Consistency of Vertical Reflectivity Profiles and Echo-Top Heights between Spaceborne Radars Onboard TRMM and GPM
Abstract
:1. Introduction
2. Data and Methods
2.1. Datasets
2.2. Methodology
3. Results
3.1. Coincident Precipitation Events Comparison
3.2. Overlapping Period Comparison
3.3. Extended Long-Term Climatological Comparison
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jian, H.-W.; Chen, W.-T.; Chen, P.-J.; Wu, C.-M.; Rasmussen, K.L. The Synoptically-Influenced Extreme Precipitation Systems over Asian-Australian Monsoon Region Observed by TRMM Precipitation Radar. J. Meteorol. Soc. Jpn. Ser. II 2021, 99, 269–285. [Google Scholar] [CrossRef]
- Zhou, Z.; Zhang, Q.; Allen, J.T.; Ni, X.; Ng, C.P. How Many Types of Severe Hailstorm Environments Are There Globally? Geophys. Res. Lett. 2021, 48, e2021GL095485. [Google Scholar] [CrossRef]
- Peterson, M.J.; Lang, T.J.; Logan, T.; Kiong, C.W.; Gijben, M.; Holle, R.; Kolmasova, I.; Marisaldi, M.; Montanya, J.; Pawar, S.D.; et al. New WMO Certified Megaflash Lightning Extremes for Flash Distance (768 km) and Duration (17.01 seconds) Recorded from Space. Bull. Am. Meteorol. Soc. 2022. [Google Scholar] [CrossRef]
- Mouri, G.; Shiiba, M.; Hori, T.; Oki, T. Modeling shallow landslides and river bed variation associated with extreme rainfall-runoff events in a granitoid mountainous forested catchment in Japan. Geomorphology 2011, 125, 282–292. [Google Scholar] [CrossRef]
- Wu, C.; Huang, G. Changes in heavy precipitation and floods in the upstream of the Beijiang River basin, South China. Int. J. Clim. 2015, 35, 2978–2992. [Google Scholar] [CrossRef]
- Houze, R.A., Jr.; Rasmussen, K.L.; Zuluaga, M.D.; Brodzik, S.R. The variable nature of convection in the tropics and subtropics: A legacy of 16 years of the Tropical Rainfall Measuring Mission satellite. Rev. Geophys. 2015, 53, 994–1021. [Google Scholar] [CrossRef]
- Tao, W.-K.; Simpson, J.; Lang, S.; McCumber, M.; Adler, R.; Penc, R. An algorithm to estimate the heating budget from vertical hydrometeor profiles. J. Appl. Meteorol. 1990, 29, 1232–1244. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zipser, E.J. Global distribution of convection penetrating the tropical tropopause. J. Geophys. Res. 2005, 110, D23104. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.; Liu, C.; Hayden, L. Climatology and Detection of Overshooting Convection From 4 Years of GPM Precipitation Radar and Passive Microwave Observations. J. Geophys. Res. 2020, 125, e2019JD032003. [Google Scholar] [CrossRef]
- Fromm, M.D.; Servranckx, R. Transport of forest fire smoke above the tropopause by supercell convection. Geophys. Res. Lett. 2003, 30, 1542. [Google Scholar] [CrossRef] [Green Version]
- Groenemeijer, P.; Púčik, T.; Holzer, A.M.; Antonescu, B.; Riemann-Campe, K.; Schultz, D.M.; Kühne, T.; Feuerstein, B.; Brooks, H.E.; Doswell, C.A.; et al. Severe Convective Storms in Europe: Ten Years of Research and Education at the European Severe Storms Laboratory. Bull. Am. Meteorol. Soc. 2017, 98, 2641–2651. [Google Scholar] [CrossRef]
- Houze, R.A.; Wang, J.; Fan, J.; Brodzik, S.; Feng, Z. Extreme Convective Storms Over High-Latitude Continental Areas Where Maximum Warming Is Occurring. Geophys. Res. Lett. 2019, 46, 4059–4065. [Google Scholar] [CrossRef] [Green Version]
- Wuebbles, D.J.; Fahey, D.W.; Hibbard, K.A.; DeAngelo, B.; Doherty, S.; Hayhoe, K.; Horton, R.; Kossin, J.P.; Taylor, P.C.; Waple, A.M.; et al. Executive summary. In Climate Science Special Report; Wuebbles, D.J., Fahey, D.W., Hibbard, K.A., Dokken, D.J., Stewart, B.C., Maycock, T.K., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2017; pp. 12–34. Available online: https://dr.lib.iastate.edu/handle/20.500.12876/5081 (accessed on 10 April 2022).
- Darden, C.B.; Nadler, D.J.; Carcione, B.C.; Blakeslee, R.J.; Stano, G.T.; Buechler, D.E. Utilizing Total Lightning Information to Diagnose Convective Trends. Bull. Am. Meteorol. Soc. 2010, 91, 167–176. Available online: https://www.jstor.org/stable/26232859 (accessed on 10 April 2022). [CrossRef]
- Easterling, D.R.; Kunkel, K.E.; Wehner, M.F.; Sun, L. Detection and attribution of climate extremes in the observed record. Weather. Clim. Extrem. 2016, 11, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Llasat, M.C.; Marcos, R.; Turco, M.; Gilabert, J.; Llasat-Botija, M. Trends in flash flood events versus convective precipitation in the Mediterranean region: The case of Catalonia. J. Hydrol. 2016, 541, 24–37. [Google Scholar] [CrossRef] [Green Version]
- Price, C. Will a drier climate result in more lightning? Atmos. Res. 2009, 91, 479–484. [Google Scholar] [CrossRef]
- Romps, D.M.; Seeley, J.T.; Vollaro, D.; Molinari, J. Projected increase in lightning strikes in the United States due to global warming. Science 2014, 346, 851–854. [Google Scholar] [CrossRef]
- Mohr, K.I.; Zipser, E.J. Defining Mesoscale Convective Systems by Their 85-GHz Ice-Scattering Signatures. Bull. Am. Meteorol. Soc. 1996, 77, 1179–1190. [Google Scholar] [CrossRef] [Green Version]
- Cecil, D.J. Relating Passive 37-GHz Scattering to Radar Profiles in Strong Convection. J. Appl. Meteorol. Clim. 2011, 50, 233–240. [Google Scholar] [CrossRef]
- Liu, C.; Zipser, E.J.; Nesbitt, S.W. Global Distribution of Tropical Deep Convection: Different Perspectives from TRMM Infrared and Radar Data. J. Climate 2007, 20, 489–503. [Google Scholar] [CrossRef]
- Kummerow, C.; Barnes, W.; Kozu, T.; Shiue, J.; Simpson, J. The Tropical Rainfall Measuring Mission (TRMM) Sensor Package. J. Atmos. Ocean. Technol. 1998, 15, 809–817. [Google Scholar] [CrossRef]
- Hou, A.Y.; Kakar, R.K.; Neeck, S.; Azarbarzin, A.A.; Kummerow, C.D.; Kojima, M.; Oki, R.; Nakamura, K.; Iguchi, T. The Global Precipitation Measurement Mission. Bull. Am. Meteorol. Soc. 2014, 95, 701–722. [Google Scholar] [CrossRef]
- Zipser, E.J.; Cecil, D.J.; Liu, C.; Nesbitt, S.W.; Yorty, D.P. Where are the most intense thunderstorms on earth? Bull. Am. Meteorol. Soc. 2006, 87, 1057–1072. [Google Scholar] [CrossRef] [Green Version]
- Xu, W.; Zipser, E.J. Properties of deep convection in tropical continental, monsoon, and oceanic rainfall regimes. Geophys. Res. Lett. 2012, 39, L07802. [Google Scholar] [CrossRef]
- Hamada, A.; Takayabu, Y.N.; Liu, C.; Zipser, E.J. Weak linkage between the heaviest rainfall and tallest storms. Nat. Commun. 2015, 6, 6213. [Google Scholar] [CrossRef]
- Wang, T.; Tang, G. Spatial Variability and Linkage between Extreme Convections and Extreme Precipitation Revealed by 22-Year Space-Borne Precipitation Radar Data. Geophys. Res. Lett. 2020, 47, e2020GL088437. [Google Scholar] [CrossRef]
- Nesbitt, S.W.; Cifelli, R.; Rutledge, S.A. Storm Morphology and Rainfall Characteristics of TRMM Precipitation Features. Mon. Weather Rev. 2006, 134, 2702–2721. [Google Scholar] [CrossRef] [Green Version]
- Liu, C.; Zipser, E.J. The global distribution of largest, deepest, and most intense precipitation systems. Geophys. Res. Lett. 2015, 42, 3591–3595. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Houze, J.R.A.; Fan, J.; Brodzik, S.R.; Feng, Z.; Hardin, J.C. The Detection of Mesoscale Convective Systems by the GPM Ku-Band Spaceborne Radar. J. Meteorol. Soc. Japan. Ser. II 2019, 97, 1059–1073. [Google Scholar] [CrossRef] [Green Version]
- Hayden, L.; Liu, C.; Liu, N. Properties of Mesoscale Convective Systems Throughout Their Lifetimes Using IMERG, GPM, WWLLN, and a Simplified Tracking Algorithm. J. Geophys. Res. 2021, 126, e2021JD035264. [Google Scholar] [CrossRef]
- Liu, C.; Zipser, E. Regional variation of morphology of organized convection in the tropics and subtropics. J. Geophys. Res. 2013, 118, 453–466. [Google Scholar] [CrossRef] [Green Version]
- Houze, R.A., Jr.; Wilton, D.C.; Smull, B.F. Monsoon convection in the Himalayan region as seen by the TRMM Precipitation Radar. Quart. J. Roy. Meteorol. Soc. 2007, 133, 1389–1411. [Google Scholar] [CrossRef]
- Liu, C.; Zipser, E.J.; Cecil, D.J.; Nesbitt, S.W.; Sherwood, S. A Cloud and Precipitation Feature Database from Nine Years of TRMM Observations. J. Appl. Meteorol. Clim. 2008, 47, 2712–2728. [Google Scholar] [CrossRef]
- Xu, W. Precipitation and Convective Characteristics of Summer Deep Convection over East Asia Observed by TRMM. Mon. Weather Rev. 2013, 141, 1577–1592. [Google Scholar] [CrossRef]
- Ni, X.; Liu, C.; Zipser, E. Ice Microphysical Properties near the Tops of Deep Convective Cores Implied by the GPM Dual-Frequency Radar Observations. J. Atmos. Sci. 2019, 76, 2899–2917. [Google Scholar] [CrossRef]
- Heymsfield, G.M.; Tian, L.; Heymsfield, A.J.; Li, L.; Guimond, S. Characteristics of Deep Tropical and Subtropical Convection from Nadir-Viewing High-Altitude Airborne Doppler Radar. J. Atmos. Sci. 2010, 67, 285–308. [Google Scholar] [CrossRef] [Green Version]
- Bhat, G.S.; Kumar, S. Vertical structure of cumulonimbus towers and intense convective clouds over the South Asian region during the summer monsoon season. J. Geophys. Res. 2015, 120, 1710–1722. [Google Scholar] [CrossRef]
- Yokoyama, C.; Zipser, E.J.; Liu, C. TRMM-Observed Shallow versus Deep Convection in the Eastern Pacific Related to Large-Scale Circulations in Reanalysis Datasets. J. Clim. 2014, 27, 5575–5592. [Google Scholar] [CrossRef] [Green Version]
- Jiang, H. The Relationship between Tropical Cyclone Intensity Change and the Strength of Inner-Core Convection. Mon. Weather Rev. 2012, 140, 1164–1176. [Google Scholar] [CrossRef]
- Tao, C.; Jiang, H. Global Distribution of Hot Towers in Tropical Cyclones Based on 11-Yr TRMM Data. J. Clim. 2013, 26, 1371–1386. [Google Scholar] [CrossRef]
- Lane, T.P.; Sharman, R.D.; Clark, T.L.; Hsu, H.-M. An Investigation of Turbulence Generation Mechanisms above Deep Convection. J. Atmos. Sci. 2003, 60, 1297–1321. [Google Scholar] [CrossRef]
- Powell, S.W.; Houze, R.A. Evolution of precipitation and convective echo top heights observed by TRMM radar over the Indian Ocean during DYNAMO. J. Geophys. Res. 2015, 120, 3906–3919. [Google Scholar] [CrossRef]
- Xu, W.; Rutledge, S.A. Convective Variability Associated with the Boreal Summer Intraseasonal Oscillation in the South China Sea Region. J. Clim. 2018, 31, 7363–7383. [Google Scholar] [CrossRef]
- Gao, J.; Tang, G.; Hong, Y. Similarities and Improvements of GPM Dual-Frequency Precipitation Radar (DPR) upon TRMM Precipitation Radar (PR) in Global Precipitation Rate Estimation, Type Classification and Vertical Profiling. Remote Sens. 2017, 9, 1142. [Google Scholar] [CrossRef] [Green Version]
- Tang, G.; Wen, Y.; Gao, J.; Long, D.; Ma, Y.; Wan, W.; Hong, Y. Similarities and differences between three coexisting spaceborne radars in global rainfall and snowfall estimation. Water Resour. Res. 2017, 53, 3835–3853. [Google Scholar] [CrossRef]
- Seto, S. Examining the consistency of precipitation rate estimates between the TRMM and GPM Ku-band radars. Sola 2022. advpub. [Google Scholar] [CrossRef]
- Takahashi, H.G.; Fujinami, H. Recent decadal enhancement of Meiyu-Baiu heavy rainfall over East Asia. Sci. Rep. 2021, 11, 13665. [Google Scholar] [CrossRef]
- JAXA. TRMM_Product_List_V6_20181004. 2018, Japan Aerospace Exploration Agency, 8. Available online: https://gportal.jaxa.jp/gpr/assets/mng_upload/TRMM_GPMFormat/TRMM_Product_List.pdf (accessed on 10 April 2022).
- Seto, S.; Iguchi, T. Intercomparison of Attenuation Correction Methods for the GPM Dual-Frequency Precipitation Radar. J. Atmos. Ocean. Technol. 2015, 32, 915–926. [Google Scholar] [CrossRef]
- Iguchi, T.; Seto, S.; Meneghini, R.; Yoshida, N.; Awaka, J.; Le, M.; Chandrasekar, V.; Brodzik, S.; Kubota, T.; Takahashi, N. GPM/DPR Level-2 Algorithm Theoretical Basis Document in V07A. 2021, 238. Available online: https://www.eorc.jaxa.jp/GPM/doc/algorithm/ATBD_DPR_V07A.pdf (accessed on 10 April 2022).
- Masaki, T.; Iguchi, T.; Kanemaru, K.; Furukawa, K.; Yoshida, N.; Kubota, T.; Oki, R. Calibration of the Dual-Frequency Precipitation Radar Onboard the Global Precipitation Measurement Core Observatory. IEEE Trans. Geosci. Remote Sens. 2022, 60, 1–16. [Google Scholar] [CrossRef]
- Toyoshima, K.; Masunaga, H.; Furuzawa, F.A. Early Evaluation of Ku- and Ka-Band Sensitivities for the Global Precipitation Measurement (GPM) Dual-Frequency Precipitation Radar (DPR). Sola 2015, 11, 14–17. [Google Scholar] [CrossRef] [Green Version]
- JAXA. GPM_data_util_handbook_V6_20181004_E. 2018, Japan Aerospace Exploration Agency: Japan, 115. Available online: https://www.eorc.jaxa.jp/TRMM/documents/PR_algorithm_product_information/doc_pr_v8/GPM_data_util_handbook_V6_20181004_E.pdf (accessed on 10 April 2022).
- Awaka, J. Early results on rain type classification by the Tropical Rainfall Measuring Mission (TRMM) Precipitation Radar. In Proceedings of the URSI-F Open Symposion on Wave Propagation and Remote Sensing, Aveiro, Portugal, 22–25 September 1998; pp. 143–146. Available online: https://ci.nii.ac.jp/naid/10025262166/en/ (accessed on 10 April 2022).
- Awaka, J.; Iguchi, T.; Okamoto, K.i. TRMM PR Standard Algorithm 2A23 and its Performance on Bright Band Detection. J. Meteorol. Soc. Jpn. Ser. II 2009, 87A, 31–52. [Google Scholar] [CrossRef] [Green Version]
- Iguchi, T.; Kawamoto, N.; Oki, R. Detection of Intense Ice Precipitation with GPM/DPR. J. Atmos. Ocean. Technol. 2018, 35, 491–502. [Google Scholar] [CrossRef]
- Turk, F.J.; Ringerud, S.E.; Camplani, A.; Casella, D.; Chase, R.J.; Ebtehaj, A.; Gong, J.; Kulie, M.; Liu, G.; Milani, L.; et al. Applications of a CloudSat-TRMM and CloudSat-GPM Satellite Coincidence Dataset. Remote Sens. 2021, 13, 2264. [Google Scholar] [CrossRef]
- Hamada, A.; Takayabu, Y.N. Improvements in Detection of Light Precipitation with the Global Precipitation Measurement Dual-Frequency Precipitation Radar (GPM DPR). J. Atmos. Ocean. Technol. 2016, 33, 653–667. [Google Scholar] [CrossRef]
- Kubota, T.; Iguchi, T.; Kojima, M.; Liao, L.; Masaki, T.; Hanado, H.; Meneghini, R.; Oki, R. A Statistical Method for Reducing Sidelobe Clutter for the Ku-Band Precipitation Radar on board the GPM Core Observatory. J. Atmos. Ocean. Technol. 2016, 33, 1413–1428. [Google Scholar] [CrossRef]
- Takahashi, N.; Iguchi, T. Estimation and correction of beam mismatch of the precipitation Radar after an orbit boost of the tropical rainfall measuring mission Satellite. IEEE Trans. Geosci. Remote Sens. 2004, 42, 2362–2369. [Google Scholar] [CrossRef]
- Kanemaru, K.; Kubota, T.; Iguchi, T. Improvements in the Beam-Mismatch Correction of Precipitation Radar Data After the TRMM Orbit Boost. IEEE Trans. Geosci. Remote Sens. 2019, 57, 7161–7169. [Google Scholar] [CrossRef]
Instrument | TRMM PR V8 | GPM KuPR V06A |
---|---|---|
Frequency (GHz) | 13.8 | 13.6 |
Altitude (km) | 403 (350) † | 407 |
footprint | 49 | 49 |
Incidence angle (°) | 17 | 17 |
Inclination angle (°) | 35 | 65 |
Horizontal resolution (km) | 5 (4.3) † | 5 |
Swath width (km) | 247 (215) † | 245 |
Vertical resolution (m) | 125 | 125 |
Number of vertical levels | 176 | 176 |
Minimum detectable reflectivity (dBZ) [and rain rate (mm h−1)] | 18 [0.5] | 18 [0.5] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ji, L.; Xu, W.; Chen, H.; Liu, N. Consistency of Vertical Reflectivity Profiles and Echo-Top Heights between Spaceborne Radars Onboard TRMM and GPM. Remote Sens. 2022, 14, 1987. https://doi.org/10.3390/rs14091987
Ji L, Xu W, Chen H, Liu N. Consistency of Vertical Reflectivity Profiles and Echo-Top Heights between Spaceborne Radars Onboard TRMM and GPM. Remote Sensing. 2022; 14(9):1987. https://doi.org/10.3390/rs14091987
Chicago/Turabian StyleJi, Lei, Weixin Xu, Haonan Chen, and Nana Liu. 2022. "Consistency of Vertical Reflectivity Profiles and Echo-Top Heights between Spaceborne Radars Onboard TRMM and GPM" Remote Sensing 14, no. 9: 1987. https://doi.org/10.3390/rs14091987
APA StyleJi, L., Xu, W., Chen, H., & Liu, N. (2022). Consistency of Vertical Reflectivity Profiles and Echo-Top Heights between Spaceborne Radars Onboard TRMM and GPM. Remote Sensing, 14(9), 1987. https://doi.org/10.3390/rs14091987