Tensor-Based Target Parameter Estimation Algorithm for FDA-MIMO Radar with Array Gain-Phase Error
Abstract
:1. Introduction
- (1)
- The proposed algorithm solves the joint angle-range estimation problem of FDA-MIMO radar with array gain-phase error. A tensor-based estimation scheme that can provide superior estimation performance is developed;
- (2)
- In this paper, an gain-phase error estimation method that can eliminate the influence of error accumulation is presented. The proposed algorithm can obtain more accurate gain-phase error estimation;
- (3)
- In this paper, the Cramer-Rao bound (CRB) is derived for angle and range estimation and gain-phase error estimation in FDA-MIMO radar with array gain-phase error (see Appendix A for details).
2. Tensor-Based Data Model
3. The Proposed Algorithm
3.1. Direction Matrix Estimation
3.2. The Angle Estimation
3.3. The Range Estimation
3.4. The Gain Error Estimation
3.5. The Phase Error Estimation
Algorithm 1 Tensor-based target parameter estimation algorithm for FDA-MIMO radar. |
|
4. Simulation Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Cramer-Rao Bound Derivation
References
- Fishler, E.; Haimovich, A.; Blum, R.; Chizhik, D.; Cimini, L.; Valenzuela, R. MIMO radar: An idea whose time has come. In Proceedings of the 2004 IEEE Radar Conference (IEEE Cat. No. 04CH37509), Philadelphia, PA, USA, 29 April 2004; IEEE: Piscataway, NJ, USA, 2004; pp. 71–78. [Google Scholar]
- Fishler, E.; Haimovich, A.; Blum, R.; Cimini, R.; Chizhik, D.; Valenzuela, R. Performance of MIMO radar systems: Advantages of angular diversity. In Proceedings of the Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, USA, 7–10 November 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 1, pp. 305–309. [Google Scholar]
- Cong, J.; Wang, X.; Lan, X.; Huang, M.; Wan, L. Fast target localization method for FMCW MIMO radar via VDSR neural network. Remote Sens. 2021, 13, 1956. [Google Scholar] [CrossRef]
- Wang, X.; Wan, L.; Huang, M.; Shen, C.; Han, Z.; Zhu, T. Low-complexity channel estimation for circular and noncircular signals in virtual MIMO vehicle communication systems. IEEE Trans. Veh. Technol. 2020, 69, 3916–3928. [Google Scholar] [CrossRef]
- Jin, M.; Liao, G.; Li, J. Joint DOD and DOA estimation for bistatic MIMO radar. Signal Process. 2009, 89, 244–251. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, X.; Wang, W.; Huang, M.; Shen, C.; Cao, C.; Bi, G. Tensor-based angle estimation approach for strictly noncircular sources with unknown mutual coupling in bistatic MIMO radar. Sensors 2018, 18, 2788. [Google Scholar] [CrossRef] [Green Version]
- Cong, J.; Wang, X.; Yan, C.; Yang, L.; Dong, M.; Ota, K. CRB Weighted Source Localization Method Based on Deep Neural Networks in Multi-UAV Network. IEEE Internet Things J. 2022, in press. [CrossRef]
- Zhuang, L.; Liu, X. Application of frequency diversity to suppress grating lobes in coherent MIMO radar with separated subapertures. EURASIP J. Adv. Signal Process. 2009, 2009, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Antonik, P.; Wicks, M.C.; Griffiths, H.D.; Baker, C.J. Frequency diverse array radars. In Proceedings of the 2006 IEEE Conference on Radar, Verona, NY, USA, 24–27 April 2006; IEEE: Piscataway, NJ, USA, 2006; p. 3. [Google Scholar]
- Fishler, E.; Haimovich, A.; Blum, R.S.; Cimini, L.J.; Chizhik, D.; Valenzuela, R.A. Spatial diversity in radars—Models and detection performance. IEEE Trans. Signal Process. 2006, 54, 823–838. [Google Scholar] [CrossRef]
- Haimovich, A.M.; Blum, R.S.; Cimini, L.J. MIMO radar with widely separated antennas. IEEE Signal Process. Mag. 2007, 25, 116–129. [Google Scholar] [CrossRef]
- Li, J.; Stoica, P. MIMO radar with colocated antennas. IEEE Signal Process. Mag. 2007, 24, 106–114. [Google Scholar] [CrossRef]
- Li, X.; Cheng, T.; Su, Y.; Peng, H. Joint time-space resource allocation and waveform selection for the collocated MIMO radar in multiple targets tracking. Signal Process. 2020, 176, 107650. [Google Scholar] [CrossRef]
- Antonik, P.; Wicks, M.C.; Griffiths, H.D.; Baker, C.J. Multi-mission multi-mode waveform diversity. In Proceedings of the 2006 IEEE Conference on Radar, Verona, NY, USA, 24-27 April 2006; IEEE: Piscataway, NJ, USA, 2006; p. 3. [Google Scholar]
- Xu, T.; Wang, X.; Huang, M.; Lan, X.; Sun, L. Tensor-Based Reduced-Dimension MUSIC Method for Parameter Estimation in Monostatic FDA-MIMO Radar. Remote Sens. 2021, 13, 3772. [Google Scholar] [CrossRef]
- Xu, J.; Liao, G.; Zhu, S.; Huang, L.; So, H.C. Joint range and angle estimation using MIMO radar with frequency diverse array. IEEE Trans. Signal Process. 2015, 63, 3396–3410. [Google Scholar] [CrossRef]
- Chen, H.; Shao, H. Sparse reconstruction based target localization with frequency diverse array MIMO radar. In Proceedings of the 2015 IEEE China Summit and International Conference on Signal and Information Processing (ChinaSIP), Chengdu, China, 12–15 July 2015; IEEE: Piscataway, NJ, USA, 2015; pp. 94–98. [Google Scholar]
- Wang, Y.; Wang, W.Q.; Shao, H. Frequency diverse array radar Cramér-Rao lower bounds for estimating direction, range, and velocity. Int. J. Antennas Propag. 2014, 2014, 1–15. [Google Scholar] [CrossRef]
- Wang, W.Q.; Shao, H. Range-angle localization of targets by a double-pulse frequency diverse array radar. IEEE J. Sel. Top. Signal Process. 2013, 8, 106–114. [Google Scholar] [CrossRef]
- Li, B.; Bai, W.; Zhang, Q.; Zheng, G.; Zhang, M.; Wan, P. The spatially separated polarization sensitive FDA-MIMO radar: A new antenna structure for unambiguous parameter estimation. In MATEC Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 173, p. 02015. [Google Scholar]
- Xiong, J.; Wang, W.Q.; Gao, K. FDA-MIMO radar range–angle estimation: CRLB, MSE, and resolution analysis. IEEE Trans. Aerosp. Electron. Syst. 2017, 54, 284–294. [Google Scholar] [CrossRef]
- Yan, Y.; Cai, J.; Wang, W.Q. Two-stage ESPRIT for unambiguous angle and range estimation in FDA-MIMO radar. Digit. Signal Process. 2019, 92, 151–165. [Google Scholar] [CrossRef]
- Liu, F.; Wang, X.; Huang, M.; Wan, L.; Wang, H.; Zhang, B. A novel unitary ESPRIT algorithm for monostatic FDA-MIMO radar. Sensors 2020, 20, 827. [Google Scholar] [CrossRef] [Green Version]
- Viberg, M.; Lanne, M.; Lundgren, A. Calibration in array processing. In Classical and Modern Direction-of-Arrival Estimation; Elsevier: Amsterdam, The Netherlands, 2009; pp. 93–124. [Google Scholar]
- Liu, A.; Liao, G. An eigenvector based method for estimating DOA and sensor gain-phase errors. Dig. Signal Process. 2018, 79, 116–124. [Google Scholar] [CrossRef]
- Wen, F.; Shi, J.; Wang, X.; Wang, L. Angle Estimation for MIMO Radar in the Presence of Gain-Phase Errors with One Instrumental Tx/Rx Sensor: A Theoretical and Numerical Study. Remote Sens. 2021, 13, 2964. [Google Scholar] [CrossRef]
- Cao, S.; Ye, Z.; Hu, N.; Xu, X. DOA estimation based on fourth-order cumulants in the presence of sensor gain-phase errors. Signal Process. 2013, 93, 2581–2585. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Tong, N. ESPRIT-like angle estimation for bistatic MIMO radar with gain and phase uncertainties. Electron. Lett. 2011, 47, 996–997. [Google Scholar] [CrossRef]
- Li, J.; Jin, M.; Zheng, Y.; Liao, G.; Lv, L. Transmit and receive array gain-phase error estimation in bistatic MIMO radar. IEEE Antennas Wirel. Propag. Lett. 2014, 14, 32–35. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Gao, X. A joint scheme for angle and array gain-phase error estimation in bistatic MIMO radar. IEEE Geosci. Remote Sens. Lett. 2013, 10, 1478–1482. [Google Scholar] [CrossRef]
- Yao, A.M.; Rocca, P.; Wu, W.; Massa, A.; Fang, D.G. Synthesis of time-modulated frequency diverse arrays for short-range multi-focusing. IEEE J. Sel. Top. Signal Process. 2016, 11, 282–294. [Google Scholar] [CrossRef]
- Chen, K.; Yang, S.; Chen, Y.; Qu, S.W. Accurate models of time-invariant beampatterns for frequency diverse arrays. IEEE Trans. Antennas Propag. 2019, 67, 3022–3029. [Google Scholar] [CrossRef]
- Xu, J.; Liao, G.; Zhu, S.; So, H.C. Deceptive jamming suppression with frequency diverse MIMO radar. Signal Process. 2015, 113, 9–17. [Google Scholar] [CrossRef]
- Shao, H.; Li, X.; Wang, W.Q.; Xiong, J.; Chen, H. Time-invariant transmit beampattern synthesis via weight design for FDA radar. In Proceedings of the 2016 IEEE Radar Conference (RadarConf), Philadelphia, PA, USA, 2–6 May 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 1–4. [Google Scholar]
- Zhang, X.; Xu, Z.; Xu, L.; Xu, D. Trilinear decomposition-based transmit angle and receive angle estimation for multiple-input multiple-output radar. IET Radar Sonar Navig. 2011, 5, 626–631. [Google Scholar] [CrossRef]
- Kruskal, J.B. Three-way arrays: Rank and uniqueness of trilinear decompositions, with application to arithmetic complexity and statistics. Linear Algebra Its Appl. 1977, 18, 95–138. [Google Scholar] [CrossRef] [Green Version]
- Sidiropoulos, N.D.; Bro, R.; Giannakis, G.B. Parallel factor analysis in sensor array processing. IEEE Trans. Signal Process. 2000, 48, 2377–2388. [Google Scholar] [CrossRef] [Green Version]
- Mao, Z.; Liu, S.; Qin, S.; Huang, Y. Cramér-Rao Bound of Joint DOA-Range Estimation for Coprime Frequency Diverse Arrays. Remote Sens. 2022, 14, 583. [Google Scholar] [CrossRef]
- Stoica, P.; Nehorai, A. MUSIC, maximum likelihood, and Cramer-Rao bound. IEEE Trans. Acoust. Speech Signal Process. 1989, 37, 720–741. [Google Scholar] [CrossRef]
- Gui, R.; Wang, W.Q.; Cui, C.; So, H.C. Coherent pulsed-FDA radar receiver design with time-variance consideration: SINR and CRB analysis. IEEE Trans. Signal Process. 2017, 66, 200–214. [Google Scholar] [CrossRef]
Notation | Definition |
---|---|
conjugate | |
transpose | |
conjugate-transpose | |
inverse | |
pseudo-inverse | |
⊗ | Kronecker product |
⊙ | Khatri-Rao product |
∘ | outer product |
⋆ | Hadamard product |
⊘ | point division |
(A) | a diagonal matrix with the nth row of A |
the phase of array elements | |
the real part for each element of the array | |
Frobenius norm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Y.; Wang, X.; Shi, J.; Lan, X.; Wan, L. Tensor-Based Target Parameter Estimation Algorithm for FDA-MIMO Radar with Array Gain-Phase Error. Remote Sens. 2022, 14, 1405. https://doi.org/10.3390/rs14061405
Guo Y, Wang X, Shi J, Lan X, Wan L. Tensor-Based Target Parameter Estimation Algorithm for FDA-MIMO Radar with Array Gain-Phase Error. Remote Sensing. 2022; 14(6):1405. https://doi.org/10.3390/rs14061405
Chicago/Turabian StyleGuo, Yuehao, Xianpeng Wang, Jinmei Shi, Xiang Lan, and Liangtian Wan. 2022. "Tensor-Based Target Parameter Estimation Algorithm for FDA-MIMO Radar with Array Gain-Phase Error" Remote Sensing 14, no. 6: 1405. https://doi.org/10.3390/rs14061405
APA StyleGuo, Y., Wang, X., Shi, J., Lan, X., & Wan, L. (2022). Tensor-Based Target Parameter Estimation Algorithm for FDA-MIMO Radar with Array Gain-Phase Error. Remote Sensing, 14(6), 1405. https://doi.org/10.3390/rs14061405