Detection of Invasive Black Locust (Robinia pseudoacacia) in Small Woody Features Using Spatiotemporal Compositing of Sentinel-2 Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Reference Dataset
2.3. Satellite Data
3. Methodology
3.1. Satellite Data Preprocessing
3.2. Random Forest Classifier
3.3. Accuracy Assessment
3.4. Spatial Assessment of Black Locust Distribution
4. Results
5. Discussion
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Richardson, D.M.; Rejmánek, M. Trees and Shrubs as Invasive Alien Species-a Global Review: Global Review of Invasive Trees & Shrubs. Divers. Distrib. 2011, 17, 788–809. [Google Scholar] [CrossRef]
- Cierjacks, A.; Kowarik, I.; Joshi, J.; Hempel, S.; Ristow, M.; von der Lippe, M.; Weber, E. Biological Flora of the British Isles: Robinia pseudoacacia. J. Ecol. 2013, 101, 1623–1640. [Google Scholar] [CrossRef]
- Vítková, M.; Müllerová, J.; Sádlo, J.; Pergl, J.; Pyšek, P. Black Locust (Robinia Pseudoacacia) Beloved and Despised: A Story of an Invasive Tree in Central Europe. For. Ecol. Manag. 2017, 384, 287–302. [Google Scholar] [CrossRef]
- Rice, S.K.; Westerman, B.; Federici, R. Impacts of the Exotic, Nitrogen-Fixing Black Locust (Robinia Pseudoacacia) on Nitrogen-Cycling in a Pine–Oak Ecosystem. Plant Ecol. Former. Veg. 2004, 174, 97–107. [Google Scholar] [CrossRef]
- Skuhravá, M.; Skuhravý, V.; Csóka, G. The Invasive Spread of the Gall Midge Obolodiplosis Robiniae in Europe. Cecidology-Leyburn 2007, 22, 2–84. [Google Scholar]
- Buhl, P.N.; Duso, C. Platygaster robiniae n. Sp. (Hymenoptera: Platygastridae) Parasitoid of Obolodiplosis robiniae (Diptera: Cecidomyiidae) in Europe. Ann. Entomol. Soc. Am. 2008, 101, 297–300. [Google Scholar] [CrossRef] [Green Version]
- Langanke, T.; Desclee, B.; Faucquer, L.; Moser, L.; Schleicher, C.; Schnelle, M. Copernicus Land Monitoring Service—High Resolution Layer Small Woody Features—2015; European Environment Agency: København, Denmark, 2012. [Google Scholar]
- Rega, C.; Bartual, A.M.; Bocci, G.; Sutter, L.; Albrecht, M.; Moonen, A.-C.; Jeanneret, P.; van der Werf, W.; Pfister, S.C.; Holland, J.M.; et al. A Pan-European Model of Landscape Potential to Support Natural Pest Control Services. Ecol. Indic. 2018, 90, 653–664. [Google Scholar] [CrossRef]
- Joshi, C.; de Leeuw, J.; van Duren, I.C. Remote Sensing and Gis Applications for Mapping and Spatial Modelling of Invasive Species. In Proceedings of the ISPRS 2004: The XXth ISPRS Congress: Geo-Imagery Bridging Continents, Istanbul, Turkey, 12–23 July 2004. [Google Scholar]
- Huang, C.; Asner, G. Applications of Remote Sensing to Alien Invasive Plant Studies. Sensors 2009, 9, 4869–4889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bradley, B.A. Remote Detection of Invasive Plants: A Review of Spectral, Textural and Phenological Approaches. Biol. Invasions 2014, 16, 1411–1425. [Google Scholar] [CrossRef]
- He, K.S.; Rocchini, D.; Neteler, M.; Nagendra, H. Benefits of Hyperspectral Remote Sensing for Tracking Plant Invasions: Plant Invasion and Hyperspectral Remote Sensing. Divers. Distrib. 2011, 17, 381–392. [Google Scholar] [CrossRef]
- Ramsey, E., III; Rangoonwala, A.; Nelson, G.; Ehrlich, R. Mapping the Invasive Species, Chinese Tallow, with EO1 Satellite Hyperion Hyperspectral Image Data and Relating Tallow Occurrences to a Classified Landsat Thematic Mapper Land Cover Map. Int. J. Remote Sens. 2005, 26, 1637–1657. [Google Scholar] [CrossRef]
- Somers, B.; Asner, G.P. Hyperspectral Time Series Analysis of Native and Invasive Species in Hawaiian Rainforests. Remote Sens. 2012, 4, 2510–2529. [Google Scholar] [CrossRef] [Green Version]
- Becker, R.H.; Zmijewski, K.A.; Crail, T. Seeing the Forest for the Invasives: Mapping Buckthorn in the Oak Openings. Biol. Invasions 2013, 15, 315–326. [Google Scholar] [CrossRef]
- Fuller, D.O. Remote Detection of Invasive Melaleuca Trees (Melaleuca Quinquenervia) in South Florida with Multispectral IKONOS Imagery. Int. J. Remote Sens. 2005, 26, 1057–1063. [Google Scholar] [CrossRef]
- Lantz, N.J.; Wang, J. Object-Based Classification of Worldview-2 Imagery for Mapping Invasive Common Reed, Phragmites Australis. Can. J. Remote Sens. 2013, 14, 328–340. [Google Scholar] [CrossRef]
- Gil, A.; Lobo, A.; Abadi, M.; Silva, L.; Calado, H. Mapping Invasive Woody Plants in Azores Protected Areas by Using Very High-Resolution Multispectral Imagery. Eur. J. Remote Sens. 2013, 46, 289–304. [Google Scholar] [CrossRef] [Green Version]
- Müllerová, J.; Pergl, J.; Pyšek, P. Remote Sensing as a Tool for Monitoring Plant Invasions: Testing the Effects of Data Resolution and Image Classification Approach on the Detection of a Model Plant Species Heracleum Mantegazzianum (Giant Hogweed). Int. J. Appl. Earth Obs. Geoinf. 2013, 25, 55–65. [Google Scholar] [CrossRef]
- Peterson, E.B. Estimating Cover of an Invasive Grass (Bromus Tectorum) Using Tobit Regression and Phenology Derived from Two Dates of Landsat ETM+ Data. Int. J. Remote Sens. 2005, 26, 2491–2507. [Google Scholar] [CrossRef]
- Evangelista, P.; Stohlgren, T.; Morisette, J.; Kumar, S. Mapping Invasive Tamarisk (Tamarix): A Comparison of Single-Scene and Time-Series Analyses of Remotely Sensed Data. Remote Sens. 2009, 1, 519–533. [Google Scholar] [CrossRef] [Green Version]
- Wilfong, B.N.; Gorchov, D.L.; Henry, M.C. Detecting an Invasive Shrub in Deciduous Forest Understories Using Remote Sensing. Weed Sci. 2009, 57, 512–520. [Google Scholar] [CrossRef]
- Olsson, A.D.; van Leeuwen, W.J.D.; Marsh, S.E. Feasibility of Invasive Grass Detection in a Desertscrub Community Using Hyperspectral Field Measurements and Landsat TM Imagery. Remote Sens. 2011, 3, 2283–2304. [Google Scholar] [CrossRef] [Green Version]
- Gavier-Pizarro, G.I.; Kuemmerle, T.; Hoyos, L.E.; Stewart, S.I.; Huebner, C.D.; Keuler, N.S.; Radeloff, V.C. Monitoring the Invasion of an Exotic Tree (Ligustrum lucidum) from 1983 to 2006 with Landsat TM/ETM+ Satellite Data and Support Vector Machines in Córdoba, Argentina. Remote Sens. Environ. 2012, 122, 134–145. [Google Scholar] [CrossRef] [Green Version]
- Ai, J.; Gao, W.; Gao, Z.; Shi, R.; Zhang, C.; Liu, C. Integrating Pan-Sharpening and Classifier Ensemble Techniques to Map an Invasive Plant (Spartina alterniflora) in an Estuarine Wetland Using Landsat 8 Imagery. J. Appl. Remote Sens. 2016, 10, 026001. [Google Scholar] [CrossRef]
- Hauglin, M.; Ørka, H. Discriminating between Native Norway Spruce and Invasive Sitka Spruce—A Comparison of Multitemporal Landsat 8 Imagery, Aerial Images and Airborne Laser Scanner Data. Remote Sens. 2016, 8, 363. [Google Scholar] [CrossRef] [Green Version]
- Forster, M.; Schmidt, T.; Wolf, R.; Kleinschmit, B.; Fassnacht, F.E.; Cabezas, J.; Kattenborn, T. Detecting the Spread of Invasive Species in Central Chile with a Sentinel-2 Time-Series. In Proceedings of the 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Brugge, Belgium, 27–29 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar] [CrossRef]
- de Sá, N.C.; Castro, P.; Carvalho, S.; Marchante, E.; López-Núñez, F.A.; Marchante, H. Mapping the Flowering of an Invasive Plant Using Unmanned Aerial Vehicles: Is There Potential for Biocontrol Monitoring? Front. Plant Sci. 2018, 9, 293. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kganyago, M.; Odindi, J.; Adjorlolo, C.; Mhangara, P. Evaluating the Capability of Landsat 8 OLI and SPOT 6 for Discriminating Invasive Alien Species in the African Savanna Landscape. Int. J. Appl. Earth Obs. Geoinf. 2018, 67, 10–19. [Google Scholar] [CrossRef]
- Resasco, J.; Hale, A.N.; Henry, M.C.; Gorchov, D.L. Detecting an Invasive Shrub in a Deciduous Forest Understory Using Late-fall Landsat Sensor Imagery. Int. J. Remote Sens. 2007, 28, 3739–3745. [Google Scholar] [CrossRef]
- He, M.; Zhao, B.; Ouyang, Z.; Yan, Y.; Li, B. Linear Spectral Mixture Analysis of Landsat TM Data for Monitoring Invasive Exotic Plants in Estuarine Wetlands. Int. J. Remote Sens. 2010, 31, 4319–4333. [Google Scholar] [CrossRef]
- Villarreal, M.; Soulard, C.; Waller, E. Landsat Time Series Assessment of Invasive Annual Grasses Following Energy Development. Remote Sens. 2019, 11, 2553. [Google Scholar] [CrossRef] [Green Version]
- Xie, S.; Liu, L.; Zhang, X.; Yang, J.; Chen, X.; Gao, Y. Automatic Land-Cover Mapping Using Landsat Time-Series Data Based on Google Earth Engine. Remote Sens. 2019, 11, 3023. [Google Scholar] [CrossRef] [Green Version]
- Phan, T.N.; Kuch, V.; Lehnert, L.W. Land Cover Classification Using Google Earth Engine and Random Forest Classifier—The Role of Image Composition. Remote Sens. 2020, 12, 2411. [Google Scholar] [CrossRef]
- Jia, M.; Mao, D.; Wang, Z.; Ren, C.; Zhu, Q.; Li, X.; Zhang, Y. Tracking Long-Term Floodplain Wetland Changes: A Case Study in the China Side of the Amur River Basin. Int. J. Appl. Earth Obs. Geoinf. 2020, 92, 102185. [Google Scholar] [CrossRef]
- Somodi, I.; Čarni, A.; Ribeiro, D.; Podobnikar, T. Recognition of the Invasive Species Robinia Pseudacacia from Combined Remote Sensing and GIS Sources. Biol. Conserv. 2012, 150, 59–67. [Google Scholar] [CrossRef]
- Karasiak, N.; Sheeren, D.; Fauvel, M.; Willm, J.; Dejoux, J.-F.; Monteil, C. Mapping Tree Species of Forests in Southwest France Using Sentinel-2 Image Time Series. In Proceedings of the 2017 9th International Workshop on the Analysis of Multitemporal Remote Sensing Images (MultiTemp), Brugge, Belgium, 27–29 June 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Meng, Y.; Cao, B.; Mao, P.; Dong, C.; Cao, X.; Qi, L.; Wang, M.; Wu, Y. Tree Species Distribution Change Study in Mount Tai Based on Landsat Remote Sensing Image Data. Forests 2020, 11, 130. [Google Scholar] [CrossRef] [Green Version]
- Miklós, L.; Izakovičová, Z. Atlas of Representative Geoecosystems of Slovakia; Slovak Academy of Sciences, Ministry of Environment and Ministry of Education of the Slovak Republik: Bratislava, Slovakia, 2006; pp. 95–123. ISBN 80-969272-4-8. [Google Scholar]
- Lapin, M.; Faako, P.; Melo, M.; Stastny, P.; Tomlain, J. Climatic Regions; 1:1,000,000; 27. Klimaticke Oblasti; 1:1,000,000; Ministry of Environment of the Slovak Republic Bratislava: Bratislava, Slovakia, 2002; ISBN 80-88833-27-2. [Google Scholar]
- Griffiths, P.; van der Linden, S.; Kuemmerle, T.; Hostert, P. A Pixel-Based Landsat Compositing Algorithm for Large Area Land Cover Mapping. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2088–2101. [Google Scholar] [CrossRef]
- Carrasco, L.; O’Neil, A.; Morton, R.; Rowland, C. Evaluating Combinations of Temporally Aggregated Sentinel-1, Sentinel-2 and Landsat 8 for Land Cover Mapping with Google Earth Engine. Remote Sens. 2019, 11, 288. [Google Scholar] [CrossRef] [Green Version]
- Huang, H.; Chen, Y.; Clinton, N.; Wang, J.; Wang, X.; Liu, C.; Gong, P.; Yang, J.; Bai, Y.; Zheng, Y.; et al. Mapping Major Land Cover Dynamics in Beijing Using All Landsat Images in Google Earth Engine. Remote Sens. Environ. 2017, 202, 166–176. [Google Scholar] [CrossRef]
- Cutler, D.R.; Edwards, T.C.; Beard, K.H.; Cutler, A.; Hess, K.T.; Gibson, J.; Lawler, J.J. Random forests for classification in ecology. Ecology 2007, 88, 2783–2792. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Q.; Yu, S.; Zhao, F.; Tian, L.; Zhao, Z. Comparison of Machine Learning Algorithms for Forest Parameter Estimations and Application for Forest Quality Assessments. For. Ecol. Manag. 2019, 434, 224–234. [Google Scholar] [CrossRef]
- Wang, H.; Zhong, Y.; Pu, R.; Zhao, Y.; Song, Y.; Li, G. Dynamic Analysis of Robinia pseudoacacia Forest Health Levels from 1995 to 2013 in the Yellow River Delta, China Using Multitemporal Landsat Imagery. Int. J. Remote Sens. 2018, 39, 4232–4253. [Google Scholar] [CrossRef]
- Foody, G.M. Status of Land Cover Classification Accuracy Assessment. Remote Sens. Environ. 2002, 80, 185–201. [Google Scholar] [CrossRef]
- Pringle, R.M.; Syfert, M.; Webb, J.K.; Shine, R. Quantifying Historical Changes in Habitat Availability for Endangered Species: Use of Pixel- and Object-Based Remote Sensing. J. Appl. Ecol. 2009, 46, 544–553. [Google Scholar] [CrossRef]
- Immitzer, M.; Vuolo, F.; Atzberger, C. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sens. 2016, 8, 166. [Google Scholar] [CrossRef]
- Wang, H.; Pu, R.; Zhu, Q.; Ren, L.; Zhang, Z. Mapping Health Levels of Robinia pseudoacacia Forests in the Yellow River Delta, China, Using IKONOS and Landsat 8 OLI Imagery. Int. J. Remote Sens. 2015, 36, 1114–1135. [Google Scholar] [CrossRef]
- Ollinger, S.V. Sources of Variability in Canopy Reflectance and the Convergent Properties of Plants. New Phytol. 2011, 189, 375–394. [Google Scholar] [CrossRef] [PubMed]
- Müllerová, J.; Brůna, J.; Bartaloš, T.; Dvořák, P.; Vítková, M.; Pyšek, P. Timing Is Important: Unmanned Aircraft vs. Satellite Imagery in Plant Invasion Monitoring. Front. Plant Sci. 2017, 8, 887. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berger, K.; Caicedo, J.P.R.; Martino, L.; Wocher, M.; Hank, T.; Verrelst, J. A Survey of Active Learning for Quantifying Vegetation Traits from Terrestrial Earth Observation Data. Remote Sens. 2021, 13, 287. [Google Scholar] [CrossRef]
- Hamrouni, Y.; Paillassa, E.; Chéret, V.; Monteil, C.; Sheeren, D. From Local to Global: A Transfer Learning-Based Approach for Mapping Poplar Plantations at National Scale Using Sentinel-2. ISPRS J. Photogramm. Remote Sens. 2021, 171, 76–100. [Google Scholar] [CrossRef]
- Demir, B.; Bovolo, F.; Bruzzone, L. Updating Land-Cover Maps by Classification of Image Time Series: A Novel Change-Detection-Driven Transfer Learning Approach. IEEE Trans. Geosci. Remote Sens. 2013, 51, 300–312. [Google Scholar] [CrossRef]
- Cuneo, P.; Jacobson, C.R.; Leishman, M.R. Landscape-Scale Detection and Mapping of Invasive African Olive (Olea Europaea L. Ssp. Cuspidata Wall Ex G. Don Ciferri) in SW Sydney, Australia Using Satellite Remote Sensing. Appl. Veg. Sci. 2009, 12, 145–154. [Google Scholar] [CrossRef]
- Frantz, D.; Röder, A.; Stellmes, M.; Hill, J. Phenology-Adaptive Pixel-Based Compositing Using Optical Earth Observation Imagery. Remote Sens. Environ. 2017, 190, 331–347. [Google Scholar] [CrossRef] [Green Version]
Reference and Year * | Invasive Plant | Plant Type | Temporal Strategy | RS Platform | Accuracy ** |
---|---|---|---|---|---|
[20] 2005 | Bromus tectorum | Grass | Multiday | Landsat 7 | R2 = 0.71 |
[21] 2009 | Tamarix sp. | Shrub | Multitemporal | Landsat 7 | OA = 0.9 |
[22] 2009 | Amur honeysuckle | Shrub | Multiday | Landsat 5; 7 | R2 = 0.75 |
[23] 2011 | Pennisetum ciliare | Grass | Multidate | Landsat 5 | OA = 0.8 |
[24] 2012 | Ligustrum lucidum | Tree | Multitemporal | Landsat 5; 7 | OA = 0.8 |
[25] 2016 | Spartina alterniflora | Grass | Opt. single date | Landsat 8 | OA = 0.9 |
[26] 2016 | Picea sitchensis | Tree | Multitemporal | Landsat 8 | OA = 0.7 |
[27] 2017 | Pinus radiata | Tree | Multitemporal | Sentinel-2 | R2 = 0.6 |
[28] 2017 | Acacia longifolia | Tree | Opt. single date | Landsat 5; 7; 8 | OA = 0.7 |
[29] 2018 | Parthenium hysterophorus | Herb | Opt. single date | Landsat 8 | OA = 0.8 |
Composite | 2018 | 2019 | 2020 | 2021 | Mean |
---|---|---|---|---|---|
Years | 83.90 | 85.13 | 76.53 | 75.43 | 80.25 |
Spring | 77.80 | 78.13 | 78.96 | 82.22 | 79.28 |
Summer | 78.43 | 76.50 | 77.10 | 75.00 | 76.76 |
Autumn | 71.70 | 74.86 | 72.83 | 75.10 | 73.62 |
Mean | 75.98 | 76.50 | 76.30 | 77.44 | |
April | 84.83 | 85.36 | 82.36 | 81.87 | 83.61 |
May | 84.46 | 85.13 | 85.50 | 85.64 | 85.06 |
June | 84.70 | 83.10 | 86.30 | 80.93 | 84.54 |
July | 86.13 | 84.92 | 82.86 | 84.23 | 84.54 |
August | 83.36 | 82.86 | 83.23 | 82.30 | 82.94 |
September | 80.53 | 84.43 | 83.03 | 80.10 | 82.02 |
Mean | 84.00 | 84.30 | 83.80 | 82.51 |
Reference Class | UA % | PA % | |||
---|---|---|---|---|---|
Map Class | Native Vegetation | Black Locust | Sum | ||
Native vegetation | 1359 | 116 | 1466 | 92.70 | 90.60 |
Black locust | 141 | 1384 | 1534 | 90.22 | 91.43 |
Sum | 1500 | 1500 | 3000 | ||
Overall accuracy: 91.43%; Kappa coefficient: 0.83 |
Training Pixels | OA (%) |
---|---|
250 | 81.8 |
500 | 88.2 |
750 | 88.47 |
1000 | 89.51 |
1250 | 90.33 |
1500 | 91.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rusňák, T.; Halabuk, A.; Halada, Ľ.; Hilbert, H.; Gerhátová, K. Detection of Invasive Black Locust (Robinia pseudoacacia) in Small Woody Features Using Spatiotemporal Compositing of Sentinel-2 Data. Remote Sens. 2022, 14, 971. https://doi.org/10.3390/rs14040971
Rusňák T, Halabuk A, Halada Ľ, Hilbert H, Gerhátová K. Detection of Invasive Black Locust (Robinia pseudoacacia) in Small Woody Features Using Spatiotemporal Compositing of Sentinel-2 Data. Remote Sensing. 2022; 14(4):971. https://doi.org/10.3390/rs14040971
Chicago/Turabian StyleRusňák, Tomáš, Andrej Halabuk, Ľuboš Halada, Hubert Hilbert, and Katarína Gerhátová. 2022. "Detection of Invasive Black Locust (Robinia pseudoacacia) in Small Woody Features Using Spatiotemporal Compositing of Sentinel-2 Data" Remote Sensing 14, no. 4: 971. https://doi.org/10.3390/rs14040971
APA StyleRusňák, T., Halabuk, A., Halada, Ľ., Hilbert, H., & Gerhátová, K. (2022). Detection of Invasive Black Locust (Robinia pseudoacacia) in Small Woody Features Using Spatiotemporal Compositing of Sentinel-2 Data. Remote Sensing, 14(4), 971. https://doi.org/10.3390/rs14040971