The Survey of Lava Tube Distribution in Jeju Island by Multi-Source Data Fusion
Abstract
:1. Introduction
2. Test Site and Data Sets
2.1. Geological Background of Lava Caves
2.2. Data Sets
3. Methods
4. Results
4.1. InSAR Time Series
4.2. Machine Learning for Point Classification
5. Discussions
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Greeley, R. Observations of Actively Forming Lava Tubes and Associated Structures, Hawaii; NASA Ames Research Center: Mountain View, CA, USA, 1971.
- Greeley, R. The Role of Lava Tubes in Hawaiian Volcanoes; U.S. Geological Survey Professional Paper; USGS: Reston, VA, USA, 1987; Volume 1350, pp. 1589–1602.
- Greeley, R. Additional observations of actively forming lava tubes and associated structures, Hawaii. Mordern Geol. 1972, 3, 157–160. [Google Scholar]
- Calvari, S.; Pinkerton, H. Formation of lava tubes and extensive flow field during the 1991–1993 eruption of Mount Etna. J. Geophys. Res. Solid Earth 1998, 103, 27291–27301. [Google Scholar] [CrossRef]
- Hwang, S.; Ahn, U.; Lee, M.; Yun, S. Formation and internal structures of the Geomunorm Lava Tube System in the northeastern Jeju Island. J. Geol. Soc. Korea 2005, 41, 385–400. [Google Scholar]
- Valerio, A.; Tallarico, A.; Dragoni, M. A model for the formation of lava tubes by the growth of the crust from the levees. J. Geophys. Res. 2010, 115. [Google Scholar] [CrossRef] [Green Version]
- Merle, O. Numerical modelling of strain in lava tubes. Bull. Volcanol. 2000, 62, 53–58. [Google Scholar] [CrossRef]
- Bussey, D.; Guest, J.; Sørensen, S.A. On the role of thermal conductivity on thermal erosion by lava. J. Geophys. Res. Planets 1997, 102, 10905–10908. [Google Scholar] [CrossRef]
- Kerr, R.C. Thermal erosion by laminar lava flows. J. Geophys. Res. Solid Earth 2001, 106, 26453–26465. [Google Scholar] [CrossRef] [Green Version]
- Kempe, S. Principles of pyroduct (lava tunnel) formation. In Proceedings of the 15th International Congress of Speleology, Kerrville, TX, USA, 19–26 July 2009; pp. 668–674. [Google Scholar]
- Kempe, S.; Bauer, I.; Bosted, P.; Coons, D.; Elhard, R. Inflationary versus crusted-over roofs of pyroducts (lava tunnels). In Proceedings of the 14th International Symposium on Vulcanospeleology, Conjuboy, Australia, 12–17 August 2010; p. 93. [Google Scholar]
- Witter, J.B.; Harris, A.J.L. Field measurements of heat loss from skylights and lava tube systems. J. Geophys. Res. 2007, 112. [Google Scholar] [CrossRef] [Green Version]
- Whittaker, W. Technologies enabling exploration of skylights, lava tubes and caves. In NASA Innovative Advanced Concepts (NIAC) Phase I; NASA: Washington, DC, USA, 2012. [Google Scholar]
- Kempe, S.; Woo, K.S. Geological observations in pyroducts of Jeju Island. In Proceedings of the 17th Symposium of Vulcanospeleology, Ocean View, HI, USA, 6–12 February 2016. [Google Scholar]
- Woo, K.; Kim, L.; Ji, H.; Jeon, Y.; Ryu, C.G.; Wood, C. Geological Heritage Values of the Yongcheon Cave (Lava Tube Cave), Jeju Island, Korea. Geoheritage 2019, 11, 615–628. [Google Scholar] [CrossRef]
- Son, I. Jeju Cave Final Report 2019; KICT: Seoul, Korea, 2019; pp. 5–12. [Google Scholar]
- Kim, J.-H. Creation Process and Specialty of Volcanic Caves in Jeju. J. Speleol. Soc. Korea 2006, 71, 45–46. [Google Scholar]
- Son, I.-s. A Study on the Stability of Lava Cave in Jeju Island. J. Korean Speleol. 2016, 108, 1. [Google Scholar]
- Waltham, A.; Park, H. Roads over lava tubes in Cheju Island, South Korea. Eng. Geol. 2002, 66, 53–64. [Google Scholar] [CrossRef]
- Favre, G. Some observations on Hawaiian pit craters and relations with lava tubes. In Proceedings of the 3rd International Symposium on Vulcanospeleology, Bend, OR, USA, 30 July–1 August 1982; pp. 37–41. [Google Scholar]
- Ferrill, D.A.; Wyrick, D.Y.; Smart, K.J. Coseismic, dilational-fault and extension-fracture related pit chain formation in Iceland: Analog for pit chains on Mars. Lithosphere 2011, 3, 133–142. [Google Scholar] [CrossRef] [Green Version]
- Jeon, Y.; Ki, J.S.; Koh, S.Y.; Kim, L.; Ryu, C.K. Characteristics and Implications of Lava Tubes from Geophysical Exploration in Jeju Island. J. Eng. Geol. 2015, 25, 473–484. [Google Scholar] [CrossRef]
- Beccaro, L.; Tolomei, C.; Gianardi, R.; Sepe, V.; Bisson, M.; Colini, L.; De Ritis, R.; Spinetti, C. Multitemporal and Multisensor InSAR Analysis for Ground Displacement Field Assessment at Ischia Volcanic Island (Italy). Remote Sens. 2021, 13, 4253. [Google Scholar] [CrossRef]
- Harvey, M. Sentinel-1 InSAR captures 2019 catastrophic White Island eruption. J. Volcanol. Geotherm. Res. 2021, 411, 107124. [Google Scholar] [CrossRef]
- Di Traglia, F.; Nolesini, T.; Solari, L.; Ciampalini, A.; Frodella, W.; Steri, D.; Allotta, B.; Rindi, A.; Marini, L.; Monni, N. Lava delta deformation as a proxy for submarine slope instability. Earth Planet. Sci. Lett. 2018, 488, 46–58. [Google Scholar] [CrossRef]
- Kaku, T.; Haruyama, J.; Miyake, W.; Kumamoto, A.; Ishiyama, K.; Nishibori, T.; Yamamoto, K.; Crites, S.T.; Michikami, T.; Yokota, Y.; et al. Detection of Intact Lava Tubes at Marius Hills on the Moon by SELENE (Kaguya) Lunar Radar Sounder. Geophys. Res. Lett. 2017, 44, 10155–10161. [Google Scholar] [CrossRef]
- McGown, R.D.; York, C.L.; Billings, T.L.; Walden, B. Lavatube Entrance Amelioration on the Moon and Mars. In Space 2002 and Robotics 2002; ASCE Library: Reston, VA, USA, 2002; pp. 155–161. [Google Scholar] [CrossRef] [Green Version]
- Schenk, P.M.; Williams, D.A. A potential thermal erosion lava channel on Io. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef] [Green Version]
- Carrer, L.; Gerekos, C.; Bruzzone, L. A multi-frequency radar sounder for lava tubes detection on the Moon: Design, performance assessment and simulations. Planet. Space Sci. 2018, 152, 1–17. [Google Scholar] [CrossRef]
- Rosen, P.; Paillou, P.; Hensley, S.; Massonnet, D.; Thompson, T. Imaging Radar Interferometry for the Exploration of Mars; American Geophysical Union: Washington, DC, USA, 2001; p. P52A-0571. [Google Scholar]
- Ghail, R.; Wilson, C.F.; Widemann, T. EnVision M5 venus orbiter proposal: Opportunities and challenges. In Proceedings of the DPS, Pasadena, CA, USA, 16–21 October 2016; pp. 208–216. [Google Scholar]
- Kim, J.-R.; Sumantyo, J.; Lin, S.-Y. Preliminary Study for the Long Wavelength Planetary SAR Sensor Design and Applications; EGUGA: Vienna, Austria, 2015; p. 8446. [Google Scholar]
- Kim, Y.S.; Choi, S.H. Plagioclase-rich nodules in Taeheungri basalt from Namwon, Jeju Island and its implications for tholeiite magmatism. J. Geol. Soc. Korea 2012, 48, 313–324. [Google Scholar]
- Brenna, M.; Cronin, S.J.; Nemeth, K.; Smith, I.E.; Sohn, Y.K. The influence of magma plumbing complexity on monogenetic eruptions, Jeju Island, Korea. Terra Nova 2011, 23, 70–75. [Google Scholar] [CrossRef]
- Brenna, M.; Cronin, S.J.; Smith, I.E.; Maas, R.; Sohn, Y.K. How small-volume basaltic magmatic systems develop: A case study from the Jeju Island Volcanic Field, Korea. J. Petrol. 2012, 53, 985–1018. [Google Scholar] [CrossRef] [Green Version]
- Brenna, M.; Cronin, S.J.; Smith, I.E.; Sohn, Y.K.; Maas, R. Spatio-temporal evolution of a dispersed magmatic system and its implications for volcano growth, Jeju Island Volcanic Field, Korea. Lithos 2012, 148, 337–352. [Google Scholar] [CrossRef]
- Koh, G.W.; Park, J.B.; Kang, B.-R.; Kim, G.-P.; Moon, D.C. Volcanism in Jeju Island. J. Geol. Soc. Korea 2013, 49, 209–230. [Google Scholar]
- KIGAM. Explanatory Note of Jeju Geological Map; KIGAM: Deajoon, Korea, 2000. [Google Scholar]
- Koh, G.-W.; Park, J.-B. The Study on Geology and Volcanism in Jeju Island (III): Early Lava Effusion Records in Jeju Island on the Basis of 40Ar/39Ar Absolute Ages of Lava Samples. Econ. Environ. Geol. 2010, 43, 163–176. [Google Scholar]
- Koh, G.-W.; Park, J.-B. The Study on geology and volcanism in Jeju Island (II): Petrochemistry and 40Ar/40Ar absolute ages of the volcanic rocks in Gapado-Marado, Jeju Island. Econ. Environ. Geol. 2010, 43, 53–66. [Google Scholar]
- Koh, G.-W.; Park, J.-B.; Park, Y.-S. The Study on Geology and Volcanism in Jeju Island (I): Petrochemistry and 40Ar/39Ar Absolute ages of the Subsurface Volcanic Rock Cores from Boreholes in the Eastern Lowland of Jeiu Island. Econ. Environ. Geol. 2008, 41, 93–113. [Google Scholar]
- Kim, I.; Lee, D. Magnetostratigraphy and AMS of the Seoguipo Formation and Seoguipo Trachyte of Jeju Island. J. Geol. Soc. Korea 2000, 36, 163–180. [Google Scholar]
- Sohn, Y.K.; Park, K.H. Early-stage volcanism and sedimentation of Jeju Island revealed by the Sagye borehole, SW Jeju Island, Korea. Geosci. J. 2004, 8, 73. [Google Scholar] [CrossRef]
- Son, H. Geophysical Exploration Report Around Manjanggul Cave; Pai Chai University: Daejeon, Korea, 2009. [Google Scholar]
- Hooper, A.; Zebker, H.; Segall, P.; Kampes, B. A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers. Geophys. Res. Lett. 2004, 31. [Google Scholar] [CrossRef]
- Intrieri, E.; Gigli, G.; Nocentini, M.; Lombardi, L.; Mugnai, F.; Fidolini, F.; Casagli, N. Sinkhole monitoring and early warning: An experimental and successful GB-InSAR application. Geomorphology 2015, 241, 304–314. [Google Scholar] [CrossRef] [Green Version]
- Baer, G.; Magen, Y.; Nof, R.; Raz, E.; Lyakhovsky, V.; Shalev, E. InSAR measurements and viscoelastic modeling of sinkhole precursory subsidence: Implications for sinkhole formation, early warning, and sediment properties. J. Geophys. Res. Earth Surf. 2018, 123, 678–693. [Google Scholar] [CrossRef]
- Yun, H.-W.; Kim, J.-R.; Yoon, H.; Choi, Y.; Yu, J. Seismic Surface Deformation Risks in Industrial Hubs: A Case Study from Ulsan, Korea, Using DInSAR Time Series Analysis. Remote Sens. 2019, 11, 1199. [Google Scholar] [CrossRef] [Green Version]
- Geudtner, D.; Torres, R.; Snoeij, P.; Davidson, M.; Rommen, B. Sentinel-1 system capabilities and applications. In Proceedings of the 2014 IEEE Geoscience and Remote Sensing Symposium, Quebec City, QC, Canada, 13–18 July 2014; pp. 1457–1460. [Google Scholar] [CrossRef]
- Ferretti, A.; Prati, C.; Rocca, F. Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2000, 38, 2202–2212. [Google Scholar] [CrossRef] [Green Version]
- Ferretti, A.; Prati, C.; Rocca, F. Permanent scatterers in SAR interferometry. IEEE Trans. Geosci. Remote Sens. 2001, 39, 8–20. [Google Scholar] [CrossRef]
- Berardino, P.; Fornaro, G.; Lanari, R.; Sansosti, E. A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms. IEEE Trans. Geosci. Remote Sens. 2002, 40, 2375–2383. [Google Scholar] [CrossRef] [Green Version]
- Crosetto, M.; Monserrat, O.; Cuevas-González, M.; Devanthéry, N.; Crippa, B. Persistent scatterer interferometry: A review. Int. J. Photogramm. Remote Sens. 2016, 115, 78–89. [Google Scholar] [CrossRef] [Green Version]
- Houng, S.E.; Lee, J.; Hong, T.-K. Dynamic seismic response of a stable intraplate region to a megathrust earthquake. Tectonophysics 2016, 689, 67–78. [Google Scholar] [CrossRef]
- Hong, T.-K.; Lee, J.; Park, S.; Kim, W. Time-advanced occurrence of moderate-size earthquakes in a stable intraplate region after a megathrust earthquake and their seismic properties. Sci. Rep. 2018, 8, 13331. [Google Scholar] [CrossRef]
- Ahn, U.-S.; Hwang, S.-K. Study on source of lava flows forming the Manjanggul lava tube. J. Petrol. Soc. Korea 2009, 18, 237–253. [Google Scholar]
- Hamm, S.-Y.; Cheong, J.-Y.; Jang, S.; Jung, C.-Y.; Kim, B.-S. Relationship between transmissivity and specific capacity in the volcanic aquifers of Jeju Island, Korea. J. Hydrol. 2005, 310, 111–121. [Google Scholar] [CrossRef]
- Huang, C.T.; Mitchell, O.R. A Euclidean distance transform using grayscale morphology decomposition. IEEE Trans. Pattern Anal. Mach. Intell. 1994, 16, 443–448. [Google Scholar] [CrossRef]
- Blair, D.M.; Chappaz, L.; Sood, R.; Milbury, C.; Bobet, A.; Melosh, H.J.; Howell, K.C.; Freed, A.M. The structural stability of lunar lava tubes. Icarus 2017, 282, 47–55. [Google Scholar] [CrossRef]
- Theinat, A.K.; Modiriasari, A.; Bobet, A.; Melosh, H.J.; Dyke, S.J.; Ramirez, J.; Maghareh, A.; Gomez, D. Lunar lava tubes: Morphology to structural stability. Icarus 2020, 338, 113442. [Google Scholar] [CrossRef]
- Atzori, S.; Baer, G.; Antonioli, A.; Salvi, S. InSAR-based modeling and analysis of sinkholes along the Dead Sea coastline. Geophys. Res. Lett. 2015, 42, 8383–8390. [Google Scholar] [CrossRef] [Green Version]
- Hu, J.; Li, Z.; Ding, X.; Zhu, J.; Zhang, L.; Sun, Q. Resolving three-dimensional surface displacements from InSAR measurements: A review. Earth-Sci. Rev. 2014, 133, 1–17. [Google Scholar] [CrossRef]
- Ho, T.K. The random subspace method for constructing decision forests. IEEE Trans. Pattern Anal. Mach. Intell. 1998, 20, 832–844. [Google Scholar]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef] [Green Version]
- Friedman, J.H. Stochastic gradient boosting. Comput. Stat. Data Anal. 2002, 38, 367–378. [Google Scholar] [CrossRef]
- Mason, L.; Baxter, J.; Bartlett, P.L.; Frean, M.R. Boosting algorithms as gradient descent. In Proceedings of the Advances in Neural Information Processing Systems, Denver, CO, USA, 29 November–4 December 1999; pp. 512–518. [Google Scholar]
- Liaw, A.; Wiener, M. Classification and regression by randomForest. R News 2002, 2, 18–22. [Google Scholar]
- The Government of Japan. Geophysical Exploration Report around Manjanggul Cave; The Government of Japan: Tokyo, Japan, 2009.
- Yang, X.-l.; Long, Z.-X. Roof collapse of shallow tunnels with limit analysis method. J. Cent. South Univ. 2015, 22, 1929–1936. [Google Scholar] [CrossRef]
- Abdellah, W.R.; Ali, M.A.; Yang, H.-S. Studying the effect of some parameters on the stability of shallow tunnels. J. Sustain. Min. 2018, 17, 20–33. [Google Scholar] [CrossRef]
- Paternesi, A.; Schweiger, H.F.; Scarpelli, G. Numerical analyses of stability and deformation behavior of reinforced and unreinforced tunnel faces. Comput. Geotech. 2017, 88, 256–266. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, X. Finite element analysis of the stability of tunnel surrounding rock with weak rock layer. Mod. Appl. Sci. 2009, 3, 22–27. [Google Scholar] [CrossRef] [Green Version]
- Fialko, Y.; Simons, M.; Agnew, D. The complete (3-D) surface displacement field in the epicentral area of the 1999 Mw7. 1 Hector Mine earthquake, California, from space geodetic observations. Geophys. Res. Lett. 2001, 28, 3063–3066. [Google Scholar] [CrossRef] [Green Version]
- Alvarez-Salazar, O.; Hatch, S.; Rocca, J.; Rosen, P.; Shaffer, S.; Shen, Y.; Sweetser, T.; Xaypraseuth, P. Mission design for NISAR repeat-pass Interferometric SAR. In Proceedings of the Sensors, Systems, and Next-Generation Satellites XVIII, Amsterdam, The Netherlands, 14 November 2014; p. 92410C. [Google Scholar]
- Scipal, K.; Arcioni, M.; Chave, J.; Dall, J.; Fois, F.; LeToan, T.; Lin, C.-C.; Papathanassiou, K.; Quegan, S.; Rocca, F. The BIOMASS mission—An ESA Earth Explorer candidate to measure the BIOMASS of the earth’s forests. In Proceedings of the 2010 IEEE International Geoscience and Remote Sensing Symposium, Honolulu, HI, USA, 25–30 July 2010; pp. 52–55. [Google Scholar]
- Chappaz, L.; Sood, R.; Melosh, H.J.; Howell, K.C.; Blair, D.M.; Milbury, C.; Zuber, M.T. Evidence of large empty lava tubes on the Moon using GRAIL gravity. Geophys. Res. Lett. 2017, 44, 105–112. [Google Scholar] [CrossRef] [Green Version]
- Cushing, G.; Titus, T.N.; Wynne, J.J.; Christensen, P. THEMIS observes possible cave skylights on Mars. Geophys. Res. Lett. 2007, 34. [Google Scholar] [CrossRef] [Green Version]
SAR Image Parameters | |
---|---|
Image number | 72 |
Time coverage | 1 January 2016–22 December 2018 |
Heading angle (deg) | −167.107 |
Incidence angle (deg) | 44.0 |
Relative Orbit | 134 |
Acquisition time | 06:32 KST (GMT + 9) |
Number of Points | Selection Standard (Velocity (mm/Year) and Standard Deviation (Std.dev.)) | Constraints | |
---|---|---|---|
V-migrations | 50 | Velocity < −1.0 Std.dev. > 0.5 | Soumgol and Manjang cave around road crossing |
H-migration | 17 | Velocity > −0.75 Std.dev. > 0.5 | Soumgol and Manjang cave around road crossing |
Regional subsidence | 483 | Velocity < −2 Std.dev. > 1.0 | Seogwipo sediment unit |
Instability points by artificial structures | 433 | Velocity < 4.5 Std.dev. > 1.0 | Jeju City area |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kim, J.-R.; Lin, S.-Y.; Oh, J.-W. The Survey of Lava Tube Distribution in Jeju Island by Multi-Source Data Fusion. Remote Sens. 2022, 14, 443. https://doi.org/10.3390/rs14030443
Kim J-R, Lin S-Y, Oh J-W. The Survey of Lava Tube Distribution in Jeju Island by Multi-Source Data Fusion. Remote Sensing. 2022; 14(3):443. https://doi.org/10.3390/rs14030443
Chicago/Turabian StyleKim, Jung-Rack, Shih-Yuan Lin, and Jong-Woo Oh. 2022. "The Survey of Lava Tube Distribution in Jeju Island by Multi-Source Data Fusion" Remote Sensing 14, no. 3: 443. https://doi.org/10.3390/rs14030443
APA StyleKim, J. -R., Lin, S. -Y., & Oh, J. -W. (2022). The Survey of Lava Tube Distribution in Jeju Island by Multi-Source Data Fusion. Remote Sensing, 14(3), 443. https://doi.org/10.3390/rs14030443