Global Patterns and Dynamics of Burned Area and Burn Severity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Data Preparation
2.3. Data Analysis
3. Results and Discussion
3.1. Spatial Patterns of Burned Area and Burn Severity
3.2. Temporal Trends in Burned Area and Burn Severity
3.3. Relationships with Climate Variables
3.4. Implications and Final Considerations
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Unit | Africa | Asia | Australia | Europe | N America | Oceania | S America | |
---|---|---|---|---|---|---|---|---|
BA | ||||||||
1 Trop. Moist B. | MKm2 yr−1 | 0.15 ± 0.00 | 0.11 ± 0.01 | 0.00 ± 0.00 | - | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.09 ± 0.01 |
% land yr−1 | 4.38 ± 0.13 | 1.56 ± 0.10 | 3.42 ± 0.51 | - | 1.33 ± 0.20 | 0.03 ± 0.01 | 1.00 ± 0.09 | |
2 Trop. Dry B. | MKm2 yr−1 | 0.02 ± 0.00 | 0.02 ± 0.00 | - | - | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.01 ± 0.00 |
% land yr−1 | 10.38 ± 0.29 | 3.16 ± 0.12 | - | - | 2.10 ± 0.10 | 0.39 ± 0.07 | 2.22 ± 0.31 | |
3 Trop. C. | MKm2 yr−1 | - | 0.00 ± 0.00 | - | - | 0.01 ± 0.00 | - | - |
% land yr−1 | - | 1.55 ± 0.21 | - | - | 1.81 ± 0.22 | - | ||
4 Temp. B. M. | MKm2 yr−1 | - | 0.05 ± 0.00 | 0.01 ± 0.00 | 0.03 ± 0.00 | 0.01 ± 0.00 | - | 0.00 ± 0.00 |
% land yr−1 | - | 1.12 ± 0.08 | 1.72 ± 0.47 | 0.65 ± 0.08 | 0.19 ± 0.02 | - | 0.22 ± 0.06 | |
5 Temp. C | MKm2 yr−1 | 0.00 ± 0.00 | 0.01 ± 0.00 | - | 0.00 ± 0.00 | 0.01 ± 0.00 | - | - |
% land yr−1 | 0.69 ± 0.14 | 0.46 ± 0.09 | - | 0.10 ± 0.02 | 0.52 ± 0.06 | - | - | |
6 Taiga | MKm2 yr−1 | - | 0.05 ± 0.01 | - | 0.00 ± 0.00 | 0.02 ± 0.00 | - | - |
% land yr−1 | - | 0.66 ± 0.09 | - | 0.05 ± 0.02 | 0.43 ± 0.05 | - | - | |
7 Trop. G. S. Sh. | MKm2 yr−1 | 2.79 ± 0.07 | 0.00 ± 0.00 | 0.36 ± 0.03 | - | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.26 ± 0.02 |
% land yr−1 | 20.07 ± 0.49 | 4.64 ± 0.64 | 17.01 ± 1.32 | - | 0.94 ± 0.08 | 1.86 ± 1.66 | 6.41 ± 0.45 | |
8 Temp. G. S. Sh. | MKm2 yr−1 | - | 0.09 ± 0.01 | 0.00 ± 0.00 | 0.04 ± 0.01 | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.01 ± 0.00 |
% land yr−1 | - | 2.42 ± 0.23 | 0.47 ± 0.08 | 3.87 ± 0.52 | 0.36 ± 0.03 | 0.03 ± 0.01 | 0.63 ± 0.11 | |
9 Flooded G. S. | MKm2 yr−1 | 0.15 ± 0.02 | 0.01 ± 0.00 | - | - | 0.00 ± 0.00 | - | 0.02 ± 0.00 |
% land yr−1 | 26.97 ± 1.01 | 5.02 ± 0.48 | - | - | 6.57 ± 0.34 | - | 8.28 ± 1.13 | |
10 Montane G. Sh. | MKm2 yr−1 | 0.05 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | - | - | - | 0.00 ± 0.00 |
% land yr−1 | 6.18 ± 0.23 | 0.03 ± 0.00 | 5.45 ± 4.07 | - | - | - | 0.09 ± 0.01 | |
11 Tundra | MKm2 yr−1 | - | 0.00 ± 0.00 | - | 0.00 ± 0.00 | 0.00 ± 0.00 | - | - |
% land yr−1 | - | 0.14 ± 0.04 | - | 0.00 ± 0.00 | 0.06 ± 0.03 | - | - | |
12 Mediterranean | MKm2 yr−1 | 0.00 ± 0.00 | 0.00 ± 0.00 | 0.01 ± 0.00 | 0.00 ± 0.00 | 0.00 ± 0.00 | - | 0.00 ± 0.00 |
% land yr−1 | 0.51 ± 0.04 | 1.21 ± 0.14 | 1.17 ± 0.18 | 0.45 ± 0.07 | 1.56 ± 0.26 | - | 0.46 ± 0.06 | |
13 Deserts. Xeric Sh. | MKm2 yr−1 | 0.03 ± 0.01 | 0.08 ± 0.01 | 0.15 ± 0.03 | 0.00 ± 0.00 | 0.01 ± 0.00 | - | 0.01 ± 0.00 |
% land yr−1 | 0.35 ± 0.07 | 0.71 ± 0.06 | 4.25 ± 0.98 | 4.25 ± 0.94 | 0.29 ± 0.04 | - | 0.53 ± 0.04 | |
14 Mangroves | MKm2 yr−1 | 0.00 ± 0.00 | 0.00 ± 0.00 | - | - | 0.00 ± 0.00 | - | 0.00 ± 0.00 |
% land yr−1 | 4.88 ± 0.19 | 0.84 ± 0.10 | - | - | 1.65 ± 0.09 | - | 0.76 ± 0.08 | |
BS | ||||||||
1 Trop. Moist B. | dNBR | 150.65 ± 1.49 | 150.91 ± 2.93 | 199.82 ± 9.18 | 141.08 ± 3.97 | 201.31 ± 13.76 | 196.83 ± 4.68 | |
2 Trop. Dry B. | dNBR | 138.68 ± 5.78 | 179.15 ± 2.92 | 142.95 ± 3.60 | 193.17 ± 14.83 | 179.63 ± 9.25 | ||
3 Trop. C. | dNBR | 112.58 ± 6.00 | 113.98 ± 4.44 | |||||
4 Temp. B. M. | dNBR | 213.68 ± 10.67 | 229.70 ± 19.03 | 222.13 ± 13.68 | 237.19 ± 9.16 | 289.03 ± 20.45 | ||
5 Temp. C | dNBR | 264.91 ± 16.53 | 239.20 ± 13.01 | 162.83 ± 22.14 | 300.09 ± 12.52 | |||
6 Taiga | dNBR | 376.14 ± 11.82 | 297.83 ± 20.35 | 426.25 ± 6.74 | ||||
7 Trop. G. S. Sh. | dNBR | 168.41 ± 1.63 | 145.44 ± 7.54 | 164.73 ± 3.08 | 192.54 ± 9.15 | 152.60 ± 30.66 | 194.48 ± 2.63 | |
8 Temp. G. S. Sh. | dNBR | 185.88 ± 4.81 | 155.84 ± 10.56 | 225.06 ± 6.29 | 145.66 ± 12.05 | 175.51 ± 26.51 | 193.70 ± 9.47 | |
9 Flooded G. S. | dNBR | 206.48 ± 4.07 | 145.39 ± 9.61 | 272.19 ± 6.04 | 200.39 ± 10.41 | |||
10 Montane G. Sh. | dNBR | 164.75 ± 2.60 | 144.27 ± 12.55 | 245.96 ± 42.50 | 176.17 ± 5.14 | |||
11 Tundra | dNBR | 360.39 ± 17.10 | 125.97 ± 34.46 | 308.62 ± 26.09 | ||||
12 Mediterranean | dNBR | 250.60 ± 10.29 | 143.40 ± 5.01 | 211.56 ± 12.10 | 247.64 ± 11.60 | 321.24 ± 18.28 | 200.95 ± 11.39 | |
13 Deserts. Xeric Sh. | dNBR | 116.77 ± 3.61 | 155.36 ± 5.28 | 137.86 ± 5.89 | 124.47 ± 12.75 | 192.51 ± 7.38 | 169.70 ± 4.26 | |
14 Mangroves | dNBR | 122.55 ± 3.74 | 180.83 ± 10.75 | 170.07 ± 5.46 | 223.69 ± 9.41 | |||
High severity BA | ||||||||
1 Trop. Moist B. | Mha yr−1 | 0.27 ± 0.01 | 0.45 ± 0.05 | 0.01 ± 0.00 | 0.05 ± 0.01 | 0.00 ± 0.00 | 1.10 ± 0.09 | |
% land yr−1 | 0.08 ± 0.00 | 0.07 ± 0.01 | 0.20 ± 0.05 | 0.07 ± 0.01 | 0.00 ± 0.00 | 0.13 ± 0.01 | ||
% BA yr−1 | 1.80 ± 0.05 | 4.21 ± 0.34 | 5.58 ± 0.27 | 10.12 ± 2.04 | 13.28 ± 0.42 | |||
2 Trop. Dry B. | Mha yr−1 | 0.02 ± 0.00 | 0.15 ± 0.01 | 0.06 ± 0.00 | 0.00 ± 0.00 | 0.12 ± 0.02 | ||
% land yr−1 | 0.09 ± 0.01 | 0.10 ± 0.01 | 0.12 ± 0.01 | 0.04 ± 0.01 | 0.18 ± 0.03 | |||
% BA yr−1 | 0.87 ± 0.10 | 2.99 ± 0.22 | 6.00 ± 0.37 | 8.69 ± 2.59 | 8.54 ± 0.54 | |||
3 Trop. C. | Mha yr−1 | 0.00 ± 0.00 | 0.02 ± 0.00 | |||||
% land yr−1 | 0.01 ± 0.00 | 0.04 ± 0.01 | ||||||
% BA yr−1 | 1.17 ± 0.31 | 2.15 ± 0.19 | ||||||
4 Temp. B. M. | Mha yr−1 | 0.90 ± 0.10 | 0.20 ± 0.08 | 0.54 ± 0.07 | 0.11 ± 0.02 | 0.04 ± 0.01 | ||
% land yr−1 | 0.21 ± 0.02 | 0.37 ± 0.14 | 0.12 ± 0.02 | 0.04 ± 0.01 | 0.10 ± 0.04 | |||
% BA yr−1 | 16.78 ± 1.34 | 17.86 ± 2.32 | 18.70 ± 1.21 | 18.62 ± 1.57 | 37.39 ± 3.57 | |||
5 Temp. C | Mha yr−1 | 0.00 ± 0.00 | 0.12 ± 0.02 | 0.00 ± 0.00 | 0.36 ± 0.06 | |||
% land yr−1 | 0.16 ± 0.04 | 0.08 ± 0.02 | 0.02 ± 0.00 | 0.16 ± 0.03 | ||||
% BA yr−1 | 21.75 ± 2.23 | 20.48 ± 1.83 | 14.73 ± 2.30 | 27.29 ± 1.84 | ||||
6 Taiga | Mha yr−1 | 1.99 ± 0.21 | 0.05 ± 0.01 | 1.07 ± 0.13 | ||||
% land yr−1 | 0.26 ± 0.03 | 0.02 ± 0.01 | 0.21 ± 0.03 | |||||
% BA yr−1 | 41.35 ± 1.81 | 34.20 ± 2.77 | 48.25 ± 1.03 | |||||
7 Trop. G. S. Sh. | Mha yr−1 | 6.46 ± 0.03 | 0.01 ± 0.00 | 0.31 ± 0.03 | 0.01 ± 0.00 | 0.00 ± 0.00 | 2.16 ± 0.17 | |
% land yr−1 | 0.46 ± 0.02 | 0.21 ± 0.05 | 0.15 ± 0.01 | 0.12 ± 0.01 | 1.60 ± 1.59 | 0.54 ± 0.04 | ||
% BA yr−1 | 2.32 ± 0.11 | 3.66 ± 0.54 | 0.89 ± 0.07 | 12.10 ± 1.26 | 15.51 ± 10.41 | 8.51 ± 0.24 | ||
8 Temp. G. S. Sh. | Mha yr−1 | 0.73 ± 0.07 | 0.02 ± 0.01 | 0.47 ± 0.06 | 0.08 ± 0.01 | 0.00 ± 0.00 | 0.12 ± 0.03 | |
% land yr−1 | 0.19 ± 0.02 | 0.03 ± 0.01 | 0.48 ± 0.06 | 0.03 ± 0.00 | 0.00 ± 0.00 | 0.07 ± 0.02 | ||
% BA yr−1 | 8.23 ± 0.45 | 7.66 ± 1.47 | 12.82 ± 0.52 | 7.68 ± 1.15 | 8.49 ± 3.79 | 10.00 ± 1.09 | ||
9 Flooded G. S. | Mha yr−1 | 0.66 ± 0.07 | 0.10 ± 0.01 | 0.05 ± 0.00 | 0.23 ± 0.05 | |||
% yr−1 | 1.17 ± 0.12 | 0.39 ± 0.06 | 1.85 ± 0.13 | 0.96 ± 0.19 | ||||
% BA yr−1 | 4.26 ± 0.33 | 8.07 ± 0.87 | 27.92 ± 1.07 | 10.70 ± 1.05 | ||||
10 Montane G. Sh. | Mha yr−1 | 0.20 ± 0.01 | 0.01 ± 0.00 | 0.03 ± 0.02 | 0.00 ± 0.00 | |||
% land yr−1 | 0.23 ± 0.01 | 0.00 ± 0.00 | 2.23 ± 1.77 | 0.01 ± 0.00 | ||||
% BA yr−1 | 3.77 ± 0.19 | 9.84 ± 1.39 | 19.48 ± 5.83 | 6.41 ± 0.55 | ||||
11 Tundra | Mha yr−1 | 0.22 ± 0.07 | 0.00 ± 0.00 | 0.11 ± 0.05 | ||||
% land yr−1 | 0.07 ± 0.02 | 0.00 ± 0.00 | 0.03 ± 0.01 | |||||
% BA yr−1 | 42.53 ± 2.38 | 11.09 ± 3.15 | 38.31 ± 3.16 | |||||
12 Mediterranean | Mha yr−1 | 0.09 ± 0.01 | 0.01 ± 0.00 | 0.11 ± 0.02 | 0.08 ± 0.02 | 0.06 ± 0.01 | 0.01 ± 0.00 | |
% yr−1 | 0.10 ± 0.01 | 0.02 ± 0.00 | 0.14 ± 0.03 | 0.09 ± 0.02 | 0.52 ± 0.11 | 0.06 ± 0.02 | ||
% BA yr−1 | 19.63 ± 1.63 | 2.40 ± 0.37 | 13.53 ± 1.97 | 17.79 ± 1.82 | 27.71 ± 3.22 | 13.33 ± 1.97 | ||
13 Deserts. Xeric Sh. | Mha yr−1 | 0.02 ± 0.00 | 0.31 ± 0.03 | 0.12 ± 0.08 | 0.01 ± 0.00 | 0.04 ± 0.01 | 0.02 ± 0.00 | |
% land yr−1 | 0.00 ± 0.00 | 0.03 ± 0.00 | 0.04 ± 0.02 | 0.11 ± 0.03 | 0.02 ± 0.00 | 0.02 ± 0.00 | ||
% BA yr−1 | 0.74 ± 0.12 | 4.65 ± 0.64 | 0.45 ± 0.14 | 2.92 ± 0.81 | 6.89 ± 0.90 | 4.14 ± 0.34 | ||
14 Mangroves | Mha yr−1 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | 0.01 ± 0.00 | |||
% land yr−1 | 0.11 ± 0.01 | 0.11 ± 0.02 | 0.15 ± 0.02 | 0.14 ± 0.02 | ||||
% BA yr−1 | 2.32 ± 0.13 | 11.61 ± 1.31 | 8.99 ± 0.68 | 17.59 ± 1.33 |
Original Units | Africa | Asia | Australia | Europe | N America | Oceania | S America | |
---|---|---|---|---|---|---|---|---|
BA | ||||||||
1 Trop. Moist B. | −1.57 * | −2.20 | 4.43 | −0.78 | −2.22 | −2.02 | ||
2 Trop. Dry B. | 0.17 | 0.16 | −2.11 ** | −0.70 | −3.33 | |||
3 Trop. C. | 1.20 | −0.25 | ||||||
4 Temp. B. M. | −2.43 | −0.85 | −2.72 | −0.18 | 16.96 | |||
5 Temp. C | −4.54 | 0.16 | 1.31 | 2.77 | ||||
6 Taiga | 1.45 | −6.21 * | −1.70 | |||||
7 Trop. G. S. Sh. | −1.64 *** | 1.00 | −1.47 | −1.83 | 0.00 | −1.38 | ||
8 Temp. G. S. Sh. | −2.77 * | −0.49 | −11.40 | 0.74 | 10.75 | 0.88 | ||
9 Flooded G. S. | −0.92 | 0.07 | −2.26 | −9.89 | ||||
10 Montane G. Sh. | −2.08 *** | −1.93 * | 0.00 | 0.86 | ||||
11 Tundra | −0.02 | 0.00 | −4.03 | |||||
12 Mediterranean | 0.15 | 5.43 | 0.47 | −2.31 * | −0.36 | 2.78 | ||
13 Deserts. Xeric Sh. | −3.65 | −1.82 | 8.21 | −3.59 | 0.56 | −0.18 | ||
14 Mangroves | −1.37 * | 1.76 | −0.98 | −0.44 | ||||
BS | ||||||||
1 Trop. Moist B. | −0.08 | 0.57 | 2.23 * | 0.42 | −0.10 | 1.49 * | ||
2 Trop. Dry B. | 0.36 | 0.36 | 1.15 | −0.23 | 3.47 * | |||
3 Trop. C. | 3.43 | 0.56 | ||||||
4 Temp. B. M. | −0.49 | 0.32 | 0.19 | 0.60 | 3.56 * | |||
5 Temp. C | −1.29 | 0.49 | 0.81 | 1.53 | ||||
6 Taiga | 2.13 * | −2.56 * | 0.35 | |||||
7 Trop. G. S. Sh. | −0.26 | 0.87 | 0.59 | −1.72 | −0.43 | 0.29 | ||
8 Temp. G. S. Sh. | 0.81 | 0.34 | 0.90 | 1.42 | 0.87 | 2.47 * | ||
9 Flooded G. S. | 0.11 | −0.22 | −0.52 | 0.71 | ||||
10 Montane G. Sh. | −0.18 | −2.94 * | 0.95 | 1.05 | ||||
11 Tundra | 0.73 | 4.38 | 3.75 | |||||
12 Mediterranean | 2.16 ** | −0.01 | −0.64 | −0.27 | 0.51 | −0.21 | ||
13 Deserts. Xeric Sh. | −0.30 | 0.13 | −0.62 | −1.33 | 0.29 | 0.80 | ||
14 Mangroves | −0.85 | 1.07 | 0.53 | −0.49 | ||||
High severity BA | ||||||||
1 Trop. Moist B. | Mha yr−1 % land yr−1 | −0.68 | 2.31 | 28.02 ** | −0.76 | 0.00 | 0.07 | |
% BA yr−1 | 1.13 | 3.90 | 17.46 *** | 1.18 | −0.33 | 2.46 *** | ||
2 Trop. Dry B. | Mha yr−1 % land yr−1 | 1.98 | 4.01 * | 1.35 | 1.85 | −1.32 | ||
% BA yr−1 | 1.83 | 4.05 ** | 5.03 * | 5.38 | 2.92 | |||
3 Trop. C. | Mha yr−1 % land yr−1 | 4.58 | −0.35 | |||||
% BA yr−1 | 9.75 | −1.02 | ||||||
4 Temp. B. M. | Mha yr−1 % land yr−1 | −5.69 | −0.14 | −2.57 | 1.95 | 40.20 * | ||
% BA yr−1 | −4.30 | −0.08 | −0.17 | 1.55 | 2.97 | |||
5 Temp. C | Mha yr−1 % land yr−1 | −3.80 | 0.43 | 1.39 | 3.54 | |||
% BA yr−1 | −0.81 | 0.21 | 2.02 | 2.17 | ||||
6 Taiga | Mha yr−1 % land yr−1 | 2.56 | −6.03 * | −1.29 | ||||
% BA yr−1 | 2.47 | −2.64 * | 0.38 | |||||
7 Trop. G. S. Sh. | Mha yr−1 % land yr−1 | −1.11 | 1.22 | 6.85 * | −5.96 * | 0.00 | −1.31 | |
% BA yr−1 | 0.68 | 1.73 | 7.72 *** | −3.30 * | 0.00 | 0.79 | ||
8 Temp. G. S. Sh. | Mha yr−1 % land yr−1 | −2.69 | 8.65 | −8.97 | 2.11 | NA | 2.68 | |
% BA yr−1 | 0.48 | 1.69 | 1.37 | 1.06 | NA | 7.38 *** | ||
9 Flooded G. S. | Mha yr−1 % land yr−1 | −2.37 | −1.75 | −2.97 * | −2.88 | |||
% BA yr−1 | −1.53 | −3.29 | −0.69 | 5.48 | ||||
10 Montane G. Sh. | Mha yr−1 % land yr−1 | −0.53 | −4.10 * | 0.00 | 2.20 | |||
% BA yr−1 | 1.60 | −4.16 | 0.00 | 2.88 | ||||
11 Tundra | Mha yr−1 % land yr−1 | 0.05 | 0.00 | −1.36 | ||||
% BA yr−1 | 0.12 | 0.00 | 1.92 | |||||
12 Mediterranean | Mha yr−1 % land yr−1 | 7.13 | 0.20 | −0.05 | −1.24 | 0.15 | 1.99 | |
% BA yr−1 | 5.41 * | −1.88 | −0.10 | −0.23 | 0.47 | −0.82 | ||
13 Deserts. Xeric Sh. | Mha yr−1 % land yr−1 | 0.98 | 9.25 ** | 10.79 | 1.64 | 1.85 | −2.14 | |
% BA yr−1 | 3.47 | 11.34 * | 1.90 | 4.75 | 0.83 | −4.12 | ||
14 Mangroves | Mha yr−1 % land yr−1 | −0.76 | 1.67 | −0.59 | −0.55 | |||
% BA yr−1 | 0.79 | −0.03 | 1.32 | −0.90 |
References
- Bowman, D.M.J.S.; Balch, J.K.; Artaxo, P.; Bond, W.J.; Carlson, J.M.; Cochrane, M.A.; D’Antonio, C.M.; DeFries, R.S.; Doyle, J.C.; Harrison, S.P.; et al. Fire in the Earth System. Science 2009, 324, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Archibald, S.; Lehmann, C.E.R.; Belcher, C.M.; Bond, W.J.; A Bradstock, R.; Daniau, A.-L.; Dexter, K.G.; Forrestel, E.J.; Greve, M.; He, T.; et al. Biological and geophysical feedbacks with fire in the Earth system. Environ. Res. Lett. 2018, 13, 033003. [Google Scholar] [CrossRef] [Green Version]
- Keeley, J.E.; Bond, W.J.; Bradstock, R.A.; Pausas, J.G.; Rundel, P.W. Fire in Mediterranean Ecosystems. Ecology, Evolution and Management; Cambridge University Press: Cambridge, UK, 2012; p. 515. [Google Scholar]
- Andela, N.; Morton, D.C.; Giglio, L.; Chen, Y.; van der Werf, G.R.; Kasibhatla, P.S.; DeFries, R.S.; Collatz, G.J.; Hantson, S.; Kloster, S.; et al. A human-driven decline in global burned area. Science 2017, 356, 1356–1362. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van der Werf, G.R.; Randerson, J.T.; Giglio, L.; van Leeuwen, T.T.; Chen, Y.; Rogers, B.M.; Mu, M.; van Marle, M.J.E.; Morton, D.C.; Collatz, G.J.; et al. Global fire emissions estimates during 1997–2016. Earth Syst. Sci. Data 2017, 9, 697–720. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.; Ballantyne, A.P.; Cooper, L.A. Biophysical feedback of global forest fires on surface temperature. Nat. Commun. 2019, 10, 214. [Google Scholar] [CrossRef] [Green Version]
- Doerr, S.H.; Santín, C. Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Phil. Trans. R. Soc. B 2016, 371, 20150345. [Google Scholar] [CrossRef] [Green Version]
- Chuvieco, E.; Pettinari, M.L.; Koutsias, N.; Forkel, M.; Hantson, S.; Turco, M. Human and climate drivers of global biomass burning variability. Sci. Total Environ. 2021, 779, 146361. [Google Scholar] [CrossRef]
- Bond, W.J.; Woodward, F.I.; Midgley, G.F. The global distribution of ecosystems in a world without fire. New Phytol. 2005, 165, 525–538. [Google Scholar] [CrossRef]
- Heinl, M.; Neuenschwander, A.; Silva, J.; Vanderpost, C. Interactions between fire and flooding in a southern African floodplain system (Okavango Delta, Botswana). Lands. Ecol. 2006, 21, 699–709. [Google Scholar] [CrossRef]
- Archibald, S.; Staver, A.C.; Levin, S.A. Evolution of human-driven fire regimes in Africa. Proc. Natl. Acad. Sci. USA 2012, 109, 847–852. [Google Scholar] [CrossRef]
- Archibald, S. Managing the human component of fire regimes: Lessons from Africa. Phil. Trans. R. Soc. B 2016, 371, 20150346. [Google Scholar] [CrossRef]
- Bedia, J.; Herrera, S.; Gutiérrez, J.M.; Benali, A.; Brands, S.; Mota, B.; Moreno, J.M. Global patterns in the sensitivity of burned area to fire-weather: Implications for climate change. Agr. For. Meteorol. 2015, 214–215, 369–379. [Google Scholar] [CrossRef] [Green Version]
- Abatzoglou, J.T.; Williams, A.P.; Barbero, R. Global emergence of anthropogenic climate change in fire weather indices. Geophys. Res. Lett. 2019, 46, 326–336. [Google Scholar] [CrossRef] [Green Version]
- Keeley, J.E. Fire intensity, fire severity and burn severity: A brief review and suggested usage. Int. J. Wildland Fire 2009, 18, 116–126. [Google Scholar] [CrossRef]
- Key, C.H.; Benson, N.C. Landscape assessment (LA) sampling and analysis methods. In FIREMON: Fire Effects Monitoring and Inventory System; General Technical Report, RMRS-GTR-164; Lutes, D.C., Keane, R.E., Caratti, J., Key, C.H., Benson, C., Sutherland, S., Gangi, L.J., Eds.; USDA Forest Service: Fort Collins, CO, USA, 2006; p. 400. [Google Scholar]
- Tran, B.N.; Tanase, M.A.; Bennett, L.T.; Aponte, C. High-severity wildfires in temperate Australian forests have increased in extent and aggregation in recent decades. PLoS ONE 2020, 15, e0242484. [Google Scholar] [CrossRef]
- Fernández-García, V.; Marcos, E.; Fulé, P.Z.; Reyes, O.; Santana, V.M.; Calvo, L. Fire regimes shape diversity and traits of vegetation under different climatic conditions. Sci. Total Environ. 2020, 716, 137137. [Google Scholar] [CrossRef]
- Alonso-González, E.; Fernández-García, V. MOSEV: A global burn severity database from MODIS (2000–2020). Earth Syst. Sci. Data 2021, 13, 1925–1938. [Google Scholar] [CrossRef]
- Archibald, S.; Lehmann, C.E.R.; Gómez-Dans, J.L.; Bradstock, R.A. Defining pyromes and global syndromes of fire regimes. Proc. Natl. Acad. Sci. USA 2013, 110, 6442–6447. [Google Scholar] [CrossRef]
- Singleton, M.P.; Thode, A.E.; Sánchez-Meador, A.J.; Iniguez, J.M. Increasing trends in high-severity fire in the southwestern USA from 1984 to 2015. For. Ecol. Manag. 2019, 433, 709–719. [Google Scholar] [CrossRef]
- Fernández-García, V.; Santamarta, M.; Fernández-Manso, A.; Quintano, C.; Marcos, E.; Calvo, L. Burn severity metrics in fire-prone pine ecosystems along a climatic gradient using Landsat imagery. Remote Sens. Environ. 2018, 206, 205–217. [Google Scholar] [CrossRef]
- García-Llamas, P.; Suárez-Seoane, S.; Fernández-Guisuraga, J.M.; Fernández-García, V.; Fernández-Manso, A.; Quintano, C.; Taboada, A.; Marcos, E.; Calvo, L. Evaluation and comparison of Landsat 8, Sentinel-2 and Deimos-1 remote sensing indices for assessing burn severity in Mediterranean fire-prone ecosystems. Int. J. Appl. Earth Obs. Geoinf. 2019, 80, 137–144. [Google Scholar] [CrossRef]
- Parks, S.A.; Miller, C.; Abatzoglou, J.T.; Holsinger, L.M.; Parisien, M.-A.; Dobrowski, S.Z. How will climate change affect wildland fire severity in the western US? Environ. Res. Lett. 2016, 11, 035002. [Google Scholar] [CrossRef]
- Whitman, E.; Parisien, M.-A.; Thompson, D.K.; Hall, R.J.; Skakun, R.S.; Flannigan, M.D. Variability and drivers of burn severity in the northwestern Canadian boreal forest. Ecosphere 2018, 9, e02128. [Google Scholar] [CrossRef] [Green Version]
- Fernández-García, V.; Beltrán-Marcos, D.; Fernández-Guisuraga, J.M.; Marcos, E.; Calvo, L. Predicting potential wildfire severity across Southern Europe with global data sources. Sci. Total Environ. 2022, 829, 154729. [Google Scholar] [CrossRef] [PubMed]
- Moritz, M.A.; Parisien, M.-A.; Batllori, E.; Krawchuk, M.A.; Van Dorn, J.; Ganz, D.J.; Hayhoe, K. Climate change and disruptions to global fire activity. Ecosphere 2012, 3, 1–22. [Google Scholar] [CrossRef]
- Turetsky, M.R.; Kane, E.S.; Harden, J.W.; Ottmar, R.D.; Manies, K.L.; Hoy, E.; Kasischke, E.S. Recent acceleration of biomass burning and carbon losses in Alaskan forests and peatlands. Nat. Geosci. 2011, 4, 27–31. [Google Scholar] [CrossRef]
- Moreira, F.; Ascoli, D.; Safford, H.; A Adams, M.; Moreno, J.M.; Pereira, J.M.C.; Catry, F.X.; Armesto, J.; Bond, W.; E González, M.; et al. Wildfire management in Mediterranean-type regions: Paradigm change needed. Environ. Res. Lett. 2020, 15, 011001. [Google Scholar] [CrossRef]
- Kharuk, V.I.; Dvinskaya, M.L.; Im, S.T.; Golyukov, A.S.; Smith, K.T. Wildfires in the Siberian Arctic. Fire 2022, 5, 106. [Google Scholar] [CrossRef]
- Canadell, J.G.; Meyer, C.P.; Cook, G.D.; Dowdy, A.; Briggs, P.R.; Knauer, J.; Pepler, A.; Haverd, V. Multi-decadal increase of forest burned area in Australia is linked to climate change. Nat. Commun. 2021, 12, 6921. [Google Scholar] [CrossRef]
- Giglio, L.; Boschetti, L.; Roy, D.P.; Humber, M.L.; Justice, O.C. The Collection 6 MODIS burned area mapping algorithm and product. Remote Sens. Environ. 2018, 217, 72–85. [Google Scholar] [CrossRef]
- Olson, D.M.; Dinerstein, E.; Wikramanayake, E.D.; Burgess, N.D.; Powell, G.V.N.; Underwood, E.C.; D’amico, J.; Itoua, I.; Strand, H.; Morrison, J.; et al. Terrestrial ecoregions of the world: A new map of life on Earth. Bioscience 2001, 51, 933–938. [Google Scholar] [CrossRef]
- Esri, CMI, CIA, Global Mapping International; U.S. Central Intelligence Agency-The World Factbook, World Continents. Available online: https://www.arcgis.com/home/item.html?id=a3cb207855b348a297ab85261743351d (accessed on 1 December 2021).
- R Core Team. R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 1 December 2021).
- Fernández-García, V.; Quintano, C.; Taboada, A.; Marcos, E.; Calvo, L.; Fernández-Manso, A. Remote Sensing Applied to the Study of Fire Regime Attributes and Their Influence on Post-Fire Greenness Recovery in Pine Ecosystems. Remote Sens. 2018, 10, 733. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.D.; Thode, A.E. Quantifying burn severity in a heterogeneous landscape with a relative version of the delta normalized burn ratio (dNBR). Remote Sens. Environ. 2007, 109, 66–80. [Google Scholar] [CrossRef]
- Botella-Martínez, M.A.; Fernández-Manso, A. Estudio de la severidad post-incendio en la Comunidad Valenciana comparando los índices dNBR, RdNBR y RBR a partir de imágenes Landsat 8. Rev. Teledetección 2017, 49, 33–47. [Google Scholar] [CrossRef] [Green Version]
- Bronaugh, D.; Werner, A. zyp: Zhang + Yue-Pilon Trends Package. R package version 0.10-1.1. Available online: https://CRAN.R-project.org/package=zyp (accessed on 1 December 2021).
- Hothorn, T.; Zeileis, A. partykit: A Modular Toolkit for Recursive Partytioning in R. J. Mach. Learn. Res. 2015, 16, 3905–3909. Available online: https://www.jmlr.org/papers/v16/hothorn15a.html (accessed on 1 December 2021).
- Revelle, W. psych: Procedures for Personality and Psychological Research Version 2.2.3. Available online: https://CRAN.R-project.org/package=psych (accessed on 31 May 2022).
- Staver, A.; Archibald, S.; Levin, S.A. The Global Extent and Determinants of Savanna and Forest as Alternative Biome States. Science 2011, 334, 230–232. [Google Scholar] [CrossRef] [Green Version]
- Damasceno-Junior, G.A.; Pereira, A.D.M.; Oldeland, J.; Parolin, A.P. Fire, Flood and Pantanal Vegetation. In Flora and Vegetation of the Pantanal Wetland. Plant and Vegetation; Damasceno-Junior, G.A., Parolin, A.P., Eds.; Springer: Cham, Switzerland, 2021; pp. 661–668. [Google Scholar] [CrossRef]
- Bradstock, R.A.; Williams, J.E.; Gill, M.A. Flammable Australia: The Fire Regimes and Biodiversity of a Continent; Cambridge University Press: Cambridge, UK, 2002; p. 462. [Google Scholar]
- Walker, Z.C.; Morgan, J.W. Perennial pasture grass invasion changes fire behaviour and recruitment potential of a native forb in a temperate Australian grassland. Biol. Invasions 2022, 24, 1755–1765. [Google Scholar] [CrossRef]
- Van Wees, D.; van der Werf, G.R.; Randerson, J.T.; Andela, N.; Chen, Y.; Morton, D.C. The role of fire in global forest loss dynamics. Glob. Change Biol. 2021, 27, 2377–2391. [Google Scholar] [CrossRef]
- Rocha, A.; Shaver, G.R. Postfire energy exchange in arctic tundra: The importance and climatic implications of burn severity. Glob. Change Biol. 2011, 17, 2831–2841. [Google Scholar] [CrossRef]
- Shangguan, W.; Dai, Y.; Duan, Q.; Liu, B.; Yuan, H. A global soil data set for earth system modeling. J. Adv. Model. Earth Syst. 2014, 6, 249–263. [Google Scholar] [CrossRef]
- Walker, X.J.; Rogers, B.M.; Veraverbeke, S.; Johnstone, J.F.; Baltzer, J.L.; Barrett, K.; Bourgeau-Chavez, L.; Day, N.J.; de Groot, W.J.; Dieleman, C.M.; et al. Fuel availability not fire weather controls boreal wildfire severity and carbon emissions. Nat. Clim. Change 2020, 10, 1130–1136. [Google Scholar] [CrossRef]
- Kelley, D.I.; Bistinas, I.; Whitley, R.; Burton, C.; Marthews, T.R.; Dong, N. How contemporary bioclimatic and human controls change global fire regimes. Nat. Clim. Change 2019, 9, 690–696. [Google Scholar] [CrossRef] [Green Version]
- Song, X.-P.; Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Tyukavina, A.; Vermote, E.F.; Townshend, J.R. Global land change from 1982 to 2016. Nature 2018, 560, 639–643. [Google Scholar] [CrossRef] [PubMed]
- Xu, X.; Jua, G.; Zhang, X.; Riley, W.J.; Xue, Y. Climate regime shift and forest loss amplify fire in Amazonian Forests. Glob. Change Biol. 2020, 26, 5874–5885. [Google Scholar] [CrossRef] [PubMed]
- Gonzalez, M.E.; Gómez-González, S.; Lara, A.; Garreaud, R.; Díaz-Hormazábal, I. Megadrought and its influence on the fire regime in central and south-central Chile. Ecosphere 2018, 26, 5874–5885. [Google Scholar] [CrossRef] [Green Version]
- Carvalho de Andrade, D.; Ruschel, A.R.; Schwartz, G.; de Carvalho, J.O.P.; Humphries, S.; Gama, J.R.V. Forest resilience to fire in eastern Amazon depends on the intensity of pre-fire disturbance. For. Ecol. Manag. 2020, 472, 118258. [Google Scholar] [CrossRef]
- Lindenmayer, D.B.; Kooyman, R.M.; Taylor, C.; Ward, M.; Watson, J.E.M. Recent Australian wildfires made worse by logging and associated forest management. Nat. Ecol. Evol. 2020, 4, 898–900. [Google Scholar] [CrossRef]
- Smith, P. An overview of the permanence of soil organic carbon stocks: Influence of direct human-induced, indirect and natural effects. Eur. J. Soil Sci. 2005, 56, 673–680. [Google Scholar] [CrossRef]
- Ramo, R.; Roteta, E.; Bistinas, I.; van Wees, D.; Bastarrika, A.; Chuvieco, E.; van der Werf, G.R. African burned area and fire carbon emissions are strongly impacted by small fires undetected by coarse resolution satellite data. Proc. Natl. Acad. Sci. USA 2021, 118, e2011160118. [Google Scholar] [CrossRef]
- Fernández-García, V.; Kull, C.A. Refining historical burned area data from satellite observations. Int. J. Appl. Earth Obs. Geoinf. 2023, 120, 103350. [Google Scholar] [CrossRef]
- Quintano, C.; Calvo, L.; Fernández-Manso, A.; Suárez-Seoane, S.; Fernandes, P.M.; Fernández-Guisuraga, J.M. First evaluation of fire severity retrieval from PRISMA hyperspectral data. Remote Sens. Environ. 2023, 295, 113670. [Google Scholar] [CrossRef]
- Fernández-García, C.; Beltrán-Marcos, D.; Calvo, L. Building patterns and fuel features drive wildfire severity in wildland-urban interfaces in Southern Europe. Landsc. Urban Plan. 2023, 231, 104646. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, P. Potential fire risks in South America under anthropogenic forcing hidden by the Atlantic Multidecadal Oscillation. Nat. Commun. 2022, 13, 2437. [Google Scholar] [CrossRef]
Fire Variable | Global Mean | Global Trend | ||||
---|---|---|---|---|---|---|
Value (±SE) | Unit | Value | Lower 95% CL | Upper 95% CL | Unit | |
BA | 4.78 (±0.12) | Mkm2 year−1 | −1.50 *** | −2.02 | −0.82 | % year−1 |
3.26 (±0.08) | % land year−1 | |||||
BS | 175.74 (±0.89) | dNBR | 0.13 | −0.08 | 0.33 | % year−1 |
BA at low severity | 3.59 (±0.09) | Mkm2 year−1 | −1.62 *** | −2.10 | −0.94 | % year−1 |
2.45 (±0.06) | % land year−1 | |||||
75.06 (±0.23) | % BA year−1 | −0.08 | −0.25 | 0.05 | % year−1 | |
BA at moderate severity | 0.99 (±0.02) | Mkm2 year−1 | −1.27 *** | −2.20 | −0.50 | % year−1 |
0.67 (±0.02) | % land year−1 | |||||
20.61 (±0.18) | % BA year−1 | 0.08 | −0.25 | 0.48 | % year−1 | |
BA at high severity | 0.21 (±0.00) | Mkm2 year−1 | −0.63 | −1.72 | 0.25 | % year−1 |
0.14 (±0.00) | % land year−1 | |||||
4.33 (±0.10) | % BA year−1 | 0.95 * | 0.04 | 1.85 | % year−1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fernández-García, V.; Alonso-González, E. Global Patterns and Dynamics of Burned Area and Burn Severity. Remote Sens. 2023, 15, 3401. https://doi.org/10.3390/rs15133401
Fernández-García V, Alonso-González E. Global Patterns and Dynamics of Burned Area and Burn Severity. Remote Sensing. 2023; 15(13):3401. https://doi.org/10.3390/rs15133401
Chicago/Turabian StyleFernández-García, Víctor, and Esteban Alonso-González. 2023. "Global Patterns and Dynamics of Burned Area and Burn Severity" Remote Sensing 15, no. 13: 3401. https://doi.org/10.3390/rs15133401
APA StyleFernández-García, V., & Alonso-González, E. (2023). Global Patterns and Dynamics of Burned Area and Burn Severity. Remote Sensing, 15(13), 3401. https://doi.org/10.3390/rs15133401