Post-Fire Forest Vegetation State Monitoring through Satellite Remote Sensing and In Situ Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Characteristics of Climatic Anomalies Observed during the Period of 2016–2021
2.3. Data
2.3.1. In Situ Data
2.3.2. Satellite Data
2.4. Methods
Spectral Indices Selected for Assessment of Post-Fire Vegetation Recovery
3. Results
3.1. Forest Vegetation Recovery for the Entire Study Area
3.2. Forest Vegetation Recovery in the Individual Slope Aspects
3.3. Linear Regression Analyses for the Apectral Indices
3.4. Validation through HRLs
3.5. Validation through Field Observation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Band | Spectral Resolution | Spatial Resolution |
---|---|---|
B1 | 0.443 | 60 |
B2 | 0.49 | 10 |
B3 | 0.56 | 10 |
B4 | 0.665 | 10 |
B5 | 0.705 | 20 |
B6 | 0.74 | 20 |
B7 | 0.783 | 20 |
B8 | 0.842 | 10 |
B8a | 0.865 | 20 |
B9 | 0.94 | 60 |
B10 | 1.375 | 60 |
B11 | 1.61 | 20 |
B12 | 2.19 | 20 |
Appendix B
NDVI | ||||||
---|---|---|---|---|---|---|
Category | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
0–0.1 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
0.1–0.2 | 0.0 | 4.7 | 0.8 | 0.3 | 0.5 | 0.1 |
0.2–0.3 | 0.1 | 20.2 | 6.9 | 3.3 | 6.3 | 2.2 |
0.3–0.4 | 1.7 | 21.0 | 18.1 | 10.7 | 18.5 | 9.3 |
0.4–0.5 | 6.8 | 18.0 | 24.3 | 19.1 | 26.7 | 20.6 |
0.5–0.6 | 28.2 | 18.3 | 26.1 | 25.5 | 28.3 | 28.9 |
0.6–0.7 | 48.1 | 13.5 | 18.1 | 27.1 | 17.5 | 29.7 |
0.7–0.8 | 14.1 | 3.8 | 5.3 | 12.1 | 2.2 | 8.9 |
0.8–0.9 | 1.0 | 0.1 | 0.0 | 1.7 | 0.0 | 0.2 |
0.9–1 | 0.0 | 0.3 | 0.3 | 0.3 | 0.0 | 0.0 |
MCARI2 | ||||||
Category | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
0–0.1 | 0.3 | 0.7 | 0.4 | 0.4 | 0.1 | 0.0 |
0.1–0.2 | 0.0 | 3.3 | 0.6 | 0.2 | 0.3 | 0.1 |
0.2–0.3 | 0.0 | 10.3 | 2.1 | 1.1 | 2.1 | 0.9 |
0.3–0.4 | 0.2 | 13.7 | 6.0 | 3.1 | 6.0 | 3.0 |
0.4–0.5 | 1.4 | 14.5 | 11.8 | 7.2 | 13.5 | 7.8 |
0.5–0.6 | 3.9 | 14.3 | 18.0 | 13.2 | 20.5 | 15.9 |
0.6–0.7 | 11.3 | 15.3 | 20.8 | 20.2 | 21.4 | 22.6 |
0.7–0.8 | 47.5 | 19.4 | 25.1 | 29.0 | 26.7 | 29.7 |
0.8–0.9 | 35.2 | 8.6 | 15.2 | 25.5 | 9.5 | 20.0 |
0.9–1 | 0.1 | 0.0 | 0.0 | 0.3 | 0.0 | 0.0 |
MSI | ||||||
Category | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
0.3–0.5 | 3.3 | 1.7 | 2.0 | 3.4 | 1.8 | 3.8 |
0.5–0.7 | 60.5 | 16.3 | 19.0 | 23.3 | 17.3 | 23.9 |
0.7–0.9 | 29.7 | 17.0 | 23.5 | 29.3 | 20.6 | 28.7 |
0.9–1.1 | 5.1 | 17.3 | 25.2 | 25.7 | 24.0 | 27.9 |
1.1–1.3 | 1.2 | 19.3 | 22.7 | 15.9 | 26.0 | 14.2 |
1.3–1.5 | 0.1 | 18.8 | 7.4 | 2.4 | 9.6 | 1.5 |
1.5–1.7 | 0.0 | 8.3 | 0.3 | 0.0 | 0.8 | 0.0 |
1.7–1.9 | 0.0 | 1.2 | 0.0 | 0.0 | 0.0 | 0.0 |
1.9–2.1 | 0.0 | 0.1 | 0.0 | 0.0 | 0.0 | 0.0 |
2.1–2.3 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
DI | ||||||
Category | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
<0 | 52.1 | 36.4 | 36.6 | 34.9 | 35.9 | 35.9 |
0–1 | 28.8 | 12.3 | 16.2 | 20.6 | 16.9 | 21.8 |
1–2 | 12.1 | 16.2 | 19.4 | 21.9 | 25.4 | 30.0 |
2–3 | 4.0 | 16.9 | 17.7 | 15.9 | 19.4 | 11.7 |
3–4 | 2.0 | 12.3 | 8.6 | 6.0 | 2.4 | 0.6 |
4–5 | 0.7 | 4.9 | 1.5 | 0.6 | 0.0 | 0.0 |
5–6 | 0.2 | 0.9 | 0.0 | 0.0 | 0.0 | 0.0 |
6–6.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
>6.5 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |
NDGI | ||||||
Category | 2015–2016 | 2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | 2020–2021 |
−1–−0.8 | 7.9 | 49.9 | 5.5 | 2.8 | 6.1 | 1.9 |
−0.8–−0.6 | 2.0 | 4.9 | 1.3 | 0.8 | 2.0 | 0.7 |
−0.6–−0.4 | 4.4 | 5.3 | 2.7 | 1.7 | 3.1 | 1.3 |
−0.4–−0.2 | 12.7 | 6.3 | 6.6 | 6.7 | 5.7 | 4.1 |
−0.2–0 | 29.7 | 8.3 | 24.8 | 23.5 | 12.5 | 20.5 |
0–0.2 | 26.6 | 10.8 | 22.2 | 32.3 | 26.1 | 29.2 |
0.2–0.4 | 8.8 | 7.8 | 11.0 | 13.1 | 18.3 | 14.1 |
0.4–0.6 | 4.2 | 3.9 | 6.3 | 5.7 | 9.1 | 7.8 |
0.6–0.8 | 2.4 | 2.0 | 4.1 | 3.2 | 4.4 | 4.5 |
0.8–1 | 1.2 | 0.8 | 15.5 | 10.2 | 12.6 | 15.8 |
NDWNI | ||||||
Category | 2015–2016 | 2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | 2020–2021 |
−1–−0.8 | 20.4 | 14.8 | 5.8 | 7.8 | 3.9 | 6.3 |
−0.8–−0.6 | 5.6 | 6.3 | 2.1 | 2.3 | 1.7 | 2.0 |
−0.6–−0.4 | 8.4 | 7.2 | 4.8 | 4.4 | 3.8 | 3.2 |
−0.4–−0.2 | 13.7 | 8.4 | 12.1 | 10.5 | 12.3 | 7.9 |
−0.2–0 | 22.6 | 10.5 | 22.9 | 34.1 | 32.8 | 28.5 |
0–0.2 | 23.2 | 9.5 | 32.8 | 34.8 | 27.0 | 36.2 |
0.2–0.4 | 4.9 | 8.7 | 11.6 | 4.4 | 7.7 | 8.8 |
0.4–0.6 | 0.6 | 8.2 | 2.8 | 0.6 | 3.4 | 2.4 |
0.6–0.8 | 0.2 | 5.7 | 1.2 | 0.3 | 1.9 | 1.3 |
0.8–1 | 0.5 | 20.7 | 4.0 | 0.7 | 5.5 | 3.5 |
Appendix C
Index | Value | Point Location of Field Observation | Photography |
---|---|---|---|
NDVI | 0.47 | Point 1 Karst area | |
MCARI2 | 0.57 | ||
MSI | 0.98 | ||
DI | 1.27 | ||
NDGI | −0.53 | ||
NDWNI | −0.09 | ||
NDVI | 0.61 | Point 1 Meadows amongst coniferous forests | |
MCARI2 | 0.74 | ||
MSI | 0.8 | ||
DI | 1.75 | ||
NDGI | 1 | ||
NDWNI | 0.02 | ||
NDVI | 0.46 | Point 2 | |
MCARI2 | 0.58 | ||
MSI | 1 | ||
DI | 0.75 | ||
NDGI | 0.29 | ||
NDWNI | −0.01 | ||
NDVI | 0.61 | Point 4 Mixed forests | |
MCARI2 | 0.75 | ||
MSI | 0.61 | ||
DI | −2.52 | ||
NDGI | −0.17 | ||
NDWNI | 0.16 | ||
NDVI | 0.64 | Point 5 Mixed forests | |
MCARI2 | 0.79 | ||
MSI | 0.84 | ||
DI | 1.06 | ||
NDGI | 1 | ||
NDWNI | 0 | ||
NDVI | 0.44 | Point 5 Transitional woodlands and shrubs | |
MCARI2 | 0.57 | ||
MSI | 1.11 | ||
DI | 1.05 | ||
NDGI | 0.33 | ||
NDWNI | 0.17 | ||
NDVI | 0.53 | Point 6 Coniferous forests | |
MCARI2 | 0.67 | ||
MSI | 1.05 | ||
DI | 0.64 | ||
NDGI | 0.5 | ||
NDWNI | 0.47 | ||
NDVI | 0.6 | Point 7 | |
MCARI2 | 0.74 | ||
MSI | 0.71 | ||
DI | −0.46 | ||
NDGI | 0.5 | ||
NDWNI | 0.47 | ||
NDVI | 0.32 | Point 8 Karst area | |
MCARI2 | 0.41 | ||
MSI | 1.41 | ||
DI | 2.91 | ||
NDGI | 0.07 | ||
NDWNI | 0.03 |
References
- Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, G.; et al. Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1029–1136. [Google Scholar]
- Wu, Z.; Li, M.; Wang, B.; Tian, Y.; Quan, Y.; Liu, J. Analysis of Factors Related to Forest Fires in Different Forest Ecosystems in China. Forests 2022, 13, 1021. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. [Google Scholar]
- Flannigan, M.; Amiro, B.D.; Logan, K.A.; Stocks, B.J.; Wotton, B.M. Forest fires and climate change in the 21st century. Mitig. Adapt. Strateg. Glob. Chang. 2005, 11, 847–859. [Google Scholar] [CrossRef]
- Pausas, J.G.; Llovet, J.; Rodrigo, A.; Vallejo, R. Are wildfires a disaster in the Mediterranean basin?—A review. Int. J. Wildland Fire 2008, 17, 713–723. [Google Scholar] [CrossRef] [Green Version]
- Gelabert, P.J.; Montealegre, A.L.; Lamelas, M.T.; Domingo, D. Forest structural diversity characterization in Mediterranean landscapes affected by fires using Airborne Laser Scanning data. GIScience Remote Sens. 2020, 57, 497–509. [Google Scholar] [CrossRef]
- Moreira, F.; Ascoli, D.; Safford, H.; Adams, M.A.; Moreno, J.M.; Pereira, J.M.; Catry, F.X.; Armesto, J.; Bond, W.; González, M.E.; et al. Wildfire management in Mediterranean-type regions: Paradigm change needed. Environ. Res. Lett. 2020, 15, 011001. [Google Scholar] [CrossRef]
- Velizarova, E.; Nedkov, R.; Avetisyan, D.; Radeva, K.; Stoyanov, A.; Georgiev, N.; Gigova, I. Application of remote sensing techniques for monitoring of the climatic parameters in forest fire vulnerable regions in Bulgaria. In Proceedings of the Seventh International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019), Paphos, Cyprus, 18–21 March 2019. [Google Scholar] [CrossRef]
- Chuvieco, E.; Congalton, R.G. Application of remote sensing and geographic information systems to forest fire hazard mapping. Remote Sens. Environ. 1989, 29, 147–159. [Google Scholar] [CrossRef]
- Arroyo, L.A.; Pascual, C.; Manzanera, J.A. Fire models and methods to map fuel types: The role of remote sensing. For. Ecol. Manag. 2008, 256, 1239–1252. [Google Scholar] [CrossRef] [Green Version]
- Chu, T.; Guo, X. Remote Sensing Techniques in Monitoring Post-Fire Effects and Patterns of Forest Recovery in Boreal Forest Regions: A Review. Remote Sens. 2014, 6, 470–520. [Google Scholar] [CrossRef]
- Stankova, N.; Nedkov, R. Research model of monitoring the recovery of an ecosystem after fire based on satellite and GPS data. Ecol. Eng. Environ. Prot. 2016, 1, 5–11. [Google Scholar]
- Szpakowski, D.M.; Jensen, J.L.R. A Review of the Applications of Remote Sensing in Fire Ecology. Remote Sens. 2019, 11, 2638. [Google Scholar] [CrossRef] [Green Version]
- Barrett, K.; Baxter, R.; Kukavskaya, E.; Balztera, H.; Shvetsov, E.; Buryak, L. Postfire recruitment failure in Scots pine forests of southern Siberia. Remote Sens. Environ. 2020, 237, 111539. [Google Scholar] [CrossRef]
- Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification performance. Int. J. Remote Sens. 2007, 28, 823–870. [Google Scholar] [CrossRef]
- Corona, P.; Lamonaca, A.; Chirici, G. Remote sensing support for post fire forest management. Iforest—Biogeosciences For. 2008, 1, 6–12. [Google Scholar] [CrossRef] [Green Version]
- Lhermitte, S.; Verbesselt, J.; Verstraeten, W.W.; Veraverbeke, S.; Coppin, P. Assessing intra-annual vegetation regrowth after fire using the pixel based regeneration index. J. Photogramm. Remote Sens. 2011, 66, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Velizarova, E.; Radeva, K.; Stoyanov, A.; Georgiev, N.; Gigova, I. Post-fire forest disturbance monitoring using remote sensing data and spectral indices. In Proceedings of the SPIE 11174, Seventh International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2019), 111741G, Paphos, Cyprus, 27 June 2019. [Google Scholar] [CrossRef]
- Moran, C.J.; Seielstad, C.A.; Cunningham, M.R.; Hoff, V.; Parsons, R.A.; Queen, L.; Sauerbrey, K.; Wallace, T. Deriving Fire Behavior Metrics from UAS Imagery. Fire 2019, 2, 36. [Google Scholar] [CrossRef] [Green Version]
- Bannari, A.; Morin, D.; Bonn, F.; Huete, A.R. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [Google Scholar] [CrossRef]
- Meng, R.; Denninson, P.E.; Huang, C.; Moritz, M.A.; D’Antonio, C. Effects of fire severity and post-fire climate on short term vegetation recovery of mixed-conifer and red fir forests in the Sierra Nevada Mountains of California. Remote Sens. Environ. 2015, 171, 311–325. [Google Scholar] [CrossRef]
- Moser, G.; Serpico, S.B.; Benediktsson, J.A. Land-Cover Mapping by Markov Modeling of Spatio-contextual Information in Very-High-Resolution Remote Sensing Images. Proc. IEEE 2013, 101, 631–651. [Google Scholar] [CrossRef]
- Salih, A.A.M.; Ganawa, E.-T.; Elmahl, A.A. Spectral mixture analysis (SMA) and change vector analysis (CVA) methods for monitoring and mapping land degradation/desertification in arid and semiarid areas (Sudan), using Landsat imagery. Egypt. J. Remote Sens. Space Sci. 2017, 20, S21–S29. [Google Scholar] [CrossRef]
- Corona, P.; Saracino, A.; Leone, V. Plot size and shape for the early assessment of post-fire regeneration in Aleppo pine stands. New For. 1998, 16, 213–220. [Google Scholar] [CrossRef]
- Gitas, I.; Mitri, G.; Veraverbeke, S.; Polychronaki, A. Advances in remote sensing of post-fire vegetation recovery monitoring—A review. In Remote Sensing of Biomass—Principles and Applications; Fatoyinbo, L., Ed.; InTech: London, UK, 2012; ISBN 978-953-51-0313-4. [Google Scholar]
- Chirici, G.; Corona, P. An overview of passive remote sensing for post-fire monitoring. Forest 2005, 2, 282–289. [Google Scholar]
- Nedkov, R.; Velizarova, E.; Molla, I.; Radeva, K. Application of remote sensing data for forest fires severity assessment. In Proceedings of SPIE, Earth Resources and Environmental Remote Sensing/GIS Applications IX; SPIE: Washington, DC, USA, 9 October 2018; Volume 10790. [Google Scholar] [CrossRef]
- Picos, J.; Alonso, L.; Bastos, G.; Armesto, J. Event-based integrated assessment of environmental variables and wildfire severity through Sentinel-2 data. Forests 2019, 10, 1021. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta Normalized Burn Ratio (dNBR). Remote Sensing of Environment 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Lopez Garcia, M.J.; Caselles, V. Mapping burns and natural reforestation using Thematic Mapper data. Geocarto International 1991, 6, 31–37. [Google Scholar] [CrossRef]
- Veraverbeke, S.; Gitas, I.; Katagis, T.; Polychronaki, A.; Somers, B.; Goossens, R. Assessing post-fire vegetation recovery using red–near infrared vegetation indices: Accounting for background and vegetation variability. ISPRS J. Photogramm. Remote Sens. 2012, 68, 28–39. [Google Scholar] [CrossRef] [Green Version]
- Xofis, P.; Buckley, P.G.; Takos, I.; Mitchley, J. Long Term Post-Fire Vegetation Dynamics in North-East Mediterranean Ecosystems. The Case of Mount Athos Greece. Fire 2021, 4, 92. [Google Scholar] [CrossRef]
- Koutsias, N.; Karamitsou, A.; Nioti, F.; Coutelieris, F. Assessment of Fire Regimes and Post-Fire Evolution of Burned Areas with the Dynamic Time Warping Method on Time Series of Satellite Images—Setting the Methodological Framework in the Peloponnese, Greece. Remote Sens. 2022, 14, 5237. [Google Scholar] [CrossRef]
- Goetz, S.J.; Fiske, G.J.; Bunn, A.G. Using satellite time-series data sets to analyze fire disturbance and forest recovery across Canada. Remote Sens. Environ. 2006, 101, 352–365. [Google Scholar] [CrossRef]
- Chu, T.; Guo, X.; Takeda, K. Remote sensing approach to detect post-fire vegetation regrowth in Siberian boreal larch forest. Ecol. Indic. 2016, 62, 32–46. [Google Scholar] [CrossRef]
- Nedkov, R.; Velizarova, E.; Avetisyan, D.; Georgiev, N. Assessment of forest vegetation state through remote sensing in response to fire impact. In Proceedings of the SPIE 11524, Eighth International Conference on Remote Sensing and Geoinformation of the Environment (RSCy2020), 11524, Society of Photo-Optical Instrumentation Engineers (SPIE), Paphos, Cyprus, 16–18 March 2020. [Google Scholar] [CrossRef]
- Nedkov, R. Normalized differential greenness index for vegetation dynamics assessment. Comptes Rendus L’acad’emie Bulg. Des Sci. 2017, 70, 1143–1146. [Google Scholar]
- Rock, B.N.; Vogelmann, J.E.; Williams, D.L.; Vogehnann, A.F.; Hoshizaki, T. Remote detection of forest damage. Bioscience 1986, 36, 439–445. [Google Scholar] [CrossRef]
- Zhao, X.; Chunxiang, C.; Xiliang, N.; Wei, C. Retrieval and application of leaf area index over China using HJ-1 data. Geomat. Nat. Hazards Risk 2017, 8, 478–495. [Google Scholar] [CrossRef] [Green Version]
- Díaz-Delgado, R.; Lloret, F.; Pons, X. Influence of fire severity on plant regeneration by means of remote sensing imagery. Int. J. Remote Sens. 2003, 24, 1751–1763. [Google Scholar] [CrossRef]
- Chen, X.; Chen, W.; Xu, M. Remote-Sensing Monitoring of Postfire Vegetation Dynamics in the Greater Hinggan Mountain Range Based on Long Time-Series Data: Analysis of the Effects of Six Topographic and Climatic Factors. Remote Sens. 2022, 14, 2958. [Google Scholar] [CrossRef]
- French, N.H.F.; Kasischke, E.S.; Hall, R.J.; Murphy, K.A.; Verbyla, D.L.; Hoy, E.E.; Allen, J.L. Using Landsat Data to Assess Fire and Burn Severity in the North American Boreal Forest Region: An Overview and Summary of Results. Int. J. Wild. Fire 2008, 17, 443–462. [Google Scholar] [CrossRef]
- Fornacca, D.; Ren, G.; Xiao, W. Evaluating the Best Spectral Indices for the Detection of Burn Scars at Several Post-Fire Dates in a Mountainous Region of Northwest Yunnan, China. Remote Sens. 2018, 10, 1196. [Google Scholar] [CrossRef] [Green Version]
- Picotte, J.J.; Robertson, K. Timing constraints on remote sensing of wildland fire burned area in the southeastern US. Remote Sens. 2011, 3, 1680–1690. [Google Scholar] [CrossRef] [Green Version]
- Healey, S.; Cohen, W.; Yang, Z.; Krankina, O. Comparison of Tasseled Cap-based Landsat data structures for use in forest disturbance detection. Remote Sens. Environ. 2005, 97, 301–310. [Google Scholar] [CrossRef]
- Stankova, N.; Nedkov, R.; Ivanova, I.; Avetisyan, D. Modeling of forest ecosystems recovery after fire based on orthogonalization of multispectral satellite data. In Proceedings of the SPIE 10790, Earth Resources and Environmental Remote Sensing/GIS Applications IX, 10790, SPIE, Berlin, Germany, 10–13 September 2018. [Google Scholar] [CrossRef]
- Thayn, J.B. Using a remotely sensed optimized Disturbance Index to detect insect defoliation in the Apostle Islands, Wisconsin, USA. Remote Sens. Environ. 2013, 136, 210–217. [Google Scholar] [CrossRef]
- Kauth, R.; Thomas, G. The Tasseled Cap—A graphic description of the spectral—Temporal development of agricultural crops as seen by Landsat. In Proceedings of the Second Annual Symposium on Machine Processing of Remotely Sensed Data, West Lafayette, Indiana, 29 June–1 July 1976. [Google Scholar]
- Crist, E.; Cicone, R. A physicaly-based transformation of Thematic Mapper data—The TM Tasseled Cap. IEEE Trans. Geosci. Remote Sens. 1984, 22, 256–263. [Google Scholar] [CrossRef]
- Crist, E.; Kauth, R. The Tasseled Cap de-mystified. Photogramm. Eng. Remote Sens. 1986, 52, 81–86. [Google Scholar]
- Климатични данни България. Available online: https://www.stringmeteo.com/synop/bg_climate.php (accessed on 19 November 2022).
- Изменение на климата Ардинo. Available online: https://www.meteoblue.com/bg/climate-change/Ардинo_България (accessed on 19 November 2022).
- Velchev, A.; Penin, R.; Todorov, N.; Konteva, M. Landscape Geography of Bulgaria, 1st ed.; Bulvest 2000: Sofia, Bulgaria, 2011; pp. 213–235. [Google Scholar]
- LUCAS 2015 TOPSOIL Data—ESDAC—European Commission. Available online: https://esdac.jrc.ec.europa.eu/content/lucas2015-topsoil-data (accessed on 19 November 2022).
- “Streetview,” Digital Images, Google Maps Photograph of Ardino Region, Taken 2021. Available online: https://www.google.com/streetview/explore/ (accessed on 6 December 2022).
- Open Access Hub. Available online: https://scihub.copernicus.eu/ (accessed on 19 November 2022).
- Forests—Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/pan-european/high-resolution-layers/forests (accessed on 19 November 2022).
- Tepeliev, Y.; Koleva, R.; Dimitrov, V. Verification of Forest High Resolution Layers 2015: Tree Cover Density and Dominant Leaf Type in Bulgaria. For. Ideas 2021, 27, 343–353. [Google Scholar]
- EU-DEM v1.1—Copernicus Land Monitoring Service. Available online: https://land.copernicus.eu/imagery-in-situ/eu-dem/eu-dem-v1.1 (accessed on 19 November 2022).
- Rouse, W.; Haas, R.H.; Schell, J.A.; Deering, D.W. Monitoring vegetation systems in the Great Plains with ERTS. In Proceedings of the Third Earth Resources Technology Satellite-1 Symposium, Washington, DC, USA, 10–14 December 1973; pp. 301–317. [Google Scholar]
- Haboudane, D.; Miller, J.R.; Pattey, E.; Zarco-Tejada, P.J.; Strachan, I.B. Hyperspectral Vegetation Indices and Novel Algorithms for Predicting Green LAI of Crop Canopies: Modeling and Validation in the Context of Precision Agriculture. Remote Sens. Environ. 2004, 90, 337–352. [Google Scholar] [CrossRef]
- Hunt, E.R., Jr.; Rock, B.N. Detection of changes in leaf water content using Near- and Middle-Infrared reflectances. Remote Sens Environ. 1989, 30, 43–54. [Google Scholar]
- Nedkov, R. Orthogonal Transformation of Segmented Images from the Satellite Sentinel-2. Comptes Rendus De L’acad´Emie Bulg. Des Sci. 2017, 70, 687–692. [Google Scholar]
- Avetisyan, D.; Nedkov, R.; Borisova, D.; Cvetanova, G. Application of spectral indices and spectral transformation methods for assessment of winter wheat state and functioning. In Proceedings of the SPIE 11149, Remote Sensing for Agriculture, Ecosystems, and Hydrology XXI, 1114929, Strasbourg, France, 21 October 2019. [Google Scholar] [CrossRef]
- Malvar, M.C.; Prats, S.A.; Keizer, J.J. Runoff and inter-rill erosion affected by wildfire and pre-feire ploughing in eucalypt plantations of north-central Portugal. Land Degrad. Dev. 2016, 27, 1366–1378. [Google Scholar] [CrossRef]
- Cartwright, J.M.; Littlefield, C.E.; Michalak, J.L.; Lawler, J.J.; Dobrowski, S.Z. Topographic, soil, and climate drivers of drought sensitivity in forests and shrublands of the Pacific Northwest, USA. Sci. Rep. 2020, 10, 18486. [Google Scholar] [CrossRef]
- Avetisyan, D.; Borisova, D.; Velizarova, E. Integrated Evaluation of Vegetation Drought Stress through Satellite Remote Sensing. Forests 2021, 12, 974. [Google Scholar] [CrossRef]
- Chen, P.; Liu, H.; Wang, Z.; Mao, D.; Liang, C.; Wen, L.; Li, Z.; Zhang, J.; Liu, D.; Zhuo, Y.; et al. Vegetation Dynamic Assessment by NDVI and Field Observations for Sustainability of China’s Wulagai River Basin. Int. J. Environ. Res. Public Health 2021, 18, 2528. [Google Scholar] [CrossRef]
- Wilson, A.M.; Latimer, A.M.; Silander, J.A. Climatic controls on ecosystem resilience: Postfire regeneration in the Cape Floristic Region of South Africa. Proc. Natl. Acad. Sci. USA 2015, 112, 9058–9063. [Google Scholar] [CrossRef] [PubMed]
Index | Abbreviation | Formula |
---|---|---|
Normalized Difference Vegetation Index [61] | NDVI | (1) |
Modified Chlorophyll Adsorption Ratio Index [62] | MCARI2 | |
Moisture Stress Index [63] | MSI | (3) |
Normalized Differential Wetness Index [38,64,65] | NDWNI | (4) (5) |
Normalized Differential Greenness Index [38] | NDGI | (6) (7) |
Disturbance Index [46] | DI | DI = nBR − (nGR + nW) (8) |
Aspect | 2016 | 2017 | 2018 | 2019 | 2020 | 2021 |
---|---|---|---|---|---|---|
NDVI | ||||||
E | 0.63 | 0.37 | 0.47 | 0.54 | 0.54 | 0.59 |
NE | 0.64 | 0.37 | 0.47 | 0.52 | 0.59 | 0.63 |
S | 0.61 | 0.36 | 0.44 | 0.51 | 0.46 | 0.53 |
SE | 0.61 | 0.40 | 0.46 | 0.53 | 0.45 | 0.52 |
SW | 0.63 | 0.41 | 0.50 | 0.56 | 0.50 | 0.56 |
MCARI2 | ||||||
E | 0.77 | 0.46 | 0.61 | 0.67 | 0.68 | 0.73 |
NE | 0.78 | 0.45 | 0.62 | 0.64 | 0.75 | 0.77 |
S | 0.76 | 0.46 | 0.57 | 0.64 | 0.58 | 0.65 |
SE | 0.74 | 0.50 | 0.59 | 0.65 | 0.57 | 0.63 |
SW | 0.77 | 0.52 | 0.64 | 0.69 | 0.64 | 0.69 |
MSI | ||||||
E | 0.64 | 1.20 | 0.99 | 0.93 | 0.85 | 0.75 |
NE | 0.61 | 1.21 | 0.92 | 0.92 | 0.70 | 0.65 |
S | 0.69 | 1.22 | 1.07 | 0.96 | 1.06 | 0.93 |
SE | 0.72 | 1.15 | 1.02 | 0.93 | 1.07 | 0.93 |
SW | 0.62 | 1.10 | 0.92 | 0.85 | 0.94 | 0.83 |
DI | ||||||
E | −0.48 | 1.94 | 0.98 | 1.30 | −0.05 | −0.05 |
NE | −0.74 | 1.66 | 0.46 | 1.19 | −0.18 | −0.15 |
S | −0.09 | 1.85 | 1.63 | 1.39 | 0.11 | 0.09 |
SE | 0.58 | 1.53 | 0.14 | 1.27 | 0.12 | 0.10 |
SW | −0.80 | 0.86 | 0.36 | 0.48 | 0.00 | 0.01 |
2015–2016 | 2016–2017 | 2017–2018 | 2018–2019 | 2019–2020 | 2020–2021 | |
NDWNI | ||||||
E | −0.46 | −0.29 | 0.09 | −0.16 | 0.07 | −0.05 |
NE | −0.70 | −0.27 | 0.27 | −0.39 | 0.18 | −0.12 |
S | −0.23 | −0.25 | −0.10 | −0.02 | −0.10 | 0.00 |
SE | −0.18 | 0.02 | −0.09 | −0.03 | −0.03 | −0.01 |
SW | −0.37 | −0.31 | 0.04 | −0.17 | −0.06 | −0.11 |
NDGI | ||||||
E | −0.05 | −0.81 | 0.38 | 0.10 | 0.26 | 0.18 |
NE | −0.16 | −0.76 | 0.38 | −0.16 | 0.34 | 0.01 |
S | −0.02 | −0.77 | 0.16 | 0.26 | 0.10 | 0.30 |
SE | 0.00 | −0.57 | 0.13 | 0.21 | 0.09 | 0.29 |
SW | −0.13 | −0.65 | 0.29 | 0.14 | 0.19 | 0.17 |
TCD (%) | Broad-Leaved Forests | Coniferous Forests | ||||
---|---|---|---|---|---|---|
2012 (%) | 2015 (%) | 2018 (%) | 2012 (%) | 2015 (%) | 2018 (%) | |
0–20 | 6.66 | 0.8 | 0.72 | 0.63 | non | non |
20–40 | 14.53 | 9.41 | 25.51 | 3.83 | 0.75 | 9.39 |
40–60 | 37.61 | 72.47 | 39.02 | 19.15 | 43.85 | 54.26 |
60–80 | 38.97 | 15.92 | 28.47 | 73.96 | 55.35 | 34.96 |
>80 | 2.22 | 1.4 | 6.29 | 2.43 | 0.06 | 1.39 |
Mean | 43.86 | 52.21 | 56.19 | 47.37 | 55.67 | 60.28 |
Index | Broad-Leaved Forests | Coniferous Forests | Non-Forested Areas |
---|---|---|---|
DI | −7.57 | −18.54 | 15.97 |
MCARI2 | 0.79 | 0.76 | 0.57 |
MSI | 0.71 | 0.68 | 1.06 |
NDGI | 0.08 | −0.08 | 0.23 |
NDVI | 0.65 | 0.59 | 0.44 |
NDWNI | −0.05 | 0.12 | −0.06 |
Broad-Leaved Forests | Coniferous Forests | Non-Forested Areas | ||||
---|---|---|---|---|---|---|
Index | R | Rsqr | R | Rsqr | R | Rsqr |
NDVI | 0.16 | 0.03 | 0.53 | 0.28 | 0.18 | 0.03 |
MCARI2 | 0.46 | 0.21 | 0.51 | 0.26 | 0.18 | 0.03 |
NDGI | 0.03 | 0 | 0.15 | 0.02 | 0 | 0 |
DI | 0.61 | 0.37 | 0.65 | 0.43 | 0.2 | 0.04 |
MSI | 0.64 | 0.4 | 0.64 | 0.4 | 0.18 | 0.03 |
NDWNI | 0.06 | 0 | 0.02 | 0 | 0.09 | 0.01 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avetisyan, D.; Velizarova, E.; Filchev, L. Post-Fire Forest Vegetation State Monitoring through Satellite Remote Sensing and In Situ Data. Remote Sens. 2022, 14, 6266. https://doi.org/10.3390/rs14246266
Avetisyan D, Velizarova E, Filchev L. Post-Fire Forest Vegetation State Monitoring through Satellite Remote Sensing and In Situ Data. Remote Sensing. 2022; 14(24):6266. https://doi.org/10.3390/rs14246266
Chicago/Turabian StyleAvetisyan, Daniela, Emiliya Velizarova, and Lachezar Filchev. 2022. "Post-Fire Forest Vegetation State Monitoring through Satellite Remote Sensing and In Situ Data" Remote Sensing 14, no. 24: 6266. https://doi.org/10.3390/rs14246266
APA StyleAvetisyan, D., Velizarova, E., & Filchev, L. (2022). Post-Fire Forest Vegetation State Monitoring through Satellite Remote Sensing and In Situ Data. Remote Sensing, 14(24), 6266. https://doi.org/10.3390/rs14246266