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Abstract: A novel unitary estimation of signal parameters via rotational invariance techniques
(ESPRIT) algorithm, for the joint direction of arrival (DOA) and range estimation in a monostatic
multiple-input multiple-output (MIMO) radar with a frequency diverse array (FDA), is proposed.
Firstly, by utilizing the property of Centro-Hermitian of the received data, the extended real-valued
data is constructed to improve estimation accuracy and reduce computational complexity via unitary
transformation. Then, to avoid the coupling between the angle and range in the transmitting array
steering vector, the DOA is estimated by using the rotation invariance of the receiving subarrays.
Thereafter, an automatic pairing method is applied to estimate the range of the target. Since phase
ambiguity is caused by the phase periodicity of the transmitting array steering vector, a removal
method of phase ambiguity is proposed. Finally, the expression of Cramér–Rao Bound (CRB) is
derived and the computational complexity of the proposed algorithm is compared with the ESPRIT
algorithm. The effectiveness of the proposed algorithm is verified by simulation results.

Keywords: Unitary ESPRIT; FDA-MIMO radar; parameter estimation; phase period ambiguity

1. Introduction

The multiple-input multiple-output (MIMO) radar [1,2], which utilizes multiple antennas to
simultaneously transmit diverse waveforms and receive the reflected signals in similar ways, has
many potential advantages [3]. Unlike the conventional phased-array (PA) radar, MIMO radar has
many superiorities based on its spatial diversity and waveform diversity, such as improving the
system performance with higher degrees-of-freedom (DOFs) [4,5]. Normally, MIMO radar can be
classified into two types based on the spatial location of antenna elements. One is named distributed
MIMO radar, where the transmitting or receiving array elements are placed in different positions,
with a relatively large spacing of elements [6]. The other is the collocated MIMO radar, where both
transmitting and receiving antennas are arranged close to each other [7]. According to whether the
receiver and transmitter are located in the same place, the collocated MIMO radar is further categorized
into the monostatic MIMO radar [8,9] and bistatic MIMO radar [10,11]. A monostatic MIMO radar is
superior in its excellent maneuverability and synchronization between the transmitter and receiver. In
the contemporary defense system, the monostatic radar system is the most mainstream and common
sensor unit in the modern radar network system. A monostatic MIMO radar is addressed in this paper.
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In radar systems, the target localization is one of the main issues. The angle and range estimation
are the important parts for target localization [12–19]. However, in the beam scanning of both the PA
radar and MIMO radar, the beam pointing is angle-dependent and range-independent. The frequency
diverse array (FDA) radar, in which the direction of focus changes with range, is proposed in [20]. For
the FDA radar, the frequencies of each transmitting array element are different, which can lead to a
range-angle-dependent beampattern [21]. Then, joint angle and range can be estimated simultaneously
in the FDA radar [22–24]. Nevertheless, the resolution of parameter estimation is influenced by the
maximum frequency increment and the array aperture [25]. The maximum number of distinguishable
targets is determined by the number of DOFs and the frequency increment. The range-dependent
beampattern produced by a linear frequency modulation structure is analyzed [26]. In order to estimate
angle and range, a double-pulse method was introduced to obtain the range and angle separately,
where the antenna successively transmits two pulses with non-zero and zero frequency increments [27].
A transmitting subaperture scheme in FDA radar was investigated, where the uniform linear array
(ULA) is divided into multiple overlapping subarrays [28]. To decouple the angle and range, a special
FDA radar with different frequency increments was proposed [29]. A method based on nonuniform
frequency increment was proposed to decouple the FDA beampattern [30]. There are some other
interesting investigations reported in [31–34] about decoupling range and angle in the FDA radar.

In the last few years, FDA-MIMO radar was regarded as a novel radar system combining the
advantages of FDA radar with MIMO radar [35–37]. The FDA-MIMO radar can decouple angle and
range by exploiting the high DOFs of MIMO technique and the angle-range-dependent beampattern
of FDA radar [28,37]. Furthermore, Xu et al. applied a maximum likelihood estimator to obtain
an unambiguous angle and range estimation [38]. The sparse reconstruction-based algorithm was
utilized for the target location with an FDA-MIMO radar [39]. Multiple signal classification (MUSIC)
algorithms were also introduced to the FDA-MIMO radar [40,41]. However, these algorithms with
peak-searching require a large computational complexity. Although a method based on estimation
of signal parameters via rotational invariance techniques (ESPRIT) algorithm has been introduced to
obtain the range and angle estimation and reduce the complexity [42], there are still some challenges,
such as a low estimation performance, high complexity and phase ambiguity.

In this paper, an improved unitary ESPRIT method for angle and range estimation in monostatic
FDA-MIMO radar is presented. Then, a method is proposed to achieve the automatic pairing of
angle and range. The reason for phase ambiguity is analyzed, and a simple and efficient solution is
proposed. The Cramér–Rao Bound (CRB) for target parameter of monostatic FDA-MIMO radar is
derived. Computational complexity analysis is provided to be compared with that of [42].

The paper is summarized as follows. Section 2 introduces the signal model of the monostatic FDA
radar. We propose an improved unitary ESPRIT algorithm with an automatic pairing, and investigate
a phase judgment in Section 3. In Section 4, we derive the CRB of the monostatic FDA-MIMO radar
and offer the specific analysis of computational complexity. Several simulation results are provided
to indicate the effectiveness of the presented algorithm in Section 5. The conclusion of the paper is
indicated in Section 6.

2. Signal Model of Monostatic FDA-MIMO Radar

The signal model of monostatic FDA-MIMO radar is shown in Figure 1, which is configured
with M-antenna-transmitting ULA and N-antenna-receiving ULA. The transmitting and receiving
arrays are placed together to guarantee that the DOA is the same as the direction of departure (DOD).
The element interval of the transmitting array is equal to that of receiving array, and they are both
marked with d. The element interval d is set to half of the maximal wavelength. The first element
of transmitting array is assumed as the reference. The frequency of the m-th signal emitted by the
transmitting array is calculated by

fm = f0 + (m− 1)∆ f , m= 1, 2, · · · , m (1)
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where f 0 is the referenced frequency, and ∆f is the deviation of adjacent transmitting frequencies,
where ∆f << f 0. The baseband signals emitted by the different elements are mutually orthogonal.
Assume that the emitted signal of m-th element satisfies

sm(t) =

√
E
M
φm(t)e j2π fmt, 0 ≤ t ≤ t (2)

where E is the total transmitted energy, T is the radar pulse duration, and φm(t) denotes the baseband
waveform. Suppose that all baseband signals are orthogonal to each other and normalized∫

T

φm(t)φ∗n(t− τ)e
j2π(m−n)∆ f tdt =

{
0,
1,

m , n,
m = n

∀τ
(3)

where (.)* stands for the conjugate operator and τ is the time delay. There are K-independent targets
distributed in the far-field, and the ranges of all targets are much larger than the FDA-MIMO radar
aperture. The angle and range of k-th target are represented by (θk, rk). Due to the limitation of
the maximum unambiguity range, rk should be less than c/(2∆f ), and c denotes the speed of signal
propagation, and c/(2∆f ) represents the maximum unambiguity range [32]. The expression of steering
vector of transmitting array is [33]

a
(
rk,θk) =r(rk) � d(θk) ∈ CM×1 (4)

r(rk) = [1, e− j4π∆ f rk/c, · · · , e− j(m−1)4π∆ f rk/c]T ∈ CM×1 (5)

d(θk) = [1, e jπ sinθk , · · · , e j(m−1)π sinθk ]T ∈ CM×1 (6)

where r(rk) and d(θk) denote the range-dependent part and the angle-dependent part of transmitting
the joint-steering vector of the k-th target, respectively. � stands for Hadamard product operator. (.)T

denotes the transpose operator. The coupling relationship between angle and range can be shown in
Equation (4). The receiving spatial steering vector can be given by [34]

b(θk) = [1, e jπ sinθk , · · · , e j(N−1)π sinθk ]T ∈ CN×1 (7)

Then, the received data at the receiving array can be described as [11]

X(t) =
K∑

k=1

βke j2π fpktb(θk)aT(rk,θk)


s1(t)
...
sM(t)

+ n(t) (8)

where βk and fpk represent the amplitude and Doppler frequency of the k-th target, respectively. n(t)
represents an N × 1 complex Gaussian white noise vector with zero mean. According to Equation (3),
the received data after the matched filtering is expressed as [37]

Y(t) = CH(t) + N(t) (9)

C = [c1(r1,θ1), · · · , cK(rK,θK)] = [a(r1,θ1) ⊗ b(θ1), · · · , a(rK,θK) ⊗ b(θK)] (10)

H(t) =

√
E
M

[
β1e j2π fp1t, β2e j2π fp2t, . . . , βke j2π fpkt

]T
(11)

where C is the joint transmit-receive steering matrix, and ⊗ denotes the Kronecker product. H(t) is
the signal matrix after matched filters. N(t) represents the noise vector after matching filter with
the transmitted signal, and the noise covariance matrix is σ2IMN, where σ2 and IMN denote the noise
variance and M × N identity matrix, respectively.
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3. Unitary ESPRIT Algorithm for Ange and Range Estimation

3.1. Rotation Invariance of Subarrays

In this section, the complex-valued rotation invariance relation is introduced with respect to the
transmitting array and receiving array, respectively. As shown in Figure 2, the transmitting array
and receiving array of monostatic FDA-MIMO radar are divided into two overlapping subarrays,.
Assuming that the two adjacent subarrays are identical, there exists a rotation invariance between
Subarray 1 and Subarray 2, or Subarray 3 and Subarray 4. According to Equation (4), due to the
existence of a coupling relationship between DOA and the range, it is necessary to obtain DOA
information by the rotation invariance relationship of the receiving subarrays, and substitute the
estimated DOA into the rotation invariance of transmitting arrays to get the range information. The
complex-valued invariance relationship of the Subarray 3 and Subarray 4 can be expressed as [42]

J2b(θk) = e jπ sinθk J1b(θk) (12)

where J1 = [ IN−1 0(N−1)×1 ] and J2 = [ 0(N−1)×1 IN−1 ] are selection matrices, and 0w denotes the
w × w null matrix. The functions of J1 and J2 are to select the first and last N − 1 rows of a matrix,
respectively. Based on Equation (12), the invariance relationship in the joint steering vector can be
expressed as

(IM ⊗ J2)c(rk,θk) = e jπ sinθk(IM ⊗ J1)c(rk,θk) (13)

Under the assumption of K targets, the rotation invariance of each target can be written into a
matrix form

(IM ⊗ J2)C = (IM ⊗ J1)CΞR (14)

ΞR =


e jπ sinθ1

. . .
e jπ sinθk

 (15)
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where ΞR contains the angle information of all targets. It can be shown that the columns in C span the
same signal subspace as the column vectors in the signal subspace Es [43], we can obtain the following
relationship

ES = CΘ (16)

where Es is composed of the K eigenvectors corresponding to the largest K eigenvalues of the covariance
matrix of Y, and Θ is a non-singular matrix. Substituting Equation (16) into Equation (14), we can
obtain the relationship between signal space of the subarrays

(IM ⊗ J2)ES = (IM ⊗ J1)ESΨR (17)

where ΨR = Θ−1ΞRΘ. It can be noticed that the diagonal elements of ΞR are the eigenvalues of ΨR.Sensors 2020, 20, x FOR PEER REVIEW 6 of 18 
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Next, the complex-valued rotation invariance between Subarray 1 and Subarray 2 is considered
to estimate range. The transmitting steering vectors of Subarray 1 and Subarray 2 satisfy the
following equation

J4a(rk,θk) = e j(π sinθk−4π ∆ f
c rk) J3a(rk,θk) (18)

where J3 = [ IM−1 0(m−1)×1 ] and J4 = [ 0(m−1)×1 IM−1 ] stand for selection matrices to select the
first and last M − 1 rows, respectively. For K targets, this relationship is extended to the joint steering
vector which can be expressed as

(IN ⊗ J4)C = (IN ⊗ J3)CΞT (19)

ΞT =


e j(π sinθ1−4π ∆ f

c r1)

. . .

e j(π sinθK−4π ∆ f
c rK)

 (20)

where ΞT contains the ranges of all the targets. According to Equation (16), Equation (19) can be
rewritten as

(IN ⊗ J4)ES = (IN ⊗ J3)ESΨT (21)

where ΨT = Θ−1ΞTΘ. Because the calculation of the covariance matrix of Y and the acquisition of ES
are based on complex-valued data, DOAs and ranges are estimated with relatively high complexity.
Hence, based on the idea of a unitary ESPRIT algorithm, a novel unitary ESPRIT algorithm is proposed
to reduce complexity and improve estimation accuracy.
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3.2. Unitary ESPRIT in FDA-MIMO Radar

In this section, a complex-valued invariance is transformed into a real-valued invariance, and
the DOAs and ranges are estimated by using the unitary ESPRIT algorithm. As there is no central
Hermitian symmetric characteristic in Y, an extended receiving data matrix with the symmetric
structure is defined as [44,45]

Z =
[

Y ΠMNY∗ ΠL
]

(22)

where ΠMN is an M × N exchange matrix with ones on its anti-diagonal and zeros elsewhere. Over the
construction of Equation (22), Z is a generalized Centro-Hermitian matrix. The complex matrix Z is
transformed into the real-valued matrix Γ by utilizing the unitary transformation. It can be expressed
as [43]

Γ = QH
MNZQ2L = QH

MN

[
Y ΠMNY∗ ΠL

]
Q2L (23)

where (.)H represents the conjugate transpose operator, and the sparse unitary matrix Qw is defined as
Qw = 1

√
2

[
Iw jIw

Πw − jΠw

]

Qw = 1
√

2


Iw 0 jIw

0T
√

2 0T

Πw 0 − jΠw


w is even

w is odd
(24)

Compared with Equation (9), Equation (22) is competent in doubling the number of snapshots. Then,
the real-valued covariance RΓ of the extended received data can be acquired by using the maximum
likelihood estimation

RΓ = 1
2L ΓΓH

= 1
2

(
QH

MNRZQMN
)

= 1
2

[
QH

MN

(
RY + ΠMNR∗YΠMN

)
QMN

] (25)

where RY and RZ are the covariance calculated by Y and Z, respectively. The signal subspace ÊS
corresponds to K eigenvectors of large eigenvalues of RΓ. The remaining MN − K eigenvectors of small
eigenvalues can obtain the noise subspace ÊN. Hence, ÊS and ÊN are both real-valued. Due to the
unitary transformation in Equation (23), the complex-valued invariance relation in Equation (13) is
transformed into real-valued invariance relation as follows

K2dk = tan
(
π sinθk

2

)
K1dk (26)

K1 = Re
{
QH
(N−1)m(IM ⊗ J2)QMN

}
(27)

K2 = Im
{
QH
(N−1)m(IM ⊗ J2)QMN

}
(28)

where dk = QH
MNck is the real-valued steering vector. Re{.} and Im{.} denote the real and imaginary parts

of a complex number, respectively. Considering K-independent targets, Equation (26) is expressed as

K2D = K1DΦR (29)

ΦR =


tan(π sinθ1

2 )
. . .

tan(π sinθk
2 )

 (30)
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where D = [d1, d2, . . . , dk], and ΦR is a real diagonal matrix whose diagonal elements contain the
desired angle information. According to Equation (16), Equation (29) can be rewritten as

K2ÊS = K1ÊSΣR (31)

where ΣR = Θ−1
R ΦRΘR. ΘR is the left eigenvector matrix of ΣR. By using the total least squares (TLS)

method to solve Equation (31), DOA can be estimated as follows

θ̂k = arcsin
(

2arctan[(ΦR)]k
π

)
(32)

Similarly, the rotation invariance between Subarray 1 and Subarray 2 can be transformed into

K4dk = tan

π(sinθk − 4∆ f rk
c )

2

K3dk (33)

K3 = Re
{
QH
(m−1)N(IN ⊗ J4)QMN

}
(34)

K4 = Im
{
QH
(m−1)N(IN ⊗ J4)QMN

}
(35)

For K targets, Equation (33) can be integrated into matrix form

K4D = K3DΦT (36)

ΦT =


tan(

π sinθ1−4π∆ f
r1
c

2 )
. . .

tan(
π sinθk−4π∆ f

rk
c

2 )

 (37)

where ΦT is a real diagonal matrix whose diagonal elements contain the desired range of information.
In the same way as Equation (31), we can obtain the rotational invariance of the signal subspace

K4ÊS = K3ÊSΣT (38)

where ΣT = Θ−1
T ΦTΘT. ΘT is the inverse of the left eigenvector matrix of ΣT. Substituting Equation (32)

into Equation (37), the range estimation is solved with the TLS method.

r̂k =
2arctan[(ΦR)]k − 2arctan[(ΦT)]k

4π∆ f
c (39)

Due to the correlation of ΦR and ΦT in Equation (39), the ranges will be miscalculated without the
pairing of ΦR and ΦT. Hence, we employ an automatic pairing method to implement correct range
estimation.

3.3. The Pairing of DOAs and Ranges

In this section, we analyze the speciality of ΘT and ΘR, and introduce the means to achieve pairing.
ΘT and ΘR are eigenvectors of ΣT and ΣR, respectively. Since ΣT and ΣR are calculated by ÊS, there
must be a random row of ΘR identical to a specific row of ΘT. Supposing that all of the K targets are
independent, we notice that any two rows of ΘR are orthogonal because any two eigenvalues of ΘT

are different. In this paper, considering algorithm complexity, we obtain the automatic pairing of ΦT
and ΦR by decomposing the ΣT + jΣR, which can be expressed as

ΣT + jΣR = Θ−1
TR

{
ΦT + jΦR

}
ΘTR (40)
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where ΘTR is the left eigenvector matrix. Hence, ΦT and ΦR can be automatically paired by the
eigenvector matrix ΘTR. Considering the periodic phase ambiguity problem, we take a step to
distinguish the phase ambiguity before calculating ranges.

3.4. The Solution of Periodic Ambiguity of Transmitter

In this section, we analyze the periodic phase ambiguity and adopt an ambiguity judgment
method to obtain the correct range estimation. Since the period of tan in Equation (26) is π, and sinθk
∈ (−1, 1), DOAs can be estimated by Equation (32) without periodic ambiguity. However, there is
phase ambiguity in range estimation due to sinθk − 4∆frk/c ∈ (−3, 1) and rk ∈ (0, c/2∆f ). Therefore, rk
obtained by Equation (39) is misestimated, because the tangent of π(sinθk − 4∆frk/c)/2 is equal to the
tangent of π(sinθk − 4∆frk/c)/2 + π when sinθk − 4∆frk/c ∈ (−3, −1). Note that π(sinθk − 4∆frk/c)/2 <

πsinθk/2< π(sinθk − 4∆frk/c)/2 + π. Since ΦT and ΦR are relevant to π(sinθk − 4∆frk/c)/2 and πsinθk/2,
respectively, we determine the range of π(sinθk − 4∆frk/c)/2 by comparing arctan[ΦT]k and arctan[ΦR]k.
If arctan[ΦT]k > arctan[(ΦR)]k, due to arctan[ΦT]k ∈ (−π/2, π/2), there is a phase ambiguity, as π(sinθk −

4∆frk/c)/2 is considered to lie in (−π/2, π/2) when π(sinθk − 4∆frk/c)/2 ∈ (−3π/2, −π/2). We can use a
phase shift π to solve the periodic phase ambiguity problem. Hence, the true phase value of ΦT can be
calculated as

π
2
(sin θ̂k − 4∆ f rk/c) = arctan(ΦT) −π (41)

rk can be given by

r̂k =
arctan[(ΦR)]k − arctan[(ΦT)]k + π

2π∆ f
c (42)

Otherwise, there is no phase ambiguity and the true phase value of ΦT can be given by

π
2
(sin θ̂k − 4∆ f rk/c) = arctan(ΦT) (43)

rk can be given by

r̂k =
arctan[(ΦR)]k − arctan[(ΦT)]k

2π∆ f
c (44)

The main steps of the proposed algorithm are summarized in Algorithm 1.

Algorithm 1: A Novel Unitary ESPRIT for Monostatic FDA-MIMO Radar

1: Construct the extended received data matrix Z via (22).
2: Take the unitary transformation using (23) and obtain RΓ via (25).
3: Perform eigenvalue decomposition of RΓ and return ÊS.
4: Calculate ΣT and ΣR via (31) and (38), respectively.
5: Obtain the automatically paired ΦT and ΦR via (40).
6: Compute the DOAs by (32) and ranges by (42) or (44).

4. CRB and Complexity Analysis

4.1. CRB

In this section, we analyze the CRBs of angle and range for the monostatic FDA-MIMO radar.
According to Equation (9), the concrete expression of RY is written as

RY =
1
L

YYH = CRHCH + σ2I (45)
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where RH is the covariance of H in Equation (9), and L is the number of snapshots, and σ2 denotes the
noise power. Under the assumption of K targets, the unknown parameter to be estimated is

η = [θT, rT]
T
= [θ1, . . . ,θk, r1, . . . , rk]

T (46)

Then, the Fisher information matrix (FIM), with respect to η, is [41]

F =

[
Fθθ Fθr
Frθ Frr

]
(47)

The expression of every block of F can be written as

Fθθ =
2L
σ2 Re

{(
CH
θ Π⊥C Cθ

)
�

(
RHCHR−1

Y CRH
)T

}
(48)

Fθr =
2L
σ2 Re

{(
CH
θ Π⊥C Cr

)
�

(
RHCHR−1

Y CRH
)T

}
(49)

Frθ =
2L
σ2 Re

{(
CH

r Π⊥C Cθ
)
�

(
RHCHR−1

Y CRH
)T

}
(50)

Frr =
2L
σ2 Re

{(
CH

r Π⊥C Cr
)
�

(
RHCHR−1

Y CRH
)T

}
(51)

where Cθ and Cr are partial derivations of C with respect to θ and r, and Π⊥C = I −C
(
CHC

)−1
CH. The

Cθ and Cr can be written as
Cθ = [c1θ, c2θ, . . . , cKθ] (52)

Cr = [c1r, c2r, . . . , cKr] (53)

where

ckθ =
∂c(θk, rk)

∂θk
=
∂a(θk, rk)

∂θk
⊗ b(θk) + a(θk, rk) ⊗

∂b(θk)

∂θk
k = 1, 2, . . .K (54)

ckr =
∂c(θk, rk)

∂rk
=
∂a(θk, rk)

∂rk
⊗ b(θk), k = 1, 2, . . .K (55)

We derive part of Equations (54) and (55) as

∂a(θk, rk)

∂θk
= jπ cos(θk)


0

. . .
M− 1

a(θk, rk) (56)

∂b(θk)

∂θk
= jπ cos(θk)


0

. . .
N − 1

b(θk) (57)

and

∂a(θk, rk)

∂rk
= − j4π

∆ f
c


0

. . .
M− 1

a(θk, rk) (58)

Then, every block of F is determined by Equations (48)–(51). Then, the CRB matrix can be obtained by

CRB = F−1 =
σ2

2L
Re

{(
WHΠ⊥C W

)
� PT

}−1
(59)
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where W = [Cθ Cr], P =

[
P1 P2

P3 P4

]
and P1 = P2 = P3 = P4 = RHCHR−1

Y CRH.

4.2. Complexity

To compare the presented algorithm and the ESPRIT algorithm of [42], the specific analysis
of the computational complexity is provided. In this paper, we transform received data from the
complex domain to the real domain by a unitary transformation. Hence, the calculation of eigenvalue
decomposition and generalized inverse depend on the real domain. The calculation of a complex
product is equivalent to the calculation of four real products. The concentration of computational
complexity in the presented algorithm is based on calculating the covariance matrix, utilizing the
eigenvalue decomposition, obtaining signal subspace, solving the solution for angle and range, and
achieving pairing for angle and range. The calculation of RΓ needs O{2L(MN)2} flops, where M and N
denote the number of transmitting and receiving array elements, respectively, and L is the number of
snapshots. The eigenvalue decomposition of RΓ, to obtain the signal subspace and the noise subspace,
needs O{(MN)3} flops. The complexity required to solve for ΣR is O{M(N − 1)(2K)2}, where K is the
number of targets. Similarly, solving ΣT needs O{N(M − 1)(2K)2} flops. The eigenvalue decomposition
in Equation (40) and the pairing of angle and range need O{4(2K)3 + 2K3}. Here, we ignore the
complexity of solving periodic ambiguity steps because they are too small. Thus, the complexity of the
proposed algorithm is

O
{
2L(MN)2 + (MN)3 + 4K2(2MN −m−N) + 34K3

}
(60)

In [42], the complexity of the ESPRIT algorithm for estimation of angle and range is

O
{
2L(MN)2 + (2MN)3 + 4K2(5MN − 2m− 2N) + 31K3

}
(61)

By the comparison of Equations (60) and (61), the computational complexity of the proposed algorithm
is much lower than [42]. Furthermore, later in the simulation, we give the comparison results regarding
complexity.

5. Simulation Results

In this section, we provide several simulation results to evaluate the performance of the proposed
algorithm for angle and range estimation in monostatic FDA-MIMO radar with ULA. The ESPRIT
algorithm in the same model is chosen for comparison [42]. In all simulations, assume that the reference
carrier frequency f 0, namely the minimum frequency, is 3 GHz, and the frequency increment ∆f is
103 Hz. According to the relationship of Equation (1), the maximum frequency and the number of
bins depend on the number of transmitting arrays. The noise is assumed to be the uniform complex
white Gaussian noise. The reflection coefficient of the target is set to 1. The number of Monte Carlo
experiments is set to 500.

5.1. Estimated Results

In this section, the SNR is set to 10 dB, and the number of snapshots is 50, and the number of
transmitting array elements M and receiving array elements N are both set to eight. Figure 3a,b shows
the unpaired and paired estimation of range, respectively, obtained by the proposed algorithm, where
the two-dimensional parameters of the target are set to (45◦, 40 km) and (30◦, 10 km). It is noted that
an incorrect range estimation is shown in Figure 3a, which is caused by the mismatch between the
eigenvalues of ΣR and ΣT. It is seen in Figure 3b that the pairing method can obtain the correct range
estimation. Figure 4a,b shows the estimation results of angle and range acquired by the proposed
algorithm and the ESPRIT algorithm, where the targets in Figure 4a are the same as those of Figure 3,
and the targets in Figure 4b are assumed to be (45◦, 40 km) and (−30◦, 70 km). As there is no period
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ambiguity for (45◦, 40 km) and (30◦, 10 km), the proposed algorithm and the ESPRIT algorithm can
both obtain accurate estimation, as shown in Figure 4a. It is shown in Figure 4b that the proposed
algorithm can effectively solve the period ambiguity, because (−30◦, 70 km) satisfies sinθk − 4∆frk/c ∈
(−3, −1).
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chosen for the assessment of the performance of the proposed algorithm. The RMSEs of angle and
range are respectively defined as

RMSEθ =

√√√√
1
G

1
K

G∑
g=1

K∑
k=1

(θk − θ̂k)
2

(62)

RMSEr =

√√√√
1
G

1
K

G∑
g=1

K∑
k=1

(rk − r̂k)
2 (63)

where G represents the number of Monte Carlo experiments. We can observe that the RMSEs of the
proposed algorithm are closer to the CRBs. This indicates that the performance of the proposed method
is better than the ESPRIT algorithm with the identical SNR.
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5.3. RMSE Versus Number of Snapshots

In the simulation, the target is set to (45◦, 40 km) and (30◦, 10 km), and the SNR is 0 dB. The
number of transmitting array elements M and receiving array elements N are both set to eight and four,
respectively. We set the initial number of snapshots to be 50, and observe the effect of the number of
snapshots on the RMSEs by intervals of 100. Figure 6a, b shows the RMSEs of angle and range versus
the number of snapshots, respectively. This indicates that the performance of the proposed algorithm
is better than that of the ESPRIT algorithm with the same number of snapshots.

5.4. Computational Complexity

In this part, the runtime of the proposed algorithm is compared with that of the ESPRIT algorithm.
The target is set to (45◦, 40 km), and (30◦, 10 km), the SNR is set to 0 dB, and the number of snapshots
is 50. The number of transmitting array elements is equal to that of the receiving array elements, i.e.,
M = N, and the transmitting array number M is changed in this simulation. The required runtime of
the two algorithms is shown in Figure 7. The runtime of the proposed algorithm is less than that of the
ESPRIT algorithm.
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We can summarize this with two situations, according to the existence of periodic ambiguity. In
the case of periodic ambiguity, the ESPRIT algorithm cannot obtain the correct estimation of target
parameters, but the proposed algorithm can accurately get the angles and ranges of the target. In the
absence of periodic ambiguity, the proposed algorithm and ESPRIT algorithm can both obtain a correct
estimation of target parameters. The estimation accuracy of the proposed algorithm is higher than that
of the ESPRIT algorithm, and the running time is shorter than that of the ESPRIT algorithm. Due to
the extended receiving data and the unitary transformation operation of the proposed algorithm, the
number of snapshots is as twice as the original number, and the complex data is transformed into the
real data, which greatly reduces the computational complexity.

6. Conclusions

In this paper, a novel unitary ESPRIT algorithm is proposed for the angle and range estimation in
a monostatic FDA-MIMO radar. In the proposed method, the angle and range are estimated by using
the rotation invariance between the specific subarrays. Then, we make a specific analysis of periodic
ambiguity and propose a method to solve that. Additionally, the computational complexity of the
proposed algorithm is compared with that of the ESPRIT algorithm. The theoretical performance of
the proposed algorithm is verified by computer simulation. In future work, we will focus on how to
estimate the parameters of targets when mutual coupling errors exist in the FDA-MIMO radar, how to
use the proposed algorithm in more general array structures, and how to use the proposed algorithm
to estimate parameters in a colored noise environment.
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