Peatland Plant Spectral Response as a Proxy for Peat Health, Analysis Using Low-Cost Hyperspectral Imaging Techniques
Abstract
:1. Introduction
2. Materials and Methods
2.1. Instrument Specifications
2.2. Sample Preparation and Simulated Environmental Conditions
2.3. Data Collection
3. Results
3.1. Spatial Target Identification
3.2. Change over Time Observations
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- UK Government. England Peat Action Plan; Department for Environment, Food & Rural Affairs: London UK, 2021.
- Carless, D.; Luscombe, D.J.; Gatis, N.; Anderson, K.; Brazier, R.E. Mapping landscape-scale peatland degradation using airborne lidar and multispectral data. Landsc. Ecol. 2019, 34, 1329–1345. [Google Scholar] [CrossRef] [Green Version]
- Grand-Clement, E.; Anderson, K.; Smith, D.; Luscombe, D.; Gatis, N.; Ross, M.; Brazier, R.E. Evaluating ecosystem goods and services after restoration of marginal upland peatlands in South-West England. J. Appl. Ecol. 2013, 50, 324–334. [Google Scholar] [CrossRef]
- Cole, B.; McMorrow, J.; Evans, M. Spectral monitoring of moorland plant phenology to identify a temporal window for hyperspectral remote sensing of peatland. ISPRS J. Photogramm. Remote Sens. 2014, 90, 49–58. [Google Scholar] [CrossRef]
- Meingast, K.M.; Falkowski, M.J.; Kane, E.S.; Potvin, L.R.; Benscoter, B.W.; Smith, A.M.S.; Bourgeau-Chavez, L.L.; Miller, M.E. Spectral detection of near-surface moisture content and water-table position in northern peatland ecosystems. Remote Sens. Environ. 2014, 152, 536–546. [Google Scholar] [CrossRef]
- Erudel, T.; Fabre, S.; Briottet, X.; Houet, T. Classification of Peatland Vegetation Types Using in Situ Hyperspectral Measurements. In Proceedings of the 2017 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Fort Worth, TX, USA, 23–28 July 2017; pp. 5713–5716. [Google Scholar]
- Rastogi, A.; Stróżecki, M.; Kalaji, H.M.; Łuców, D.; Lamentowicz, M.; Juszczak, R. Impact of warming and reduced precipitation on photosynthetic and remote sensing properties of peatland vegetation. Environ. Exp. Bot. 2019, 160, 71–80. [Google Scholar] [CrossRef]
- Beyer, F.; Jurasinski, G.; Couwenberg, J.; Grenzdörffer, G. Multisensor Data to derive peatland vegetation communities using a fixed-wing unmanned aerial vehicle. Int. J. Remote Sens. 2019, 40, 9103–9125. [Google Scholar] [CrossRef]
- Medcalf, K.A.; Jarman, M.W.; Keyworth, S.J. Assessing the Extent and Severity of Erosion on the Upland Organic Soils of Scotland Using Earth Observation and Object Orientated Classification Methods. Environ. Sci. 2010, 38, 1–5. [Google Scholar]
- Banskota, A.; Falkowski, M.J.; Smith, A.M.S.; Kane, E.S.; Meingast, K.M.; Bourgeau-Chavez, L.L.; Miller, M.E.; French, N.H. Continuous Wavelet Analysis for Spectroscopic Determination of Subsurface Moisture and Water-Table Height in Northern Peatland Ecosystems. IEEE Trans. Geosci. Remote Sens. 2017, 55, 1526–1536. [Google Scholar] [CrossRef]
- Albertson, K.; Aylen, J.; Cavan, G.; McMorrow, J. Climate change and the future occurrence of moorland wildfires in the Peak District of the UK. Clim. Res. 2010, 45, 105–118. [Google Scholar] [CrossRef] [Green Version]
- Evans, M.; Lindsay, J. High resolution quantification of gully erosion in upland peatlands at the landscape scale. Earth Surf. Process. Landforms 2010, 35, 876–886. [Google Scholar] [CrossRef]
- Lopatin, J.; Kattenborn, T.; Galleguillos, M.; Perez-Quezada, J.F.; Schmidtlein, S. Using aboveground vegetation attributes as proxies for mapping peatland belowground carbon stocks. Remote Sens. Environ. 2019, 231, 111217. [Google Scholar] [CrossRef]
- Lendzioch, T.; Langhammer, J.; Vlček, L.; Minařík, R. Mapping the groundwater level and soil moisture of a montane peat bog using uav monitoring and machine learning. Remote Sens. 2021, 13, 907. [Google Scholar] [CrossRef]
- Gatis, N.; Luscombe, D.J.; Benaud, P.; Ashe, J.; Grand-Clement, E.; Anderson, K.; Hartley, I.P.; Brazier, R.E. Drain blocking has limited short-term effects on greenhouse gas fluxes in a Molinia caerulea dominated shallow peatland. Ecol. Eng. 2020, 158, 106079. [Google Scholar] [CrossRef]
- Lees, K.J.; Artz, R.R.E.; Khomik, M.; Clark, J.M.; Rotson, J.; Hancock, M.H.; Cowie, N.R.; Quaife, T. Using spectral indices to estimate water content and GPP in sphagnum moss and other peatland vegetation. IEEE Trans. Geosci. Remote Sens. 2020, 58, 4547–4557. [Google Scholar] [CrossRef] [Green Version]
- Honkavaara, E.; Eskelinen, M.A.; Pölönen, I.; Saari, H.; Ojanen, H.; Mannila, R.; Holmlund, C.; Hakala, T.; Litkey, P.; Rosnell, T.; et al. Remote Sensing of 3-D Geometry and Surface Moisture of a Peat Production Area Using Hyperspectral Frame Cameras in Visible to Short-Wave Infrared Spectral Ranges Onboard a Small Unmanned Airborne Vehicle (UAV). IEEE Trans. Geosci. Remote Sens. 2016, 54, 5440–5454. [Google Scholar] [CrossRef] [Green Version]
- Mustaffa, A.A.; Mukhtar, A.N.; Rasib, A.W.; Suhandri, H.F.; Bukari, S.M. Mapping of Peat Soil Physical Properties by Using Drone- Based Multispectral Vegetation Imagery. IOP Conf. Ser. Earth Environ. Sci. 2020, 498, 012021. [Google Scholar] [CrossRef]
- Arroyo-Mora, J.P.; Kalacska, M.; Soffer, R.J.; Moore, T.R.; Roulet, N.T.; Juutinen, S.; Ifimov, G.; Leblanc, G.; Inamdar, D. Airborne hyperspectral evaluation of maximum gross photosynthesis, gravimetricwater content, and CO2 uptake efficiency of the Mer Bleue ombrotrophic peatland. Remote Sens. 2018, 10, 565. [Google Scholar] [CrossRef] [Green Version]
- Kalacska, M.; Lalonde, M.; Moore, T.R. Estimation of foliar chlorophyll and nitrogen content in an ombrotrophic bog from hyperspectral data: Scaling from leaf to image. Remote Sens. Environ. 2015, 169, 270–279. [Google Scholar] [CrossRef]
- Milton, E.; Hughes, P.D.; Anderson, K.; Schulz, J.; Lindsay, R.; Kelday, S.B.; Hill, C.T. Remote sensing of bog surfaces. JNCC Rep. 2005, 366, 99. [Google Scholar]
- Harris, A.; Bryant, R.G.; Baird, A.J. Mapping the effects of water stress on Sphagnum: Preliminary observations using airborne remote sensing. Remote Sens. 2006, 100, 363–378. [Google Scholar] [CrossRef]
- Harris, A.; Bryant, R.G.; Baird, A.J. Detecting near-surface moisture stress in Sphagnum spp. Remote Sens. Environ. 2005, 97, 371–381. [Google Scholar] [CrossRef]
- Bryant, R.G.; Baird, A.J. The spectral behaviour of Sphagnum canopies under varying hydrological conditions. Geophys. Res. Lett. 2003, 3, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Bonnet, S.; Ross, S.; Linstead, C.; Maltby, E. A Review of Techniques for Monitoring the Success of Peatland Restoration; Natural England: New York, NY, USA, 2009.
- Harris, A.; Charnock, R.; Lucas, R.M. Hyperspectral remote sensing of peatland floristic gradients. Remote Sens. Environ. 2015, 162, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Van Gaalen, K.E.; Flanagan, L.B.; Peddle, D.R. Photosynthesis, chlorophyll fluorescence and spectral reflectance in Sphagnum moss at varying water contents. Oecologia 2007, 153, 19–28. [Google Scholar] [CrossRef] [PubMed]
- Strack, M.; Price, J. Ecohydrology Bearing—Invited Commentary Transformation ecosystem change and ecohydrology: Ushering in a new era for watershed management. Ecohydrology 2010, 130, 126–130. [Google Scholar]
- Lees, K.J.; Clark, J.M.; Quaife, T.; Khomik, M.; Artz, R.R.E. Changes in carbon flux and spectral reflectance of Sphagnum mosses as a result of simulated drought. Ecohydrology 2019, 12, e2123. [Google Scholar] [CrossRef]
- McNeil, P.; Waddington, J.M. Moisture controls on Sphagnum growth and CO2 exchange on a cutover bog. J. Appl. Ecol. 2003, 40, 354–367. [Google Scholar] [CrossRef]
- Robroek, B.J.M.; Schouten, M.G.C.; Limpens, J.; Berendse, F.; Poorter, H. Interactive effects of water table and precipitation on net CO2 assimilation of three co-occurring Sphagnum mosses differing in distribution above the water table. Glob. Chang. Biol. 2009, 15, 680–691. [Google Scholar] [CrossRef]
- Bortoluzzi, E.; Epron, D.; Siegenthaler, A.; Gilbert, D.; Buttler, A. Carbon balance of a European mountain bog at contrasting stages of regeneration. New Phytol. 2006, 172, 708–718. [Google Scholar] [CrossRef]
- Bragazza, L. A climatic threshold triggers the die-off of peat mosses during an extreme heat wave. Glob. Chang. Biol. 2008, 14, 2688–2695. [Google Scholar] [CrossRef]
- Stuart, M.B.; McGonigle, A.J.S.; Davies, M.; Hobbs, M.J.; Boone, N.A.; Stanger, L.R.; Zhu, C.; Pering, T.D.; Willmott, J.R. Low-cost hyperspectral imaging with a smartphone. J. Imaging 2021, 7, 136. [Google Scholar] [CrossRef] [PubMed]
- Davies, M.; Stuart, M.B.; Hobbs, M.J.; McGonigle, A.J.S.; Willmott, J.R. Image correction and in-situ spectral calibration for low-cost, smartphone hyperspectral imaging. Remote Sens. 2022, 14, 1152. [Google Scholar] [CrossRef]
- Stuart, M.B.; Davies, M.M.J.; Hobbs, M.J.; Pering, T.D.; McGonigle, A.J.S.; Willmott, J.R. High-resolution hyperspectral imaging using low-cost components: Application within environmental monitoring scenarios. Sensors 2022, 22, 4652. [Google Scholar] [CrossRef] [PubMed]
- Stuart, M.B.; Stanger, L.R.; Hobbs, M.J.; Pering, T.D.; Thio, D.; McGonigle, A.J.S.; Willmott, J.R. Low-cost hyperspectral imaging system: Design and testing for laboratory-based environmental applications. Sensors 2020, 20, 3293. [Google Scholar] [CrossRef]
- Goudarzi, S.; Milledge, D.G.; Holden, J.; Evans, M.G.; Allott, T.E.H.; Shuttleworth, E.L.; Pilkington, M.; Walker, J. Blanket Peat Restoration: Numerical Study of the Underlying Processes Delivering Natural Flood Management Benefits. Water Resour. Res. 2021, 57, e2020WR029209. [Google Scholar] [CrossRef]
- Pilkington, M.; Walker, J.; Maskill, R.; Allott, T.; Evans, M. Restoration of Blanket Bogs; Flood Risk Reduction and Other Ecosystem Benefits. In Making Space for Water Project; Moors for the Future Partnership: Edale, UK, 2015. [Google Scholar]
- Lees, K.J.; Artz, R.R.E.; Chandler, D.; Aspinall, T.; Boulton, C.A.; Buxton, J.; Cowie, N.R.; Lenton, T.M. Using remote sensing to assess peatland resilience by estimating soil surface moisture and drought recovery. Sci. Total Environ. 2021, 761, 143312. [Google Scholar] [CrossRef]
- Alderson, D.M.; Evans, M.G.; Shuttleworth, E.L.; Pilkington, M.; Spencer, T.; Walker, J.; Allott, T.E.H. Trajectories of ecosystem change in restored blanket peatlands. Sci. Total Environ. 2019, 665, 785–796. [Google Scholar] [CrossRef]
- Benson, J.L.; Crouch, T.; Chandler, D.; Walker, J. Harvesting Sphagnum from Donor Sites: Pilot Study Report; Moors for the Future Partnership: Edale, UK, 2019. [Google Scholar]
- Pang, Y.; Huang, Y.; Zhou, Y.; Xu, J.; Wu, Y. Identifying spectral features of characteristics of sphagnum to assess the remote sensing potential of peatlands: A case study in China. Mires Peat 2020, 26, 25. [Google Scholar] [CrossRef]
- Vogelmann, J.E.; Moss, D.M. Spectral reflectance measurements in the genus Sphagnum. Remote Sens. Environ. 1993, 45, 273–279. [Google Scholar] [CrossRef]
Hyperspectral Smartphone | Low-Cost High-Resolution Instrument | |
---|---|---|
Imaging Mode | Push Broom (hand-held) | Push Broom (static scanning) |
Exposure Time (ms) | 30 | 60 |
Spectral Range (nm) | 450–650 | 565–740 |
Spectral Resolution (nm) | 14 | <1 |
Sphagnum Species | Approximate Percentage of Sample |
---|---|
Magellanicum | 33 |
Palustre | 33 |
Subnitens | 33 |
Group | Observing | Water Input |
---|---|---|
Control | Maintained saturation | Steady-state maintenance determined by weight. |
Rainfall | Average rainfall experienced by in-situ plants. | 7 mm simulated rainfall every 3–4 days. |
Drought | Simulated drought | None |
Time (24 h) | Temperature (°C) |
---|---|
00:00 | 8.3 |
01:00 | 8.1 |
02:00 | 7.9 |
03:00 | 7.8 |
04:00 | 7.7 |
05:00 | 7.8 |
06:00 | 8.4 |
07:00 | 9.4 |
08:00 | 10.6 |
09:00 | 11.8 |
10:00 | 12.9 |
11:00 | 13.7 |
12:00 | 14.3 |
13:00 | 14.6 |
14:00 | 14.6 |
15:00 | 14.4 |
16:00 | 13.7 |
17:00 | 12.9 |
18:00 | 11.8 |
19:00 | 10.7 |
20:00 | 9.7 |
21:00 | 9.1 |
22:00 | 8.8 |
23:00 | 8.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stuart, M.B.; Davies, M.; Hobbs, M.J.; McGonigle, A.J.S.; Willmott, J.R. Peatland Plant Spectral Response as a Proxy for Peat Health, Analysis Using Low-Cost Hyperspectral Imaging Techniques. Remote Sens. 2022, 14, 3846. https://doi.org/10.3390/rs14163846
Stuart MB, Davies M, Hobbs MJ, McGonigle AJS, Willmott JR. Peatland Plant Spectral Response as a Proxy for Peat Health, Analysis Using Low-Cost Hyperspectral Imaging Techniques. Remote Sensing. 2022; 14(16):3846. https://doi.org/10.3390/rs14163846
Chicago/Turabian StyleStuart, Mary B., Matthew Davies, Matthew J. Hobbs, Andrew J. S. McGonigle, and Jon R. Willmott. 2022. "Peatland Plant Spectral Response as a Proxy for Peat Health, Analysis Using Low-Cost Hyperspectral Imaging Techniques" Remote Sensing 14, no. 16: 3846. https://doi.org/10.3390/rs14163846
APA StyleStuart, M. B., Davies, M., Hobbs, M. J., McGonigle, A. J. S., & Willmott, J. R. (2022). Peatland Plant Spectral Response as a Proxy for Peat Health, Analysis Using Low-Cost Hyperspectral Imaging Techniques. Remote Sensing, 14(16), 3846. https://doi.org/10.3390/rs14163846