A Modified Two-Steps Three-Stage Inversion Algorithm for Forest Height Inversion Using Single-Baseline L-Band PolInSAR Data
Abstract
:1. Introduction
2. Study Data
3. Methods
3.1. RVoG Model
3.2. Methods
4. Experimental Results
4.1. Topographic Phase
4.2. Forest Height
5. Discussion
6. Real SAR Data
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Woodhouse, I.H. Predicting backscatter-biomass and height-biomass trends using a macroecology model. IEEE Trans. Geosci. Remote Sens. 2006, 44, 871–877. [Google Scholar] [CrossRef]
- Houghton, R.A.; Hall, F.; Goetz, S.J. Importance of biomass in the global carbon cycle. J. Geophys. Res. 2015, 114, 1–13. [Google Scholar] [CrossRef]
- Wright, S.J. Tropical forests in a changing environment. Trends Ecol. Evol. 2005, 20, 553–560. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [Green Version]
- Minh, D.H.T.; Le Toan, T.; Rocca, F.; Tebaldini, S.; Villard, L.; Rejou-Mechain, M.; Phillips, O.L.; Feldpausch, T.R.; Dubois-Fernandez, P.; Scipal, K.; et al. SAR tomography for the retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guiana. Remote Sens. Environ. 2016, 175, 138–147. [Google Scholar] [CrossRef] [Green Version]
- Fu, W.X.; Guo, H.D.; Li, X.W.; Tian, B.S.; Sun, Z.C. Extended Three-Stage Polarimetric SAR Interferometry Algorithm by Dual-Polarization Data. IEEE Trans. Geosci. Remote Sens. 2016, 54, 2792–2802. [Google Scholar]
- Sagues, L.; Lopez-Sanchez, J.M.; Fortuny, J.; Fabregas, X. Polarimetric radar interferometry for improved mine detection and surface clutter rejection. IEEE Trans. Geosci. Remote Sens. 2001, 39, 1271–1278. [Google Scholar] [CrossRef]
- Cloude, S.; Papathanassiou, K. Polarimetric optimisation in radar interferometry. Electron. Lett. 1997, 33, 1176–1178. [Google Scholar] [CrossRef]
- Treuhaft, R.N.; Madsen, S.N.; Moghaddam, M.; Zyl, J.J. Vegetation characteristics and underlying topography from interferometric radar. Radio Sci. 1996, 31, 1449–1485. [Google Scholar] [CrossRef]
- Cloude, S.R.; Papathanassiou, K.P. Polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1551–1565. [Google Scholar] [CrossRef]
- Wang, C.C.; Wang, L.; Fu, H.Q.; Xie, Q.H.; Zhu, J.J. The Impact of Forest Density on Forest Height Inversion Modeling from Polarimetric InSAR Data. Remote Sens. 2016, 8, 291. [Google Scholar] [CrossRef] [Green Version]
- Papathanassiou, K.P.; Cloude, S.R. Single-baseline polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 2352–2363. [Google Scholar] [CrossRef] [Green Version]
- Cloude, S.R.; Papathanassiou, K.P. Three-stage inversion process for polarimetric SAR interferometry. IEE Proc-Radar Sonar Navig. 2003, 150, 125–134. [Google Scholar] [CrossRef] [Green Version]
- Ballester-Berman, J.D.; Lopez-Sanchez, J.M.; Fortuny-Guasch, J. Retrieval of biophysical parameters of agricultural crops using polarimetric SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2005, 43, 683–694. [Google Scholar] [CrossRef]
- Praks, J.; Kugler, F.; Papathanassiou, K.P.; Hajnsek, I.; Hallikainen, M. Height estimation of boreal forest: Interferometric model-based inversion at L- and X-band versus HUTSCAT profiling scatterometer. IEEE Geosci. Remote Sens. Lett. 2007, 4, 466–470. [Google Scholar] [CrossRef]
- Garestier, F.; Dubois-Fernandez, P.C.; Champion, I. Forest Height Inversion Using High-Resolution P-Band Pol-InSAR Data. IEEE Trans. Geosci. Remote Sens. 2008, 46, 3544–3559. [Google Scholar] [CrossRef]
- Lee, S.K.; Kugler, F.; Papathanassiou, K.P.; Hajnsek, I. Quantifying Temporal Decorrelation over Boreal Forest at L- and P-band. In Proceedings of the European Conference on Synthetic Aperture Radar, Friedrichshafen, Germany, 2–5 June 2008; pp. 1–4. [Google Scholar]
- Zhang, Q.; Liu, T.D.; Ding, Z.G.; Zeng, T.; Long, T. A Modified Three-Stage Inversion Algorithm Based on R-RVoG Model for Pol-InSAR Data. Remote Sens. 2016, 8, 861. [Google Scholar] [CrossRef] [Green Version]
- Managhebi, T.; Maghsoudi, Y.; Zoej, M.J.V. An Improved Three-Stage Inversion Algorithm in Forest Height Estimation Using Single-Baseline Polarimetric SAR Interferometry Data. IEEE Geosci. Remote Sens. Lett. 2018, 15, 887–891. [Google Scholar] [CrossRef]
- Bai, L.; Hong, W.; Cao, F. Estimation error of topographic phase based on RVoG model using POLinSAR data. In Proceedings of the Progress in Electromagnetics Research Symposium (PIERS ONLINE), Nantes, France, 13–17 July 1998; pp. 306–310. [Google Scholar]
- Hashjin, S.S.; Khazai, S.; Sadeghi, A. A Method to Select Coherence Window Size for forest height estimation using PolInSAR Data. In Proceedings of the ISPRS, Tehran, Iran, 5–8 October 2013; pp. 505–508. [Google Scholar]
- Neumann, M.; Ferro-Famil, L.; Reigber, A. Multibaseline polarimetric SAR interferometry coherence optimization. IEEE Geosci. Remote Sens. Lett. 2008, 5, 93–97. [Google Scholar] [CrossRef]
- Colin, E.; Titin-Schnaider, C.; Tabbara, W. An interferometric coherence optimization method in radar polarimetry for high-resolution imagery. IEEE Trans. Geosci. Remote Sens. 2006, 44, 167–175. [Google Scholar] [CrossRef]
- Gomezdans, J.L.; Quegan, S. Constraining Coherence Optimisation in Polarimetric Interferometry of Layered Targets. In Proceedings of the POLinSAR 2005 Workshop ESRIN, Frascati, Italy, 17–21 January 2005; pp. 1–6. [Google Scholar]
- Flynn, T.; Tabb, M.; Carande, R. Coherence region shape extraction for vegetation parameter estimation in polarimetric SAR interferometry. In Proceedings of the IEEE International Geoscience and Remote Sensing Symposium, Toronto, ON, Canada, 24–28 June 2002; pp. 2596–2598. [Google Scholar]
- Tabb, M.; Orrey, J.; Flynn, T.; Carande, R. Phase diversity: A decomposition for vegetation parameter estimation using polarimetric SAR interferometry. In Proceedings of the Fourth European Synthetic Aperture RADAR Conference, Cologne, Germany, 4–6 June 2002; pp. 721–724. [Google Scholar]
- Xie, Q.; Zhu, J.; Wang, C.; Fu, H. Boreal forest height inversion using E-SAR PolInSAR data based coherence optimization methods and three-stage algorithm. In Proceedings of the International Workshop on Earth Observation and Remote Sensing Applications, Changsha, China, 11–14 June 2014; pp. 145–150. [Google Scholar]
- Lavalle, M.; Solimini, D.; Pottier, E.; Desnos, Y.L. Comparison of models of POLINSAR coherence for forest height retrieval using POLINSAR simulated data. Matrix 2008, 54, 2792–2802. [Google Scholar]
- Lin, D.F.; Zhu, J.J.; Fu, H.Q.; Xie, Q.H.; Zhang, B. A TSVD-Based Method for Forest Height Inversion from Single-Baseline PolInSAR Data. Appl. Sci. 2017, 7, 435. [Google Scholar] [CrossRef] [Green Version]
- Cloude, S.R. Polarization coherence tomography. Radio Sci. 2006, 41, 1–27. [Google Scholar] [CrossRef]
- Cloude, S.R. POL-InSAR training course. In Proceedings of the Advance Training Course on Land Remote Sensing, Scotland, UK, January 2008; pp. 1–44. [Google Scholar]
- Cloude, S.R. Polarisation Applications in Remote Sensing; Oxford University Press Inc.: New York, NY, USA, 2010. [Google Scholar]
- Minh, N.P.; Wang, C.; Zou, B.; Nguyen, Q.T.; Le, V.N. Forest Height Extraction from PolInSAR Image Using a Hybrid Method. Int. J. Signal Process. Image Process. Pattern Recognit. 2014, 7, 257–274. [Google Scholar] [CrossRef]
- Minh, N.P.; Zou, B.; Lu, D. Accuracy improvement method of forest height estimation for PolInSARImage. In Proceedings of the International Conference on Audio, Language and Image Processing, Shanghai, China, 16–18 July 2012; pp. 594–598. [Google Scholar]
- Minh, N.P.; Zou, B. A Novel Algorithm for Forest Height Estimation from PolInSAR Image. Int. J. Signal Process. Image Process. Pattern Recognit. 2013, 6, 15–32. [Google Scholar]
- Chen, E.X. Comparison of Methods to Derive Forest Height from Polarimetric SAR Interferometry. In Proceedings of the Proc Dragon, Beijing, China, 21–25 April 2008; pp. 1–9. [Google Scholar]
- Managhebi, T.Y.; Maghsoudi; Zoej, M.J.V. A volume optimization method to improve the three-stage inversion Algorithm for Forest Height Estimation Using PolInSAR Data. IEEE Geosci. Remote Sens. Lett. 2018, 15, 1214–1218. [Google Scholar] [CrossRef]
- Huu, C.T.; Minh, N.P.; Xuan, M.T.; Le, V.N.; Dang, C.H.; Nghia, P.M. An improved volume coherence optimization method for forest height estimation using PolInSAR images. In Proceedings of the 2019 3rd International Conference on Recent Advances in Signal Processing, Telecommunications & Computing (SigTelCom), Hanoi, Vietnam, 21–22 March 2019. [Google Scholar]
- Aghabalaei, A.; Ebadi, H.; Maghsoudi, Y. Forest height estimation by means of compact PolInSAR data. Remote Sens. Appl. Soc. Environ. 2021, 23, 100552. [Google Scholar] [CrossRef]
- Xing, C.; Zhang, T.; Wang, H.M.; Zeng, L.; Yin, J.; Yang, Y. A novel four-stage method for vegetation height estimation with repeat-pass PolInSAR data via temporal decorrelation adaptive estimation and distance transformation. Remote Sens. 2021, 13, 213. [Google Scholar] [CrossRef]
- Soja, M.J.; Karlson, M.; Bayala, J.; Bazié, H.R.; Sanou, J.; Tankoano, B.; Eriksson, L.E.B.; Reese, H.; Ostwald, M.; Ulander, L.M.H. Mapping tree height in Burkina Faso Parklands with TanDEM-X. Remote Sens. 2021, 13, 2747. [Google Scholar] [CrossRef]
- Lei, Y.; Treuhaft, R.; Gonçalves, F. Automated estimation of forest height and underlying topography over a Brazilian tropical forest with single-baseline single-polarization TanDEM-X SAR interferometry. Remote Sens. Environ. 2021, 252, 112132. [Google Scholar] [CrossRef]
- Khati, U.; Singh, G.; Kumar, S. Potential of space-borne PolInSAR for forest canopy height estimation over India—A case study using fully polarimetric L-, C-, and X-band SAR data. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2018, 11, 2406–2416. [Google Scholar] [CrossRef]
- Chen, H.; Cloude, S.R.; White, J.C. Using GEDI Waveforms for improved TanDEM-X forest height mapping: A combined SINC + Legendre approach. Remote Sens. 2021, 13, 2882. [Google Scholar] [CrossRef]
- Lavalle, M.; Simard, M.; Solimini, D.; Pottier, E. Height-dependent temporal decorrelation for POLINSAR and TOMOSAR forestry applications. in Synthetic Aperture Radar (EUSAR). In Proceedings of the 2010 8th European Conference on VDE, Aachen, Germany, 7–10 June 2010. [Google Scholar]
- Pardini, M.; Cazcarra-Bes, V.; Papathanassiou, K.P. TomoSAR mapping of 3D forest structure: Contributions of L-band configurations. Remote Sens. 2021, 13, 2255. [Google Scholar] [CrossRef]
- Lucas, R.M.; Lee, A.C.; Williams, M.L. Enhanced Simulation of Radar Backscatter from Forests Using LiDAR and Optical Data. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2736–2754. [Google Scholar] [CrossRef]
- Shi, L. Vegetation Height und Underlying Ground Altitude Estimation Based on Multi-Baseline POLINSAR Images. Ph.D. Thesis, Wuhan University, Wuhan, China, 2013. [Google Scholar]
Method | Use Complex Coherence | Pure Volume Complex Coherence | Point Closest to the Topographic Phase |
---|---|---|---|
HV/HVWeight | A, B | HV | HH-VV |
PD/PDWeight | A, C | PDHigh | PDLow |
MCD/MCDWeight | A, D | MCDHigh | MCDLow |
Method | Topographic Phase (Rad) | |
---|---|---|
ABSMEAN | RMSE | |
HV/HVWeight | 0.041 | 0.140 |
PD/PDWeight | 0.032 | 0.095 |
MCD/MCDWeight | 0.029 | 0.081 |
Method | Forest Height (m) | |
---|---|---|
MEAN | RMSE | |
HV/HVWeight | 15.83/16.29 | 4.80/4.65 |
PD/PDWeight | 16.16/16.73 | 4.60/4.46 |
MCD/MCDWeight | 16.19/16.71 | 4.43/4.35 |
Forest Stand | RMSE (m) | |||||
---|---|---|---|---|---|---|
HV | HVWeight | PD | PDWeight | MCD | MCDWeight | |
1 | 7.04 | 6.37 | 7.17 | 6.47 | 7.51 | 6.76 |
2 | 11.67 | 5.12 | 11.73 | 5.07 | 11.73 | 4.71 |
3 | 7.75 | 4.08 | 7.72 | 3.10 | 7.70 | 3.57 |
4 | 11.12 | 5.58 | 11.12 | 4.26 | 11.19 | 4.43 |
5 | 8.19 | 5.99 | 8.03 | 4.94 | 8.03 | 5.55 |
6 | 8.75 | 5.72 | 8.94 | 5.02 | 9.10 | 4.90 |
7 | 5.73 | 5.19 | 6.05 | 5.34 | 6.29 | 5.38 |
8 | 7.41 | 4.50 | 8.44 | 4.12 | 8.48 | 4.67 |
Method | Retrieved Forest Height and Field Measurement Stand Forest Height | |
---|---|---|
Equation | RMSE (m) | |
HV | 0.76292x + 12.54232, R2 = 0.9557 | 1.69865 |
PD | 0.78461x + 12.17832, R2 = 0.9523 | 1.81638 |
MCD | 0.7950x + 12.03076, R2 = 0.9549 | 1.78694 |
HVWeight | 0.99053x + 1.15906, R2 = 0.9892 | 1.07157 |
PDWeight | 1.00693x − 0.05627, R2 = 0.9990 | 0.33435 |
MCDWeight | 1.09135x − 2.54197, R2 = 0.9792 | 1.64526 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, J.; Zhang, Y.; Fan, W.; He, L.; Yu, Y.; Mao, X. A Modified Two-Steps Three-Stage Inversion Algorithm for Forest Height Inversion Using Single-Baseline L-Band PolInSAR Data. Remote Sens. 2022, 14, 1986. https://doi.org/10.3390/rs14091986
Zhang J, Zhang Y, Fan W, He L, Yu Y, Mao X. A Modified Two-Steps Three-Stage Inversion Algorithm for Forest Height Inversion Using Single-Baseline L-Band PolInSAR Data. Remote Sensing. 2022; 14(9):1986. https://doi.org/10.3390/rs14091986
Chicago/Turabian StyleZhang, Jianshuang, Yangjian Zhang, Wenyi Fan, Liyuan He, Ying Yu, and Xuegang Mao. 2022. "A Modified Two-Steps Three-Stage Inversion Algorithm for Forest Height Inversion Using Single-Baseline L-Band PolInSAR Data" Remote Sensing 14, no. 9: 1986. https://doi.org/10.3390/rs14091986
APA StyleZhang, J., Zhang, Y., Fan, W., He, L., Yu, Y., & Mao, X. (2022). A Modified Two-Steps Three-Stage Inversion Algorithm for Forest Height Inversion Using Single-Baseline L-Band PolInSAR Data. Remote Sensing, 14(9), 1986. https://doi.org/10.3390/rs14091986