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Abstract: Recognition of invasive species and their distribution is key for managing and protecting
native species within both natural and man-made ecosystems. Small woody features (SWF) represent
fragmented patches or narrow linear tree features that are of high importance in intensively utilized
agricultural landscapes. Simultaneously, they frequently serve as expansion pathways for invasive
species such as black locust. In this study, Sentinel-2 products, combined with spatiotemporal
compositing approaches, are used to address the challenge of broad area black locust mapping at a
high granularity. This is accomplished by conducting a comprehensive analysis of the classification
performance of various compositing approaches and multitemporal classification settings throughout
four vegetation seasons. The annual, seasonal (bi-monthly), and monthly median values of cloud-
masked Sentinel-2 reflectance products are aggregated and stacked into varied time-series datasets
per given year. The random forest algorithm is trained and output classification maps validated
based on field-based reference datasets across Danubian lowlands (Slovakia). The main results of
the study proved the usefulness of spatiotemporal compositing of Sentinel-2 products for mapping
black locust in small woody features across wide area. In particular, temporally aggregated monthly
composites stacked to seasonal time series datasets yielded consistently high overall accuracies
ranging from 89.10% to 91.47% with balanced producer’s and user’s accuracies for each year’s annual
series. We presume that a similar approach could be used for a broader scale species distribution
mapping, assuming they are spectrally or phenologically distinctive, as is often the case for many
invasive species.

Keywords: multitemporal classification; random forest; Sentinel-2; Google Earth Engine; invasive
species; black locust

1. Introduction

Native ecosystems as well as the goods and services that they provide are threatened
by biological invasions, both in man-made and natural ecosystems. The black locust
(Robinia pseudoacacia) is an alien invasive species of global importance [1]. Its native range
lies in the eastern part of North America and, besides Europe, it is also naturalized in
temperate South America, northern and southern Africa, temperate Asia, Australia, and
New Zealand [2]. The black locust was introduced to Europe as early as the first half of the
17th century [2,3]. Due to its extensive planting since the late 18th and early 19th century
(firewood, timber, erosion control) and dispersal ability, it colonized climatically suitable
areas of Europe in the past, and now it belongs to the most widely distributed alien tree
species in Europe.

The legume Robinia pseudoacacia (Fabaceae family) can fix nitrogen from the atmosphere
and enrich the soil nitrogen with the aid of its symbiotic bacteria Therefore, only species that
prefer or tolerate high nitrogen content in the soil can survive in the black locust-dominated
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plant communities. This has a detrimental effect on invaded habitats, reducing their
diversity and natural character and resulting in the formation of species-poor communities.
This process is linked with the extinction of many endangered light-demanding plants
and invertebrates due to changes in light regime, microclimate, and soil conditions [3,4].
As a result, black locust canopies dramatically limit the natural variety of the agricultural
landscape, reducing its potential to supply certain ecosystem services. Additionally, black
locust can provide new habitats for other invasive species, such as its pest gall midge
(Obolodiplosis robinia), which has invasively expanded its territory across Europe since its
detection in 2003 in Italy [5], together with its parasitoid, Platygaster robiniae [6]. On the other
hand, black locust stands contribute significantly to the greening of the Slovak intensive
agricultural landscape, controlling soil erosion and supplying dendromass for forestry and
habitats for beekeepers, demonstrating its contradictory impact on some ecosystem services.
Small woody features represent critical greening elements in the intensive agricultural
landscape [7]. The recent European High Resolution Layer (HRL) product of the EU
program Copernicus (https://land.copernicus.eu/pan-european/high-resolution-layers,
accessed on 10 October 2018) has been recently used for large scale assessment of ecosystem
services, e.g., pest protection services [8]. Precise estimations of the distribution of black
locusts within SWF (small woody features) can aid in our understanding and assessment
of ecosystem services across a broad agricultural area.

For many years, remote sensing (RS) has been acknowledged as a useful tool for
mapping species distribution at various spatial scales. There is a broad variety of remote
sensing systems, including different platforms (Unmanned Aerial System—UAS, airborne,
satellite borne), sensors (passive, thermal, active radar, LIDAR), or their combinations, that
have been applied in the domain of biological invasion. Extensive reviews were provided
elsewhere (e.g., [9–11]). Obviously, trade-offs between spectral, spatial, and temporal
resolution of the selected remote sensing systems have been apparent across studies [10,11].
The current understanding of effective remote sensing applications in invasive research is
the result of extensive investigations in many ecosystems using various types of sensors and
satellite platforms. In particular, optical remote sensing of non-native species’ distinctive
biochemical, structural, and phenological features has been investigated.

Distinct biochemical (e.g., leaf pigments, N content, cellulose, lignin) and structural
(leaf area index—LAI) properties of non-native vegetation are linked with its specific
spectral responses. In this regard, spectral signatures and spectral vegetation indices of
non-native canopies have been explored using both hyperspectral [12–14] and multispectral
data [15,16]. It is obvious that imaging spectroscopy can better identify certain biochemi-
cal properties of non-native vegetation by using the complete spectral continuum space.
However, the main limitation of Hyperion products is their relatively small spatial ex-
tent (swath), which limits their application in wider areas. In addition, the application of
spaceborne products at circa 30 m spatial resolution is often limited to cases where large
stands/patches exist with a distinct contrast to their surrounding canopies.

The distinctive structural characteristics of non-native canopies in horizontal dimen-
sions exhibit a discernible textural pattern that may be detected in satellite products with a
very high spatial resolution (VHR), such as IKONOS, QuickBird, Pleiades, or WorldView.
In particular, invasive plants tend to grow in higher densities, often forming homogenous
canopies or producing regularly shaped fruiting or flowering organs, allowing effective
application of object-based image analysis approaches [17–19]. However, studies using
VHR platforms are currently limited in extent and frequency, representing mainly single
classification tasks on local scales.

Besides the fact that they have unique spectral and textural characteristics, non-native
species usually exhibit distinct phenology or seasonal dynamics, which has begun to be
more commonly exploited with the growing availability of high-resolution (HR) multi-
spectral satellite data, such as those from Landsat and the Sentinel family. These products
provide both dense temporal series and synoptic coverage, allowing tracking of the spa-
tiotemporal dynamics of non-native canopies in broad areas. Table 1 summarizes research
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that employs the aforementioned strategies and Landsat-like products to map invasive
species in various ecosystems and at various scales. Three general strategies might be
recognized in this regard: (1) single date classification in optimal date, (2) multidate, and
(3) multitemporal approaches.

Table 1. Selection of the HR satellite-based invasive plant studies using different temporal strategies.

Reference and Year * Invasive Plant Plant Type Temporal Strategy RS Platform Accuracy **

[20] 2005 Bromus tectorum Grass Multiday Landsat 7 R2 = 0.71
[21] 2009 Tamarix sp. Shrub Multitemporal Landsat 7 OA = 0.9
[22] 2009 Amur honeysuckle Shrub Multiday Landsat 5; 7 R2 = 0.75
[23] 2011 Pennisetum ciliare Grass Multidate Landsat 5 OA = 0.8
[24] 2012 Ligustrum lucidum Tree Multitemporal Landsat 5; 7 OA = 0.8
[25] 2016 Spartina alterniflora Grass Opt. single date Landsat 8 OA = 0.9
[26] 2016 Picea sitchensis Tree Multitemporal Landsat 8 OA = 0.7
[27] 2017 Pinus radiata Tree Multitemporal Sentinel-2 R2 = 0.6
[28] 2017 Acacia longifolia Tree Opt. single date Landsat 5; 7; 8 OA = 0.7
[29] 2018 Parthenium hysterophorus Herb Opt. single date Landsat 8 OA = 0.8

* Year of publication. ** OA—overall Accuracy; R2—R Squared. Opt. single date—Optimal single date.

Early research attempted to identify the best period to observe a species in relation
to its distinctive phenological stage. Effective mapping using Landsat-like data (Landsat
TM, SPOT, ASTER) with a moderate spatial resolution (10–30 m) was documented in cases
where relatively large stands dominated by non-native canopies exist and observation was
conducted in a period with the distinctive phenology of the species under exploration.
For instance, ref. [30] analyzed Landsat images from several time periods throughout the
year and found that leaf-off imagery from a given time period provided more accurate
classifications of invasive understory shrubs. Similarly, ref. [26] demonstrated that Landsat
satellite imagery acquired in the summer enables a more accurate distinction between
native Norway spruce and non-native Sitka spruce forest canopies, which may be related
to the different onset or darkening periods of the new shots. Ai et al. [25] classified Landsat
8 data throughout the characteristic late August flowering of invasive Spartina alternifolia
in order to differentiate it from two dominating native species. Similarly, ref. [31] took
advantage of Spartina alternifolia’s later emergence than native Phragmites sp. in order
to use Landsat pictures from early May. Ramsey et al. [13] demonstrated that invasive
trees such as Chinese tallow could be mapped during fall senescence when their red leaves
contrast with the matrix of native vegetation.

Multi-date strategies have been used to depict changes in seasonal development be-
tween non-native canopies and their native surroundings. This approach adopts a strategy
that often employs two or more clear (cloud-free) observations as inputs to various clas-
sification algorithms, resulting in their improved performance. In particular, researchers
make use of recognized phenological variations (i.e., an earlier start of the season, later
senescence, distinctive color throughout the blooming or senescence stage, etc.) between
invaders and related native canopies over a growing season. For instance, ref. [20] distin-
guished cheatgrass from other plants using Landsat 7 ETM+ images taken on two distinct
dates within a single year. Olsson et al. [23] tested different multi-day combinations of
Landsat 5 TM images to identify the optimum timing for accurately discriminating between
Pennisetum ciliare and uninvaded areas in the Sonoran Desert. Wilfong et al. [22] used
image differencing in which a January 2001 image was subtracted from a November 2005
image, resulting in a better prediction of invasive Amur honeysuckle cover than the use of
the single November 2005 image.

Finally, a multi-temporal strategy has evolved in invasive species mapping appli-
cations as a result of the increased availability of Landsat and Sentinel-2 products. For
example, ref. [32] investigated dense yearly series of Landsat-based NDVI and developed
the invasives index, which utilizes the contrast between early- and late-season NDVIs
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to determine the relative coverage of invasive annuals in a specific area in a given year.
Evangelista et al. [21] demonstrated that phenological differences between invasive Tamarix
shrubs may be better detected using a time-series analysis than a single-scene analysis by
the identification of up to three distinctive phenological stages of Tamarix shrubs. Becker
et al. [15] used phenometrics derived from the Landsat time series for the detection of
invasive shrub canopies in oak canopy openings.

The quality of input data, particularly cloud coverage, hinders the generation of a full-
coverage classification product and the application of multitemporal approaches at broader
scales. As a result, important preconditions for this technique would include filtering
undesirable data followed by spatiotemporal compositing. Spatiotemporal compositing of
remotely sensed data using a so-called pixel-based compositing approach has been widely
used for mapping land cover, ecosystem types, and their disturbances [33–35]. The length
of the composing period (e.g., weekly, monthly, seasonal) and composing method, such
as the selection of acceptable observations, their prioritization, and the estimate of target
values, are often application-dependent.

Simple compositing algorithms are very popular for representing an effective approach
in a single classification task, e.g., in the mapping of quasi stable targets within the period
under exploration [35,36] or post-classification change detection [35]. The prerequisite for
what is hereafter called “data-driven approaches” is the availability of massive reference
data in order to utilize effective learning strategies that often comprise non-parametric
classifiers. Though spatiotemporal compositing has evolved recently, mainly based on
the availability of analysis-ready data on cloud computing services such as Google Earth
Engine (GEE), the applications in the mapping of invasive species are rare.

Specifically, remote sensing of black locust mapping has been limited mainly to local
case studies, and the full potential of the aforementioned multitemporal classification,
including spatiotemporal compositing, has not yet been explored. Somodi et al. [36] tested
two single date Landsat images from spring and summer for statistical modelling of black
locust occurences. Karasiak et al. [37] reported on the enhanced value of dense Sentinel-2
data for mapping black locust canopies in forested landscapes. They classified 14 forest
types, including black locust stands, with high levels of accuracy using multitemporal
classification of a yearly series of 11 Sentinel-2 images. Meng et al. [38] used a multitemporal
classification approach by using four Landsat images per year (March, July, September, and
November) for the classification of four forest types, including the black locust type.

Except for [35], all of the studies cited above were conducted in forested landscapes;
none of them used spatiotemporal compositing in larger areas, and none of them explored
classification performance over multiple seasons. The main objective of this study is to de-
termine the optimal multitemporal classification approach for mapping black locust within
fragmented small woody features across large agricultural areas. This is accomplished
through a thorough analysis of classification performance of different spatiotemporal
composites of Sentinel-2 reflectance products over multiple seasons.

The study’s main output is a full-coverage distribution map of the black locust on a
regional scale.

2. Materials and Methods
2.1. Study Area

The Danubian lowland represents the Slovak part of the greater Pannonian basin, is
located in southwestern Slovakia, and covers an area of 9820 km2 (Figure 1). It is composed
of two parts: the Danubian Upland, with a slightly undulating hilly relief in the north,
and the Danubian Flat depressions, with a prevailing flat relief in the south [39]. The
average annual temperature ranges from 9 to 10 ◦C, which ranks it as the warmest region in
Slovakia. The mean annual rainfall is between 550 and 700 mm per year [40]. The area has
favorable climatic and geomorphological conditions with fertile soils (mostly Chernozems
and Luvisols). Intensive agriculture is the prevailing land use type, while the land cover
consists mainly of croplands and compact rural settlements.
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Figure 1. Study area and distribution of the field-based reference sites (polygons).

2.2. Reference Dataset

A massive field survey was conducted in small woody features [7] across the study
area to obtain well distributed samples from both black locusts affected and not affected
stands. We adapted and fully applied the publicly available dataset of the Copernicus HRL
SWF (https://land.copernicus.eu/pan-european/high-resolution-layers/small-woody-
features/small-woody-features-2015, accessed on 10 October 2018) masked by the land
cover class 200 (agriculture) of the Copernicus land cover product from 2018 (https://land.
copernicus.eu/pan-european/corine-land-cover/clc2018, accessed on 1 Feburary 2019) to
properly cover non-forest features in the agricultural landscape. Copernicus HRL SWF
product provides harmonized information on linear structures such as hedgerows, scrubs,
and tree rows as well as isolated/scattered patches of trees (200 m2 ≤ area ≤ 5000 m2) of
woody features across the EEA39 countries. The product has been recently validated,
reaching a satisfactory accuracy estimation of above 90% of overall accuracy [7]. In partic-
ular, small woody features in the Danubian lowland represent combination of remnants
of native vegetation (alluvial forests, wetland scrub, thermophilous forests), linear struc-

https://land.copernicus.eu/pan-european/high-resolution-layers/small-woody-features/small-woody-features-2015
https://land.copernicus.eu/pan-european/high-resolution-layers/small-woody-features/small-woody-features-2015
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018
https://land.copernicus.eu/pan-european/corine-land-cover/clc2018


Remote Sens. 2022, 14, 971 6 of 22

tures (windbreaks, hedgerows, buffer strips at the borders of crop parcels, accompanying
vegetation on field roads and river banks), and spontaneous successional vegetation on
abandoned or not used sites. In wet places, common willow species (Salix alba, S. fragilis
and scrubby willows), poplars (Populus nigra, P. x canescens, P. alba), alder (Alnus glutinosa),
bird cherry (Padus avium), and ashes (Fraxinus angustifolia, F. excelsíor) are found. In dry sites
grow mostly maples (especially Acer campestre), oaks, elms (especially Ulmus campestre),
hornbeam (Carpinus betulus), and scrubs (Prunus spinosa, Rosa canina agg., Crataegus spec. div.,
Cornus spec. div., Viburnum lantana). We further refer to these types as “native vegetation”.

Black locust stands are widely distributed within non-forest features, though data
about their exact occurance are not available as they have not been systematically mapped
by any monitoring program. Therefore, a massive field campaign was undertaken in 2018,
2019, and 2021 in order to gather a sufficiently large dataset. The field campaign was
conducted during the early spring period (April), allowing easy recognition of the black
locust stands since they did not have fully developed leaves compared to surrounding
native vegetation in full leaf at that stage (Figure 2). We recorded stands in the field
using a rugged field computer (Handheld Algiz) equipped with an integrated U-blox
chip capable of achieving spatial precision of 1–3 m. The QGIS software (https://www.
qgis.org/en/site/, accessed on 15 January 2020) was used to produce the center points
of the homogenous mapped stands. Following the field survey, a manual delineation of
black locust and native vegetation stands was conducted using open source QGIS software
over 2018 RGB aerial ortophotomaps with a spatial resolution of 25 cm (https://www.
geoportal.sk/en/zbgis/orthophotomosaic/1st-cycle-2017-2019/, 5 January 2020). This
resulted in the creation of 339 polygons (217 for native—3.44 km2 and 122 for black locust
stands—1.36 km2). Finally, reference polygons were randomly sampled for 6000 pixels
with a balanced distribution across both classes and then split into training (3000 pixels)
and validation (3000 pixels) datasets.

Figure 2. (A) Black locust in SWF without leaves; (B) Native vegetation in SWF with leaves.

2.3. Satellite Data

The data collected by the MultiSpectral Instrument (MSI) onboard the Sentinel-2A and
Sentinel-2B satellites (later referred to as Sentinel-2) were used in the study. In particular,
we used Level-2A bottom of atmosphere reflectance products (BOA), which are available
in the Google Earth Engine catalogue (ImageCollection ID: COPERNICUS/S2_SR). This
product contains BOA reflectances of 13 Sentinel-2 spectral bands and is accompanied by
the scene classification (SCL), including quality indicators such as cloud shadow detection,
cloud probabilities, and cirrus mask (https://sentinel.esa.int/web/sentinel/technical-

https://www.qgis.org/en/site/
https://www.qgis.org/en/site/
https://www.geoportal.sk/en/zbgis/orthophotomosaic/1st-cycle-2017-2019/
https://www.geoportal.sk/en/zbgis/orthophotomosaic/1st-cycle-2017-2019/
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a-processing
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a-processing
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guides/sentinel-2-msi/level-2a-processing, 20 November 2021). The BOA reflectances
were performed at their native spatial resolutions depending on the spectral characteristics
of the respective band. In our analyses, we used Sentinel-2 spectral bands B2, B3, B4, and B8
at native 10 m resolution and bands B5, B6, B7, B8A, B11, and B12 at native 20 m resolution.
Three Sentinel-2 tiles were used to fully cover the extent of the study area, namely the
33UYP tile (covering 72.52% of the study area), the 33UXP tile (covering 24.84% of the study
area), and the 33UYQ tile (covering 2.64% of the study area).

Only products produced between April and September were used to prevent any
quality concerns that might have occurred outside of this time period. As a result, we chose
all Sentinel-2 products that were accessible on the GEE platform between 2018 and 2021
(totally 128 datasets).

3. Methodology

The overall approach is described in the workflow diagram (Figure 3) and can be
divided into four main stages: (1) Field survey and creation of reference dataset, (2) Spa-
tiotemporal compositing of Sentinel-2 products, (3) Classification and Accuracy Assessment,
and (4) Mapping and spatial assessment of black locust distribution.

Figure 3. Workflow diagram.

3.1. Satellite Data Preprocessing

Spatiotemporal compositing followed the obvious steps of so-called pixel-based com-
positing [41], namely selecting good observations within the compositing period, prioritiza-
tion, and assignments of target values at the pixel level. We selected the good observations
by masking clouds, cloud shadows, and cirrus provided in Level-2A, accompanied by
the SCL (scene classification) product. Additionally, a spatial mosaic composed of three
Sentinel-2 tiles acquired in a single day was generated, and the proportion of valid observa-
tions inside the study area was calculated. If the threshold of 40% cloudfree observation
coverage was met, the spatial mosaic would be left for further analysis in the so-called
“single-date” classification workflow.

A simple median compositing method were used for producing temporal composite
products at different time periods. The median method prioritizes observations closest
to the central tendency within a given period and is more resilient against outliers (e.g.,
unfiltered cloud remnants) than the mean, though is only effective when the majority of
selected observations are of good quality. In particular, we computed median values for
each spectral band and pixel separately for a given period using GEE’s “imageCollection”

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a-processing
https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-2-msi/level-2a-processing
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function. The same approach has been widely used in many multitemporal classification
studies [33,35,42]. Different time intervals were used for compositing, resulting in the
creation of annual (six months), seasonal (two months), and monthly composites. In addi-
tion, different time series datasets were produced by the temporal aggregation of monthly
composites into stacked datasets. Temporal aggregation was performed sequentially within
one year, e.g., April 2018 was aggregated with May 2018, followed by adding June 2018,
and so on, which resulted in the production of twenty time series datasets (five per each
year). All datasets represented inputs for pixel-based classification using the Random
Forest algorithm implemented in the GEE platform.

3.2. Random Forest Classifier

The Random Forest Classifier (RF) is widely popular in remote sensing image classi-
fication [34,37,43]. The Random Forest algorithm increases the stability and accuracy of
classification models [44] and can handle noise in training data and overfitting issues. From
the user’s perspective, the main application advantage of RF is that the algorithm needs
only two defined parameters: the number of decision trees to run (ntree) and the number
of predictors at each decision tree node split (mtry) [45]. Based on the studies of [46,47], we
selected 500 ntree, and mtry was set to the default value (equals the number of root mean
square of predictive variables).

3.3. Accuracy Assessment

The RF classification models were applied over the study area masked by the SWF
HRL [7] and agricultural land cover class 200 (https://land.copernicus.eu/pan-european/
corine-land-cover, accessed on 1 February 2019) in order to filter out urban vegetation.
Accordingly, classification maps were produced for further accuracy assessments. In
addition, class confidence maps were produced that might aid further interpretation of
the results. We applied a simple overall accuracy (OA) quantity [48] for quick assessment
and comparison of the performance of different classification setups. We used independent
validation datasets that were skipped from the training. We assumed no bias in overall
accuracy because we employed a balanced validation dataset, e.g., 1500 pixels for black
locust stands and 1500 pixels for native stands. The confusion matrix for the best-case
classification model was presented, along with the kappa coefficient and producer’s and
user’s accuracies [48]. For this reason, the best-case classifications were exported from the
GEE for later desktop analyses. A simple majority filter was applied in order to smooth
the output map and filter out high-level speckle noise. In addition, a plausibility check
was conducted by the visual interpretation of the results followed by field validation of
misclassification cases in 2021.

3.4. Spatial Assessment of Black Locust Distribution

The final step represents the spatial assessment of black locust distribution across
the study area. The proportion of black locusts within small woody features in polygon
representation was produced as an output map accompanied by the histogram depicting
its distribution frequency. This was repeated for the 1 × 1 km window in order to better
visualize the spatial trend of black locust distribution across the whole area. Finally, we
reported spatial statistics on black locust proportional coverage inside 1 km buffer zones
around Natura2000 sites to emphasize potential threats of black locust expansion in highly
valuable areas. For each cell location in the input value raster, the number of occurrences
(frequency) where a raster in the input list has an equal value is counted.

Input rasters
The list of rasters that will be compared against the value raster.
Output raster
The output raster.
For each cell in the output raster, the value represents the number of times that the

corresponding cells in the list of rasters are the same as the value raster.

https://land.copernicus.eu/pan-european/corine-land-cover
https://land.copernicus.eu/pan-european/corine-land-cover
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4. Results

Overall, 68 single-date mosaic images were used, with varied classification perfor-
mances that strongly depend on the quality of the single-date mosaic (Figure 4). Only four
single-date mosaics that met less than a 30% cloudiness threshold were available for May,
though they performed the best, followed by April and September.

Figure 4. Overall accuracy and cloud cover of single date images.

In preliminary experiments, it was revealed that the monthly compositing period
outscored the seasonal and yearly composing periods (Table 2). Thus, the monthly pe-
riod seems to be an optimal trade-off between data availability and the persistence of
spectrotemporal information, allowing detection of black locust canopies.

Table 2. Overall accuracy of years, seasons and monthly composites.

Composite 2018 2019 2020 2021 Mean

Years 83.90 85.13 76.53 75.43 80.25
Spring 77.80 78.13 78.96 82.22 79.28

Summer 78.43 76.50 77.10 75.00 76.76
Autumn 71.70 74.86 72.83 75.10 73.62

Mean 75.98 76.50 76.30 77.44
April 84.83 85.36 82.36 81.87 83.61
May 84.46 85.13 85.50 85.64 85.06
June 84.70 83.10 86.30 80.93 84.54
July 86.13 84.92 82.86 84.23 84.54

August 83.36 82.86 83.23 82.30 82.94
September 80.53 84.43 83.03 80.10 82.02

Mean 84.00 84.30 83.80 82.51

Classification models using monthly median composites performed well across years,
achieving accuracy estimates of 80 to 86 percent of overall accuracy, demonstrating that
the classification models are not much affected by the varied number and quality of
observations. Except for the May 2021 monthly composite, which covers 75% of the
mapping area, all monthly composites cover the whole mapping area of interest, with
an average number of per pixel observations ranging from 3.02 (May 2019) to 7.4 (April
2020). On average, May composites yielded the best results, followed by July and June.
Additionally, May composites performed well across years, exhibiting the lowest inter-
anual variability of estimated accuracies.

Analysis of feature importance for monthly classification models revealed the high
importance of red edge spectral bands (e.g., Sentinel-2 bands 5 and 6) and SWIR spectral
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bands (e.g., Sentinel-2 bands 11 and 12). This was consistent across years and months, which
implies a spectral distinction between black locust canopies and native vegetation mainly in
the red edge and SWIR spectral range (Figure 5). Notably, spectral bands B8 and B8A were
ranked low in importance across months and years, though comparison of spectral profiles
of black locust canopies with those of native vegetation revealed consistent differences in
the whole NIR spectral range, including bands B8 and B8A (Figure 6). However, when only
four Sentinel-2 spectral bands at their original 10 m resolution were used as classification
inputs (data not shown), the NIR band (B8) was ranked as the most important band.

Figure 5. Standardized variable importance of Sentinel-2 spectral bands of the monthly classification
models.

Figure 6. Spectral profiles (SR*10000) of black locust canopies (red) and native vegetation (green) in
monthly composites (A—April; B—May; C—June; D—July; E—August; F—September). Spectral
profiles represent means of the 1500 training pixels per each class. Bars represent standardized
differences between classes.

The sequential aggregation of monthly composite inputs for developing classification
models revealed an apparent characteristic of the RF algorithm that is capable of learning
from complex feature spaces. As a result, classification performance gradually improved
as the spectrotemporal feature space was expanded through the inclusion of subsequent
monthly composites within the vegetation season (Figure 7). This is true unless subsequent
monthly composites contain redundant or noisy data, as it was in August and September
2021, when they reached the lowest accuracy in the given year (Table 2). A remarkable
increase is apparent even at the beginning of the season after the involvement of the May
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composites, followed by a slight increase until the end of the season. Finally, high overall
accuracy was achieved with balanced producer’s accuracy (PA) and user’s accuracy (UA)
for each year’s annual series, with relatively tiny variation across years (Figure 7).

Figure 7. Overall accuracy of temporally aggregated monthly composites.

As the final models are quite complex, the interpretation of variable importance is not
straightforward, though the spectral bands from the SWIR and red edge spectral regions
(B11-12, B5-7) were ranked consistently high across the different months (Figure 8).

Figure 8. Variable importance ranked across the different months and years.

Table 3 presents the error matrices of the best-case classification model from 2020.
There was no visible pattern in misclassifications, except for mistakenly classifications of
black locust stands (comision errors) at the edges of native forest stands when surrounded
by arable land. Therefore, a majority filter has been applied in order to smooth fine level
speckle noise (Figure 9). The 2020 best-case multitemporal classification model was used to
produce the final full-coverage results, including the output classification map (Figure 10),
confidence map, and proportion of black locust within SWF in polygon representation
(Figure 11). Full resolution maps and vector data are provided in the Supplementary
Materials. Within the total 455 square kilometers of small woody features of the Danubian
lowland, black locust stands are estimated to cover roughly 56 square kilometers. The
distribution of black locust proportions within small woody features is illustrated in
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Figure 12. It is visible that distribution is skewed towards quasi homogenous stands that
represent a substantial proportion of typical monodominant woody features, which might
relate to specific historical management, e.g., plantating.

In addition, landscape analysis over a 1 km2 spatial window was conducted for
the demonstration of the added value of black locust mapping for spatial assessment of
relevant ecosystem services. Though widely dispersed, the specific spatial trends might
be visible, e.g., consistently lower proportions of black locust in the southwestern flat
Danubian lowlands and lower proportions in alluvial landscapes along the main rivers
(Figure 13). Furthermore, the possible threat of black locust invasion to natural ecosystems
of high biodiversity values protected in Natura2000 sites was identified. Figure 14 provides
the distribution of black locust proportion within 1 km buffer zones of the Natura2000
sites. The diverse proportions might imply different threats to biodiversity and allow the
prioritization of subsequent mitigation actions.

We also tested the effect of shrinking the training dataset on classification performance
from 1500 to 250 training pixels (Table 4). The decrease in OA appeared to be relatively
minor until the sample size was reduced substantially from 500 to 250.

Table 3. Error matrice of the best-case classification of temporally aggregated monthly composites
from 2020.

Reference Class UA
%

PA
%Map Class Native Vegetation Black Locust Sum

Native vegetation 1359 116 1466 92.70 90.60
Black locust 141 1384 1534 90.22 91.43

Sum 1500 1500 3000
Overall accuracy: 91.43%; Kappa coefficient: 0.83

Figure 9. (A) Classification after majority filter; (B) classification before majority filter—black circles
showing typical misclassifications of black locust at the edges of the small woody features.
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Figure 10. Distribution map of black locust in the Danubian lowland.

Table 4. Effect of shrinking the training dataset on classification performance.

Training Pixels OA (%)

250 81.8
500 88.2
750 88.47
1000 89.51
1250 90.33
1500 91.47
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Figure 11. Map of black locust proportion in small woody features.

Figure 12. Distribution of of black locust coverage in small woody features (absences of black locust
in SWF, e.g., 0% proportions were omitted for better visualizations; they represent 201,812 cases).
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Figure 13. Proportion of black locust in 1 × 1 km window. RGB composition; red band represents
proportion of black locust in SWF in 1 km2; green band represents proportion of native vegetation in
SWF in 1 km2; blue band was not used.

Figure 14. Proportion of black locust stands within 1 km buffer zone of the Natura2000 sites (SKUEV
represent name of the Nature2000 sites (absences of black locust in Natura2000 sites, e.g., 0% propor-
tions were omitted for better visualitzations; they represent 24 cases)).

5. Discussion

The accuracy acceptance levels of spectral classification differ considerably according
to specific applications, ranging from 70% [49] to 85% for PA and UA [48].

The direct comparison of accuracy estimates of invasive species detection with other
studies is limited for different reasons, such as species-specific distinctive phenology, scale
of the studies, classification methods, representativness of the reference datasets, satellite
platform and sensors used, etc. Table 1 provides a rough review of accuracy estimates
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from classification studies using Landsat-like data (e.g., Landsat TM5, ETM+, OLI and
Sentinel-2). The accuracy estimates range from 0.7 to 0.9. Our accuracies fell well within
this range, signifying good to excellent classification performance, which was surprisingly
high in the given conditions, e.g., small scattered patches and thin linear woody features in
agricultural landscape.

Somodi et al. [36] predicted the occurence of black locust stands using generalised
linear models in a complex agricultural landscape, though with a relatively small extent
of approximately 280 km2. Specifically, they used spectral reflectances of Landsat ETM+
separately from May and August as inputs for testing presence/absence models. They
documented only moderate success, assessed with an AUC measure ranging from approxi-
mately 0.75 to 0.85 (values estimated only from the graphs) according to different reference
data used. They stated that the 30 m spatial resolution of Landsat products hampered
recognition of black locust stands in a heterogeneous agricultural landscape. They reported
that the May image provided better results than that of August, which they explained by
the detectable flowering signal of black locust canopies. While May appears to be important
in our study as well, we demonstrated that other periods contribute to the classification
model’s explanatory power, resulting in significantly improved black locust classification
performance when the entire season is considered.

Karasiak [37] used multitemporal classification of forest vegetation based on 11 Sentinel-
2 images across the 2016 vegetation season. They achieved very good accuracy estimates
for the black locust forest type, reaching F1 scores above 0.9. However, they performed
the classification tests on a relatively small study area (approx. 20 × 20 km) and used only
homogenous forest stands for training. In addition, ref. [37] identified a slight advancement
in the inclusion of the 10 Sentinel spectral bands (F1 score of 0.95) versus the use of only
4 VNIR bands at higher resolution (F1 score of 0.92). Obviously, Sentinel-2 spectral bands at
20 m spatial resolution could be too coarse for mapping highly fragmented SWF alone. On
the other hand, utilizing all available spectral information by including Sentinel-2 bands at
a spatial resolution of 20m may improve classification performance [50], as was the case
also in our study. The use of publicly available high-resolution layers from EEA (European
Environment Agency) that utilize VHR images does indeed necessitate subsequent good
classification performance by masking nonforest vegetation. In such circumstances, it
seems that even the spectral information from the bands originally at 20 m GSD would
effectively aid in the exploration of the complex spectrotemporal feature space of highly
fragmented small woody features. In any case, post classification adjustment, e.g., majority
filtering, would enhance the final product, as commision errors of black locust stands at
the edges of SWF were quite obvious (Figure 9). Typical misclassifications occurred at
the forest edges when brighter soils next to the native forest stands affected the spectral
information of mixed pixels, resulting in erroneous assignment to the black locust class.
Similar cases were also reported by [36], where soil brightness was often confused by the
black locust flowering signal.

Wang et al. [51] used a spectral index and a supervised maximum likehood algorithm
that utilized Landsat SWIR bands to classify black locust stands in the range of 0.71 to
0.96 accuracy. They demonstrated the high spectral separability of black locust stands in
Landsat SWIR bands, e.g., TM5 and TM7, based on a better performance compared to the
standard NDVI index in several watersheds of the Chinese Loess Plateau. In our study, we
also identified the high importance of SWIR bands together with the red edge bands in
both monotemporal (Figure 5) and multitemporal (Figure 8) settings. The high importance
of red edge spectral bands was widely documented in other vegetation studies [50], which
proves the added value of the relatively dense spectral information of the red edge region
for revealing the complex spectral responses of different vegetation types. We assume that
it is mainly the consistently lower reflectance of black locust canopies in the red edge and
near infrared region (Figure 6) that drives the specific spectral response of black locust
canopies from May to August. The spectral reflectance in the near infrared spectral region
is highly complex and driven mainly by structural properties at the leaf, stem, and canopy
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scale [52], so we assume that the black locust canopies exhibit specific structural properties
that drive their distinctive spectral characteristics in the NIR range. In addition, lower
canopy water content that might cause lower reflectances in SWIR B11 and B12 bands
(Figure 6) which might reflect drier site conditions occupied by the black locust stands. In
fact, remnants of wetland habitats and alluvial forests within the flat Danubian depression
in the southwestern part of the study region represent the area with the lowest coverage of
black locust stands (Figures 10 and 13). The high importance of the blue band in May might
relate to the flowering of black locust stands, though this conclusion remains speculative
because we did not perform field validation in that period. Somodi et al. [36] proved May
to be the optimal period for distinguishing black locust stands, though the spatiotemporal
variability of flowering signals in Central Europe might be great [53].

Meng et al. [38] classified four dominant tree species in the Mount Tai forested land-
scape for two time periods separately, reaching an overall accuracy of 76% in 2000 and 77%
in 2016. They used a multitemporal classification approach by using four Landsat 7 ETM+
images per year (March, July, September, and November) as inputs to the RF classification
algorithm. Though they did not discuss the class-specific accuracy estimates of black locust
stands, they did document the expansion of the black locust across the forested landscape
by 3.6% from 2000 to 2016.

In any case, all of the research discussed above was conducted in rather small areas,
which may pose an issue of overfitting. In our study, we tried to deliver a full coverage
mapping product for a substantially larger extent, e.g., 9820 km2, based on a relatively
massive field-based reference dataset, which might not be feasible for operational monitor-
ing elsewhere. As a response, we investigated the effect of shrinking the training dataset
on classification performance, which resulted in unexpectedly acceptable accuracy up to
250 training pixels (Table 4). We think that this is a manageable number of reference datasets
in order to replicate the mapping approach elsewhere. In any case, in order to apply the
mapping of black locust at a substantially broader scale (e.g., national) where different
landscapes and phenology of black locust are expected, intelligent sampling through active
learning [54] would be applied in order to ensure effective transferability of the models
in spatial dimension [55]. Moreover, when change assessment of expansive black locust
canopies is the prime interest [38], the transferability of models on a temporal scale by
using different domain adaptation strategies would be applicable [56]. Testing effective
strategies of model transferability at a spatiotemporal scale requires future research in order
to aid black locust monitoring in wider regions.

As has been frequently described, the RF algorithm appeared to be robust, capable of
learning efficiently from nearly any spectrotemporal feature space. Obviously, the more
informative the spectrotemporal feature space is (e.g., dense time series vs. single month
composite), the better the performance of the classification model. Similar findings are
frequently reported for a variety of classification and modelling tasks [34]. Evangelista
et al. [21] compared monotemporal with multitemporal approaches for detection of invasive
Tamarisk shrubs using six Landsat 7 ETM+ satellite scenes at different times of the growing
seasons, e.g., April, May, June, August, September, and October, as inputs to the Maxent
model. They documented the improved performance of the full multitemporal model that
used all 72 variables compared to single-scene models. Generally, the results from the
single-scene analyses improved toward the latter part of the growing season and into the fall
months, when most native plants go into dormancy. We also documented the substantial
enhancement of multitemporal models compared to single-month models across all years,
which might have documented the robustness of the RF algorithm. Furthermore, when
single-month classifications are considered, May and April models outperformed those
from the seasonal peak. In many classification tasks, however, annual best pixel strategies
often select summer images, ensuring both image quality and the greenest pixels available,
assuming maximum contrast between land cover classes exists during the peak vegetation
season [57]. On the other hand, when mapping is focused only on vegetated surfaces,
greenness and vigour signals might be saturated during seasonal peaks, which might be the
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reason for the relatively low classification power of summer models (Table 2). When special
interest is taken in species with contrasting phenologies, specific periods in early spring
or late autumn could be advantageous. Anyway, due to sun viewing geometry, image
quality is frequently compromised at these times due to extended shadow casting during
the morning acquisition time. Therefore, there is an obvious trade-off between image
quality and the optimal selection of phenologically distinct periods. In our case, April
and September composites appear to be beneficial in multitemporal settings (Figure 7),
however, single month models of the September and April composites performed slightly
worse than summer months (Table 2). Cloudiness appeared to be a significant concern in
May, but spatiotemporal compositing effectively handled this issue.

The higher proportion of black locusts in SWF mimics the distribution of areas with the
highest occurrence of Robinia pseudoacacia in Central European countries [3]. In particular,
these are mainly uplands and river terraces in the southeastern part of the greater Danubian
lowlands where black locust stands predominate in SWF. On the other hand, Danubian
flat depressions with remnants of natural wetland vegetation and alluvial forests in the
southwestern part of the greater Danubian lowlands represent an area with the minimal
occurence of black locust stands. The output of this study represents the first distribution
map of black locust stands in the agricultural landscape on a regional scale and will serve as
the basis for a potential large-scale assessment of different ecosystem services. Additionally,
a distribution map of black locust stands throughout Natura2000 areas might aid in the
development of appropriate nature conservation management actions to mitigate possible
risks to biodiversity posed by black locust expansion. It is important to notice here that
this kind of information at such a detailed scale is missing in Slovakia, and black locust
stands are only monitored in forested landscapes via demanding field-based inventories
conducted by the national forest service.

The important finding from the user perspective is that monthly median composites
have not been much affected by the quality of observations. In particular, the performance
was quite good in months where a small number of clear observations existed, e.g., May,
and also in months where more observations existed, e.g., July. We demonstrated that the
RF algorithms can effectively handle both situations, and the monthly composite series
seems to be optimal for exploration of spectrotemporal feature space in SWF. The Google
Earth Engine certainly accelerates large-scale processing of the publicly available RS data.
It is unique in the field as an integrated platform designed to empower not only traditional
remote sensing scientists, but also a much wider audience that lacks the technical capacity
needed to utilize traditional supercomputers or large-scale commodity cloud computing
resources. However, some essential programming skills, such as basic Python or Java
script programming skills, may prevent this platform from being considered user-friendly.
In any case, given the multitemporal classification approach used in our study, we can
anticipate an increase in the value of the GEE platform as available Sentinel-2 time series
are sequentially expanded.

In this study, we used simple compositing methods motivated by their straightfor-
ward application. Unlike precise harmonisation of input data by spatiotemporal coherent
composing [58], we applied a data-driven approach based on the massive classification
of all inputs with a relatively low level of spatiotemporal coherence followed by their
tailored aggregation. However, because the data-driven approach used here possesses
apparent limits in terms of transferability across space and time, future research should
focus on a more in-depth exploration of the possible added value of recently discovered
advanced compositing algorithms that maintain spatiotemporal coherence in input data.
This could have prospects for later development of more robust and transferable models in
domains with scarce reference data and high interannual dynamics, e.g., rapid invasive
species expansion.
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6. Conclusions

In this study, we demonstrated that using the spatiotemporal composite RS products’
classification of black locust stands within small woody features in a wide agricultural
landscape is possible. The main reason for this could be related to the non-native veg-
etation’s distinctive spectral response. In particular, distinction was evident across all
seasons, being the highest in the beginning of the vegetation season, which might be
driven by the different phenology of black locust, e.g., later onset of greeness and specific
flowering. More detailed research on specific spectral characteristics of non-native black
locust canopies is open for further research, mainly with the prospects of the recent and
upcoming space-borne spectral imaging missions such as PRISMA, EnMAP, or CHIME. The
spatial detail of detectable black locust stands was surprisingly high. The support of the
Copernicus HRL spatial mask that reduced the complex spectral space of the agricultural
landscape might have been critical. Further studies should be conducted in this respect
to apply the whole processing chain across the entire agricultural landscape in order to
replicate the approach in regions where Copernicus HRL is not available. Even though
black locusts are supposed to be widely distributed in Central Europe, landscape analysis
revealed that the spatial trends can be seen at a regional level. This could be because of
historical management (e.g., planting) or environmental constraints of the specific site
conditions. Further research into the detailed knowledge of the driving factors behind the
spatial pattern of black locust distribution at a regional scale is needed. Finally, maps of
broad-area black locust distribution at high spatial resolution may be used to support both
the spatial assessment of ecosystem services and the mitigation of potential negative effects
on biodiversity in agricultural landscapes.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs14040971/s1. The material represents mainly raw data, including
those for the training and validation, in order to facilitate their usage from both methodological
(e.g., different classification algorithms and settings) and thematic (e.g., ecosystem assessments,
etc.) aspects. File S1: Confidence_of_BL.tif—Raster file contains confidence map of black locust
in SWF; File S2: Danubian_lowland.shp—Study area ROI (See Figure 1 and Section 2.1); File S3:
Distribution_of_BL.tif—Raster file contains the distribution map of black locust from multitemporal
classification model (see Figure 10); File S4: Proportion_of_BL_in_SWF.shp—Dataset of black locust
proportion in SWF, the attribute table contains the following fields: “ID” represents ID of polygon;
field “Area_m2” represents area in square meters of black locust; field “AG_pro” represents percentual
proportion of black locust in the SWF polygon (see Figure 11); File S5: Reference_data.shp—Reference
dataset, the attribute table contains the following fields “Class” where is information about class
assignment to the black locust or native vegetation; field “Trieda” represent the same infomation
but in integer format: 1—black locust and 2—native vegetation; field “Area” represent size of
the SWF polygon in square meters; field “Perim” represent perimeter of the SWF polygons in
square meters; field ”ShapIndex” represents the Shape Index (see Figure 1 and Section 2.2). File S6:
Natura2000_Proportion_BL.csv—File contains proportion of black locust stands within 1 km buffer
zone of the Natura2000 sites—column “KOD” represents Site Name; column “Prop_AGAT_percent”
represents percentual proportion of black locust within 1 × 1 km2 buffer zone of the Natura2000 site
(See Figure 14).
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