini, G.; D’Amato, F.; Del Bianco, S.; Di Natale, G.; Gai, M.; Montori, A.; Pratesi, F.; et al. The Far-Infrared Radiation Mobile Observation System for spectral characterisation of the atmospheric emission. EGUsphere 2022, 2022, 1–34. [Google Scholar] [CrossRef]
- Bianchini, G.; Carli, B.; Cortesi, U.; Del Bianco, S.; Gai, M.; Palchetti, L. Test of far-infrared atmospheric spectroscopy using wide-band balloon-borne measurements of the upwelling radiance. J. Quant. Spectrosc. Radiat. Transf. 2008, 109, 1030–1042. [Google Scholar] [CrossRef]
- Ceccherini, S.; Cortesi, U.; Del Bianco, S.; Raspollini, P.; Carli, B. IASI-METOP and MIPAS-ENVISAT data fusion. Atmos. Chem. Phys. 2010, 10, 4689–4698. [Google Scholar] [CrossRef]
- Tirelli, C.; Ceccherini, S.; Zoppetti, N.; Del Bianco, S.; Cortesi, U. Generalization of the complete data fusion to multi-target retrieval of atmospheric parameters and application to FORUM and IASI-NG simulated measurements. J. Quant. Spectrosc. Radiat. Transf. 2021, 276, 107925. [Google Scholar] [CrossRef]
- Sgheri, L.; Belotti, C.; Ben-Yami, M.; Bianchini, G.; Carnicero Dominguez, B.; Cortesi, U.; Cossich, W.; Del Bianco, S.; Di Natale, G.; Guardabrazo, T.; et al. The FORUM end-to-end simulator project: Architecture and results. Atmos. Meas. Tech. 2022, 15, 573–604. [Google Scholar] [CrossRef]
- Mazzoni, M.; Falorni, P.; Del Bianco, S. Sun-induced leaf fluorescence retrieval in the O2-B atmospheric absorption band. Opt. Express 2008, 16, 7014–7022. [Google Scholar] [CrossRef] [PubMed]
- Caligiuri, C.; Barbara, F.; Barucci, M.; Belotti, C.; Bianchini, G.; Cortesi, U.; D’Amato, F.; Della Fera, S.; Del Bianco, S.; Dinelli, B.M.; et al. Poster: Feasibility Study of HDO Retrieval from FORUM-EE9 Measurements. In Proceedings of the Living Planet Symposium 2022, Bonn, Germany, 23–27 May 2022. [Google Scholar]
- Laurenza, L.M.; Bianco, S.D.; Gai, M.; Barbara, F.; Schiavon, G.; Cortesi, U. Comparison of Column-Averaged Volume Mixing Ratios of Carbon Dioxide Retrieved From IASI/METOP-A Using KLIMA Algorithm and TANSO-FTS/GOSAT Level 2 Products. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 389–398. [Google Scholar] [CrossRef]
- Palchetti, L.; Bianchini, G.; Carli, B.; Cortesi, U.; Del Bianco, S. Measurement of the water vapour vertical profile and of the Earth’s outgoing far infrared flux. Atmos. Chem. Phys. 2008, 8, 2885–2894. [Google Scholar] [CrossRef]
- Gordon, I.; Rothman, L.; Hargreaves, R.; Hashemi, R.; Karlovets, E.; Skinner, F.; Conway, E.; Hill, C.; Kochanov, R.; Tan, Y.; et al. The HITRAN2020 molecular spectroscopic database. J. Quant. Spectrosc. Radiat. Transf. 2022, 277, 107949. [Google Scholar] [CrossRef]
- Lamouroux, J.; Tran, H.; Laraia, A.; Gamache, R.; Rothman, L.; Gordon, I.; Hartmann, J.M. Updated database plus software for line-mixing in CO2 infrared spectra and their test using laboratory spectra in the 1.5–2.3 μm region. J. Quant. Spectrosc. Radiat. Transf. 2010, 111, 2321–2331. [Google Scholar] [CrossRef]
- Rodgers, C.D. Inverse Methods for Atmospheric Sounding; World Scientific: Singapore, 2000. [Google Scholar] [CrossRef]
- Anderson, G.P.; Clough, S.A.; Kneizys, F.X.; Chetwynd, J.H.; Shettle, E.P. AFGL Atmospheric Constituent Profiles (0–120 km). 1986. Available online: https://apps.dtic.mil/sti/pdfs/ADA175173.pdf (accessed on 23 March 2023).
- Adriani, A.; Dinelli, B.M.; López-Puertas, M.; García-Comas, M.; Moriconi, M.; D’Aversa, E.; Funke, B.; Coradini, A. Distribution of HCN in Titan’s upper atmosphere from Cassini/VIMS observations at 3 μm. ICARUS 2011, 214, 584–595. [Google Scholar] [CrossRef]
- García-Comas, M.; López-Puertas, M.; Funke, B.; Dinelli, B.M.; Moriconi, M.L.; Adriani, A.; Molina, A.; Coradini, A. Analysis of Titan CH4 3.3 μm upper atmospheric emission as measured by Cassini/VIMS. ICARUS 2011, 214, 571–583. [Google Scholar] [CrossRef]
- Dinelli, B.M.; Adriani, A.; Mura, A.; Altieri, F.; Migliorini, A.; Moriconi, M.L. JUNO/JIRAM’s view of Jupiter’s H3+ emissions. Philos. Trans. R. Soc. A 2019, 377, 20180406. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dinelli, B.M.; Del Bianco, S.; Castelli, E.; Di Roma, A.; Lorenzi, G.; Premuda, M.; Barbara, F.; Gai, M.; Raspollini, P.; Di Natale, G. GBB-Nadir and KLIMA: Two Full Physics Codes for the Computation of the Infrared Spectrum of the Planetary Radiation Escaping to Space. Remote Sens. 2023, 15, 2532. https://doi.org/10.3390/rs15102532
Dinelli BM, Del Bianco S, Castelli E, Di Roma A, Lorenzi G, Premuda M, Barbara F, Gai M, Raspollini P, Di Natale G. GBB-Nadir and KLIMA: Two Full Physics Codes for the Computation of the Infrared Spectrum of the Planetary Radiation Escaping to Space. Remote Sensing. 2023; 15(10):2532. https://doi.org/10.3390/rs15102532
Chicago/Turabian StyleDinelli, Bianca Maria, Samuele Del Bianco, Elisa Castelli, Alessio Di Roma, Giacomo Lorenzi, Margherita Premuda, Flavio Barbara, Marco Gai, Piera Raspollini, and Gianluca Di Natale. 2023. "GBB-Nadir and KLIMA: Two Full Physics Codes for the Computation of the Infrared Spectrum of the Planetary Radiation Escaping to Space" Remote Sensing 15, no. 10: 2532. https://doi.org/10.3390/rs15102532
APA StyleDinelli, B. M., Del Bianco, S., Castelli, E., Di Roma, A., Lorenzi, G., Premuda, M., Barbara, F., Gai, M., Raspollini, P., & Di Natale, G. (2023). GBB-Nadir and KLIMA: Two Full Physics Codes for the Computation of the Infrared Spectrum of the Planetary Radiation Escaping to Space. Remote Sensing, 15(10), 2532. https://doi.org/10.3390/rs15102532