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Abstract: Wildfires have significant environmental and socio-economic impacts, affecting ecosystems
and people worldwide. Over the coming decades, it is expected that the intensity and impact of
wildfires will grow depending on the variability of climate parameters. Although Bulgaria is not
situated within the geographical borders of the Mediterranean region, which is one of the most
vulnerable regions to the impacts of temperature extremes, the climate is strongly influenced by it.
Forests are amongst the most vulnerable ecosystems affected by wildfires. They are insufficiently
adapted to fire, and the monitoring of fire impacts and post-fire recovery processes is of utmost
importance for suggesting actions to mitigate the risk and impact of that catastrophic event. This
paper investigated the forest vegetation recovery process after a wildfire in the Ardino region,
southeast Bulgaria from the period between 2016 and 2021. The study aimed to present a monitoring
approach for the estimation of the post-fire vegetation state with an emphasis on fire-affected territory
mapping, evaluation of vegetation damage, fire and burn severity estimation, and assessment of their
influence on vegetation recovery. The study used satellite remotely sensed imagery and respective
indices of greenness, moisture, and fire severity from Sentinel-2. It utilized the potential of the
landscape approach in monitoring processes occurring in fire-affected forest ecosystems. Ancillary
data about pre-fire vegetation state and slope inclinations were used to supplement our analysis for a
better understanding of the fire regime and post-fire vegetation damages. Slope aspects were used
to estimate and compare their impact on the ecosystems’ post-fire recovery capacity. Soil data were
involved in the interpretation of the results.

Keywords: fire impact; post-fire forest recovery; forest landscapes; vegetation indices; orthogonal
transformation; Sentinel-2

1. Introduction

Forest disturbance cycles are associated with exacerbating responses to climate change [1].
Forest fires have been more frequent and severe in recent decades, especially in areas that
have experienced climate change pressures for an extended period of time [2]. Due to
climate change, high-temperature anomalies continue to occur, which leads to frequent
forest fires [3]. The International Panel on Climate Change (IPCC) puts the Mediterranean
and its adjacent lands as amongst the most vulnerable regions to the effects of global
warming worldwide [4]. The models issued by IPCC agreed on a clear trend of the thermal
regime based on a scenario from 1980–2000. An increase in average surface temperatures,
ranging between 2.2 ◦C and 5.1 ◦C, for the period 2080–2100 was prognosed. For the
same period, the models indicated pronounced rainfall regime changes showing that
precipitation over lands might decrease by about 4% to 27%. Studies performed by the
Department of Meteorology at the National Institute of Meteorology and Hydrology at
the Bulgarian Academy of Sciences (NIMH-BAS) predicted an increase in the annual air
temperature by more than 1.8 ◦C for the coming decades in Bulgaria. This fact increases
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the risk of forest fire frequency and intensity [5]. During the last two decades in Bulgaria,
as well as in other countries of the Mediterranean region, many wildfires occurred and had
a significant economic, political, social, and ecological impact [6–9].

In recent years, high resolution (HR) and very high resolution (VHR) optical remote
sensing has become widespread concerning monitoring needs, and these strategies pro-
vide affordable multitemporal and multispectral pictures of the considered phenomena at
different scales. Satellite sensors allow measurement of the impact of fires by comparing
pre- and post-fire information. Applications of remote sensing technology related to fire
ecology, including fire risk mapping, fuel mapping, burn severity assessment, and post-fire
vegetation recovery, are widely discussed and accepted [10–15]. These technologies pro-
vide a low-cost, multi-temporal means for conducting local, regional, and global-scale fire
ecology research. Moreover, the development of new technologies and techniques resulted
in their rapid evolution, thus increasing the accuracy and efficiency of earth observation
studies and applications [16,17]. Space and airborne sensors have been used to map burned
areas, quantify the impact of fire on vegetation over large areas, and characterize post-fire
ecological effects [18–20]. Emphasis has been given to the roles of multispectral sensors,
lidar, and emerging Unmanned Aerial System (UAS) technologies [14]. Depending on
the purpose of post-fire vegetation recovery observation and study, the assessment is per-
formed based on groups of methods, such as image classification, vegetation indices (VIs),
spectral mixture analysis (SMA) [21,22], etc. Remote sensing imagery offers an opportunity
for obtaining land use and land cover information through image interpretation and classifi-
cation. Spectral responses are used in image classification to identify the healthy vegetation
in individual pixels [14]. Spectra-based classification approaches are conceptually simple
and easy to implement [23]. The type or condition of surface features and their dynamics
can be assessed by multi-temporal imaging. This type of analysis is fundamental in remote
sensing and is typically called change detection [24]. VIs are the most commonly used
method for assessments of vegetation state, including vegetation recovery after natural or
anthropogenic disturbances [17,25,26].

Post-fire-related conditions are important for forest vegetation recovery. In this context,
mapping of the burned area, representing the burn severity, is a standard technique for
monitoring the post-fire effects and forest recovery patterns [17,27–29]. It was found that
the differenced Normalized Burn Ratio (dNBR) and its relative form (relative differenced
Normalized Burn Ratio (RdNBR)) derived from Landsat data correlate with field measure-
ments of burn severity [30]. NBR is also used for monitoring post-fire regeneration over
burned areas in ecosystems. Results showed that as vegetation regenerates, the differences
between the burns and the reference area for the vegetation index decrease with time [31].
Detailed studies showed that the NIR-based vegetation indices are most appropriate for
accurately assessing vegetation recovery [32]. The NDVI is found to be the most used for
post-fire recovery studies, as it could be calculated alone without additional field data
collection [26,33,34]. However, due to reaching saturation levels before the point where an
ecosystem fully recovers its maximum biomass after disturbance, the forest recovery rate
could be overestimated when using NDVI [35,36]. For estimations of variations in chloro-
phyll content and its changes in vegetation after a fire event, the Modified Chlorophyll
Absorption Ratio Index (MCARI2) is used [37]. A quantitative analysis of forest degrada-
tion resulting from forest fires is performed by introducing the Normalized Differential
Greenness Index (NDGI) [38]. The remotely sensed Moisture Stress Index (MSI) is used
for canopy stress analysis and is suitable for monitoring coniferous forests and assessing
specific damages that cannot be detected using NIR/R vegetation indices [39]. Spectral
indices are also used to estimate other ecological parameters related to vegetation recovery.
Such parameters are the Leaf Area Index (LAI) [40], the Forest Recovery Index (FRI), and
Fractional Vegetation Cover (FVC) [29].

However, differences in fire severity provoke contrasting plant cover and floristic
composition when ecosystems recover after forest fires. A multitude of factors such as
climate, initial plant mortality, soil characteristics, the topography of the region, and vege-
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tation composition determine the rate of recovery [41,42]. Moreover, vegetation response
to fire and post-fire recovery processes differ in the various biogeographical regions and
depend on vegetation type and pre-fire vegetation state [43]. For that reason, post-fire
vegetation recovery is a complicated process that cannot be assessed by the application of a
single, unified spectral index. Despite the advantages of spectral indices for monitoring
post-fire vegetation recovery, there is still no single spectral index suitable for assessment
of post-fire disturbances or vegetation recovery processes in every ecosystem, scale, and
time-lag condition [44]. Even the NBR and its derivative indices developed specifically
for fire-affected areas show varying accuracy under different conditions. The NBR and
dNBR are considered advantageous for immediate post-fire monitoring, but their accuracy
decreases with increasing temporal distance from the fire event and with the progress of
vegetation recovery [45]. On the other hand, the Disturbance Index (DI) [46] is effective
in monitoring forest disturbances of different origins and their temporal dynamics [47,48].
Due to the involvement of a larger range of spectral information, the DI is considered
more accurate in assessing the recovery of undergrowth in forest ecosystems compared
to standard monitoring methods using VIs [19,47]. The DI is based on a linear orthogo-
nal transformation of multispectral satellite images [49,50], which increases its ability to
differentiate the three main components: soil, vegetation, and moisture [51]. As a result
of a fire, these three components are altered to the greatest extent. The DI more precisely
separates the unvegetated spectral signatures closely linked to the stand-replacing distur-
bance from all other forest signatures [46]. This feature makes the DI particularly suitable
for monitoring the dynamics of post-fire vegetation recovery.

This paper dissects the forest vegetation recovery stages during a period of six years
after a wildfire in the Ardino region in Bulgaria. The study aims to present the potential
for exploiting remotely sensed imagery and respective indices of greenness, moisture, and
fire severity from Sentinel-2 to support post-fire observation and forest management with
an emphasis on fire-affected territory mapping, vegetation damage assessment, fire and
burn severity assessment, and their influence on the ability of vegetation to recover. The
study used two groups of spectral indices for monitoring the area affected by the wildfire.
The first group encompassed VIs using individual spectral bands for their calculation, and
the second group included indices utilizing a larger range of spectral information through
the orthogonalization of multispectral data. The Normalized Difference Vegetation Index
(NDVI), the Modified Chlorophyll Absorption Ratio Index (MCARI2), and the Moisture
Stress Index (MSI) are the indices that belong to the first group, and the Normalized
Differential Greenness Index (NDGI), the Normalized Differential Wetness Index (NDWNI),
and the Disturbance Index (DI) are the indices from the second group. The study took into
account the landscape characteristics of the area influencing the processes occurring in
fire-affected forest ecosystems and their post-fire recovery dynamics. Ancillary data about
pre-fire vegetation state and slope inclinations were used to supplement our analysis for a
better understanding of the fire regime and post-fire vegetation damages. Slope aspects
were used to estimate and compare their impact on the ecosystems’ resilience, vulnerability,
and post-fire recovery capacity. Soil data were involved in the interpretation of the results.

2. Materials and Methods
2.1. Study Area

The study area was situated in the southeastern part of the Rhodope Mountains, near
Ardino town. The X and Y coordinates of the centroid were calculated to be 25◦6′7”E and
41◦34′30”N. A significant fire took place on 29 July 2016 in the study area (Figure 1). 2016
was the year with the highest wind speed during the summer months of the study period
(2016–2021). The average wind speed in the summer of 2016 ranged between 4.7 m/s
(in September) and 6.1 m/s (in August), and the average maximum wind speed was
between 7.4 m/s (in September) and 8.1 m/s (in July) [52]. Generally, based on hourly
weather simulations over the past 30 years in the study area, the maximum wind speed was
observed in March (reaching up to 20 m/s average value) and the minimum windspeed
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was in September (starting from 3 m/s average value). Days with wind speeds above
12 m/s predominated between February and September, and days with wind speeds above
5 m/s predominated between October and January. The wind direction was mainly from
the north and northwest [53].
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Figure 1. Location of the studied area and land cover change in the pre-fire 2013 (a) and post-fire 2016
(b), 2018 (c), and 2020 (d) years. Source: Google Earth Pro—Airbus and Maxar Technologies images.
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The area affected by the forest fire was 100 ha. The main tree species were Scots
pine (Pinus sylvestris L.) and Black pine (Pinus nigra Arn.). The endemic vegetation in the
region refers to the Thracian province of the European deciduous forest area with the main
tree species being Quercus frainetto and Q.cerris. On karst terrains, Q. frainetto, Q. cerris,
and Q.pubescens, mixed with Carpinus orientalis, Fraxinus ornus, Syringa vulgaris, Cotinus
coggygria, and Ostrya carpinifolia can be found [54]. However, because of erosion processes
in the 1950s and the expansion of bare lands, massive afforestation with coniferous species
has been performed.

Lithogenic diversity was represented by pre-Paleozoic and Paleozoic metamorphic
rocks and phyllitoids covered by a Paleogene volcanogenic–sedimentary complex [54].
The terrain was hilly with steep slopes (>15◦). It influenced the fire regime and is also
considered a condition for the development of water erosion. Approximately 70% of the
area contained slopes above 15◦. The mean value of the slopes was 16◦ and the maximum
was 27◦. The slopes predominantly had east, southeast, and south exposures and define
warm and dry conditions for vegetation development. The soils were shallow Lithosols
mixed with Rendzinas [54].

The study area has a Continental Mediterranean climate with hot summers and mild
winters. The minimum amount of precipitation is in summer, and the maximum amount
is in winter. Over the last 40 years, a clear trend towards an increase in both average
air temperature and precipitation sum has been observed. The average air temperature
change showed a linear trend with an increase of 2.2 ◦C, starting from 10.2 ◦C in 1979 and
reaching up to 12.4 ◦C in 2021. Summer is getting hotter, with temperatures in July and
August consistently higher for the past 16 years. On the other hand, the precipitation sums
in the summer months decreased, especially in August, showing a persistent negative
tendency during the last 14 years. The winter is getting warmer too. February has been
distinguished by sustained higher average air temperatures since 2012. The precipitation
sum has also increased during the winters. Overall, there has been an increase (by 126 mm)
in precipitation sum over the past 40 years. This increase is primarily due to increased
winter precipitations [53]. The indicated climate changes have led to the transition of
the studied area from a Warm-summer Mediterranean climate (Csb), according to the
Köppen climate classification, to a Hot-summer Mediterranean climate (Csa). In addition,
the slopes in the area, which predominantly had east, southeast, and south exposures,
determined warm and dry conditions for the development of vegetation. The observed
trends significantly increase the risk of fires in the area, loss of biological diversity, and
degradation of ecosystems.

2.2. Characteristics of Climatic Anomalies Observed during the Period of 2016–2021

Figure 2 shows the mean air temperature and precipitation sum anomalies for the
period of 2016–2021 on an annual basis and for the summer months (July, August, and
September). As a reference, the period between 1981 and 2010 was used.

Remote Sens. 2022, 14, x FOR PEER REVIEW 6 of 25 
 

 

Figure 1. Location of the studied area and land cover change in the pre-fire 2013 (a) and post-fire 
2016 (b), 2018 (c), and 2020 (d) years. Source: Google Earth Pro—Airbus and Maxar Technologies 
images. 

2.2. Characteristics of Climatic Anomalies Observed during the Period of 2016–2021 
Figure 2 shows the mean air temperature and precipitation sum anomalies for the 

period of 2016–2021 on an annual basis and for the summer months (July, August, and 
September). As a reference, the period between 1981 and 2010 was used. 

  
(a) (b) 

Figure 2. Mean air temperature (a) and precipitation sum (b) anomalies for the period of 2016–
2021 on an annual basis and for the summer months (July, August, and September). 

In terms of mean air temperature, 2019 was the year with the highest positive 
anomaly (+1.4 °C). Amongst the summer months, August was with positive anomalies 
only. The highest anomalous value (+1.6 °C) was recorded in 2017. The highest 
anomalous value for the summers between 2016 and 2021 was recorded in September 
2020 (+2.6 °C). Three of the years during the period of 2016–2021 were characterized by 
positive anomalies in all three summer months. Overall for the three summer months, 
2020 was with the highest positive anomaly (+4.7°C). The lowest positive anomaly, 
overall for the three summer months, was recorded in 2018 (+0.3°C). The mean air 
temperature in July 2018 was 1 °C lower in comparison with the reference period (Figure 
2a) [52].  

Higher sums of annual precipitation were observed during the period of 2016–2021. 
The wettest year was 2021, which had a 36% higher precipitation sum in comparison 
with the reference period. There was no definite trend in the distribution of precipitation 
during the summer months. All three summer months of 2016 and 2020 had lower 
precipitation. In 2020, the total precipitation for the summer was 106% lower in 
comparison with the reference period. In September 2020 only, the precipitation sum 
was lower by 83%. The wettest summer was in 2019. In that summer, the total amount of 
precipitations was 366% higher in comparison with the reference period (Figure 2b) [52]. 

2.3. Data  
2.3.1. In Situ Data 

In situ data included climatic data, soil data, and field observations. 
The climatic data were based on measurements at the Kardzhali meteorological 

station (331 m.a.s.l) situated 21 km from Ardino [53] and on hourly weather simulations 
with 30 km spatial resolution over the past 30 years [52]. The in situ climatic data 
included mean air temperature and precipitation sum for a period between 1979 and 
2021 as well as data about the mean air temperature and precipitation sum anomalies for 
the period of 2016–2021 on an annual basis and for the summer months (July, August, 
and September) [53]. In addition, ERA5 model data, which combined satellite and in situ 

Figure 2. Mean air temperature (a) and precipitation sum (b) anomalies for the period of 2016–2021
on an annual basis and for the summer months (July, August, and September).
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In terms of mean air temperature, 2019 was the year with the highest positive anomaly
(+1.4 ◦C). Amongst the summer months, August was with positive anomalies only. The
highest anomalous value (+1.6 ◦C) was recorded in 2017. The highest anomalous value for
the summers between 2016 and 2021 was recorded in September 2020 (+2.6 ◦C). Three of
the years during the period of 2016–2021 were characterized by positive anomalies in all
three summer months. Overall for the three summer months, 2020 was with the highest
positive anomaly (+4.7◦C). The lowest positive anomaly, overall for the three summer
months, was recorded in 2018 (+0.3◦C). The mean air temperature in July 2018 was 1 ◦C
lower in comparison with the reference period (Figure 2a) [52].

Higher sums of annual precipitation were observed during the period of 2016–2021.
The wettest year was 2021, which had a 36% higher precipitation sum in comparison with
the reference period. There was no definite trend in the distribution of precipitation during
the summer months. All three summer months of 2016 and 2020 had lower precipitation.
In 2020, the total precipitation for the summer was 106% lower in comparison with the
reference period. In September 2020 only, the precipitation sum was lower by 83%. The
wettest summer was in 2019. In that summer, the total amount of precipitations was 366%
higher in comparison with the reference period (Figure 2b) [52].

2.3. Data
2.3.1. In Situ Data

In situ data included climatic data, soil data, and field observations.
The climatic data were based on measurements at the Kardzhali meteorological station

(331 m.a.s.l) situated 21 km from Ardino [53] and on hourly weather simulations with
30 km spatial resolution over the past 30 years [52]. The in situ climatic data included mean
air temperature and precipitation sum for a period between 1979 and 2021 as well as data
about the mean air temperature and precipitation sum anomalies for the period of 2016–
2021 on an annual basis and for the summer months (July, August, and September) [53]. In
addition, ERA5 model data, which combined satellite and in situ historical observation,
were used to outline how climate change has already affected the Ardino region in the last
40 years [52].

The soil data included soil types [54], soil chemical composition, and organic matter
content, which were measured in a pine-dominated mixed woodland (790 m.a.s.l) situated
near Ardino in 2015 [55]. Soil field data is part of LUCAS 2015 Topsoil datasets, which
is freely available through the European Soil Data Centre (ESDAC) of the Joint Research
Centre [55]. Because the soil data refer to the pre-fire period and the soil samples were not
taken from the affected area specifically, they were used only for result interpretation as
auxiliary data.

Interactive three-dimensional panoramas were used as a means of field observations.
They were acquired via Google Street View technology in the summer of 2021. These were
used to generate high-quality photographs of eight locations affected by the fire [56].

2.3.2. Satellite Data

Satellite data acquired from Sentinel-2A and Sentinel-2B multispectral sensors of the
European Space Agency Program for Earth Observation “Copernicus” [57] were used to
assess post-fire vegetation recovery. The temporal resolution of every individual Sentinel-2
satellite is ten days, and their combined resolution is five days. More detailed informa-
tion about the spectral and spatial resolution of the Sentinel-2 satellites can be found in
Table A1 [57].

The Sentinel-2 image acquired on 10 July 2016 was representative for the period
before the fire event (29 July 2016), and the images acquired on 24 August 2017 and 2018,
14 August 2019, 02 September 2020, and 23 August 2021 were used for assessment of the
forest vegetation state after the fire.

High-resolution forest layers (HRLs), which are freely available through the Coperni-
cus Land Monitoring Service [58], were used in the validation process. The layers included
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Tree Cover Density (TCD) and Forest Type (FTY) products. The TCD product represents
the level of tree cover density in a range from 0–100% for 2012, 2015, and 2018 reference
years. The Forest Type product represents the dominant leaf type with a Minimum Map
Unit (MMU) of 0.5 ha. Both products are pixel-based, and the minimum mapping width
is 20 m. The forests’ HRLs in 2015 were verified for the territory of Bulgaria using in situ
data [59]. The verification procedure was performed on three levels, including the highly
recommended quantitative verification. According to the results obtained by Tepeliev
et al. [59], the HRLs used in the present study are generally correctly mapped for the
territory of Bulgaria. Hence, we assumed that they could be used as independent reference
data in the validation procedure.

A Digital Elevation Model (DEM) with a spatial resolution of 25 m was used to obtain
slopes and slopes’ aspects. The dataset is freely available through the Copernicus Land
Monitoring Service [60].

2.4. Methods

The proposed approach for monitoring post-fire vegetation state and estimating its
dynamics included the following basic steps. First, spectral indices for the period between
2016 and 2021 were calculated to assess forest vegetation recovery dynamics. Second,
statistical regression analyses using three of the spectral indices as variables were performed.
The indices involved in the linear regression analyses were DI, MCARI2, and MSI. These
indices are representative of key post-fire characteristics of the affected territories. The
DI was used for the assessment of disturbance of forest ecosystems, burn severity, and
vegetation damage. MCARI2 is representative for vegetation regrowth, and MSI shows
stress in ecosystems caused by moisture deficiency. The third step considered differences in
landscapes and the conditions for forest recovery they create, which is predetermined by the
impact of slope exposures and their influence on the heat–moisture ratio. The assessment
of the slope exposure factor was based on a differentiated evaluation of indices dynamics
and their interpretation. The final step consisted of the validation of obtained results
using statistical regression analyses involving the forest HRLs as independent reference
data. Interactive three-dimensional panoramas from Google Street View were also used
in the validation process. The interactive panoramas were used to generate photographs
in different directions in order to demonstrate the state of various ecosystems. X and Y
coordinates and altitude of the point locations of the photographs were extracted. The
obtained point locations were georeferenced and digitized to be used in overlay analyses
with the indices’ rasters. The eight locations affected by the fire that were observed via this
technology were linked to the obtained results as a means for field observation. For each
location, indices values were extracted by taking into account the observed perspective and
the distance of the objects from the point of capture.

Spectral Indices Selected for Assessment of Post-Fire Vegetation Recovery

The spectral indices presented in Table 1 were selected and calculated to assess the
post-fire vegetation state.

The most well-known and used vegetation index for quantifying green vegetation
in the near-infrared wavelength region and chlorophyll absorption in the red wavelength
region is the NDVI. The NDVI strongly correlates with climate variations and their impact
on plant growth. That makes this index especially suitable for estimations of climate-related
vegetation changes. Moreover, changes in NDVI values correlate with the de Martonne
aridity index [19].

The MCARI has been proposed to estimate variations in chlorophyll content and its
concentration changes. Unlike MCARI, the newly designed MCARI2 is less sensitive to
chlorophyll concentration variations but has a high linear relationship with near-infrared
canopy reflectance and high linearity with the green LAI. The LAI is an important variable
used to estimate the biophysical processes of different vegetation types and predict their
growth and productivity [21,62]. Both the NDVI and MCARI2 range between −1 and +1.
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The highest values indicate dense and “healthy” vegetation, and the lowest values indicate
dead plants or inanimate objects.

Table 1. Spectral indices calculated in this study.

Index Abbreviation Formula

Normalized Difference
Vegetation Index [61] NDVI NDVI = ρNIR−ρRED

ρNIR+ρRED (1)

Modified Chlorophyll
Adsorption Ratio Index [62] MCARI2

MCARI2 =
1.5[2.5(ρ800−ρ670)−1.3(ρ800−ρ550)]√
(2ρ800+1)2−(6ρ800−5

√
ρ670)−0.5

(2)

Moisture Stress Index [63] MSI MSI = SWIR1
NIR (3)

Normalized Differential
Wetness Index [38,64,65] NDWNI

NDWNI = Wn(t2)−Wn(t1)
|Wn(t2)|+|Wn(t1)| , (4)

Wn(t) =
W(t)−E{W(t)}
St.Dev.[W(t)] , (5)

Normalized Differential
Greenness Index [38] NDGI

NDGI = GRn(t2)−GRn(t1)
|GRn(t2)|+|GRn(t1)| , (6)

GRn(t) =
GR(t)−E{GR(t)}

St.Dev.[GR(t)] , (7)

Disturbance Index [46] DI DI = nBR − (nGR + nW) (8)

The remotely sensed MSI is used for canopy stress analysis, productivity prediction,
and biophysical modeling. It detects plant water stress for these plants only, which are able
to tolerate low leaf water content through cellular adjustments. In the current study, the MSI
is especially suitable for monitoring coniferous forests and assessing specific damages that
cannot be detected using NIR/R vegetation indices [39]. Considering coniferous vegetation,
the differences in the MSI between damaged and undamaged stands are not necessarily
related to differences in the LAI. The MSI ranges from 0 to more than 3. Higher values
indicate greater moisture stress.

Additionally, a quantitative analysis of forest degradation resulting from forest fires
was performed by introducing the NDGI and the NDWNI. Both indices are based on
satellite image orthogonalization. In the process of orthogonalization, three differentiable
classes (soil brightness, greenness, and wetness axes) related to the main components of
the Earth’s surface (soil, vegetation, and water) are obtained. The NDGI uses the greenness
component, which corresponds to vegetation’s spectral reflectance characteristics (SRC),
and the NDWNI uses the wetness component, which corresponds to water’s SRC. These
indices quantitatively estimate the slightly positive and negative values of change in the
vegetation’s green mass and moisture content for a given period [38,64,65]. Both indices
range from −1 to +1. The positive NDGI values indicate plant growth and improvement of
the vegetation state, and the negative values indicate deterioration of the vegetation state
or deforestation. The positive NDWNI values indicate an increase in moisture content in
ecosystems, and the negative values indicate a decrease in moisture content.

The DI has also been used to monitor disturbances by forest fires. The index values
range widely, with positive values indicating disturbances. Higher values indicate more
severe disturbance. The DI is modified by weighting each input component to maximize the
difference between disturbed and undisturbed forest canopy. The weights reduce the effects
of background variations while emphasizing the variations caused by disturbance [48].
The model for calculating the DI includes three steps: the first step is the decomposition of
each of the three major Tasseled Cap components (brightness (BR), greenness (GR), and
wetness (W)); the second step is to calculate the averages and standard deviations for each
of the Tasseled Cap components; and the third step is to calculate the normalized values
of the components. These steps are needed to normalize the radiometric changes. In the
normalization, the following equations were used [46]:

nBR = (BR − E{BR}/St.Dev (BR) (9)
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nGR = (GR − E{GR}/St.Dev (GR) (10)

nW = (W − E{W}/St.Dev (W) (11)

where E {BR}, E {GR}, and E {W} are the average values of the brightness, greenness,
and wetness, respectively. St.Dev (BR), St.Dev (GR), and St.Dev (W) are the respective
standard deviations of these Tasseled Cap components. Therefore, nBR, nGR, and nW
are the normalized values of brightness, greenness, and wetness, respectively. The DI is
computed according to the equation presented in Table 1.

3. Results
3.1. Forest Vegetation Recovery for the Entire Study Area

Areas with negative NDGI values predominated until 2019. The NDGI values were
negative even a year before the fire event, which indicates a degraded state of forest
vegetation. The territories with negative NDGI values had maximum territorial spread
in the pre-fire year and a year after the fire (Figure 3, Table A2). The areas in the range
from −1 to −0.8 were dominant between 2016 and 2017 in the year immediately following
the fire (Figure 3, Table A2). With increasing temporal distance from the fire event, the
maximum territorial spread shifted to the category with slightly positive values (from 0 to
0.2). The areas with positive NDGI values, or an increase in biomass, had minimal spread
in the year immediately following the fire (Figure 3, Table A2). The positive NDGI values
had the highest growth between 2019 and 2020 (Figure 3, Table A2).

Surprisingly, the areas with no disturbance or negative DI values prevailed during
the entire studied period (Figure 3, Table A2). However, this maximum was highest in the
year before the fire event. Moreover, during the same year, the highest territorial spread
of the areas with great disturbance was observed. Areas from the same category (DI > 5)
were also recorded in the following 2017 and 2018 years (Figure 3, Table A2). After 2019,
with increasing temporal distance from the fire event, areas falling into this category were
not observed. In the year before the fire event, a large portion of the areas had DI values
between 0 and 2. In 2017, the areas were almost evenly distributed in the categories with DI
values between 0 and 4. In the following four years, between 2018 and 2021, the maximum
spread had areas with DI values between 0 and 3 (Figure 3, Table A2).

The first post-fire year was characterized by the most pronounced stress due to mois-
ture deficiency. In the same year, the highest territorial spread of the category with MSI
values above 1.5 was also observed (Figure 3, Table A2). The MSI category with values
between 0.5 and 1.5 had the largest share of the area. The maximum spread had territories
with MSI between 1.1 and 1.3. In the pre-fire year, 60.5% were in the category with MSI be-
tween 0.5 and 0.7. Between 2018 and 2021, the area was concentrated in the MSI categories
between 0.5 and 1.3. The maximum spread was between 0.7 and 1.3 (Figure 3, Table A2).

Regarding the NDWNI, the maximum area was mainly in the category between −0.2
and 0.2, indicating weak dynamics in the moisture content. An exception was the one-
year period immediately after the fire when a significant increase in moisture content was
observed (Figure 3, Table A2). In the years before the fire and between 2018 and 2021, a
significantly smaller share of the area had positive NDWNI dynamics (Figure 3, Table A2).

During the year before the fire, 94% of the area had MCARI2 values above 0.6. More-
over, almost half of the area had MCARI2 values between 0.7 and 0.8. This category (0.7–0.8)
also had a maximum territorial spread in the post-fire years, but the area falling into this
category was significantly less (Figure 3, Table A2). In the post-fire year of 2017, the area
was more evenly distributed between the individual categories. In the following years, the
area was concentrated mainly in the MCARI2 category with values between 0.4 and 0.9.
The share of the areas in this category gradually increased, reaching 96% in 2021 (Figure 3,
Table A2).
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Greater dynamics were observed in the maximum territorial spread between the
individual NDVI categories. In the pre-fire year, the highest proportion of territories had
NDVI values between 0.6 and 0.7, whereas in the year following the fire event, maximum
spread had territories with NDVI between 0.3 and 0.4. The maximum territorial spread
shifted to the categories with higher NDVI values in the years between 2018 and 2021
(Figure 3, Table A2).

3.2. Forest Vegetation Recovery in the Individual Slope Aspects

The differential analysis of the dynamics of indices values on the individual slope
exposures showed that in the first three years after the fire event (2017–2019), the southwest-
facing slopes had faster vegetation recovery and less moisture stress. These slopes had the
highest values of the NDVI and MCARI2 and the lowest values of the MSI (Table 2). The
MCARI2 had a better ability to differentiate vegetation recovery through the individual
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slopes. On east- and southeast-facing slopes, the NDVI showed equal totals over the three
years, while the MCARI2 distinguished them. The difference in MCARI2 values between
the individual slope aspects was higher than those of the NDVI and was clearer (Table 2).
Regarding moisture stress in the first three years after the fire event, the MSI total values
gradually increased in the following sequence: northeast-facing, southeast-facing, east-
facing, and south-facing slopes (Table 2). In the last two post-fire years, the northeast-facing
slopes had the highest total values of NDVI and MCARI2 and the lowest moisture stress.
On northeast-facing slopes, the highest totals of NDVI and MCARI2 and the lowest totals
of MSI for the entire period were recorded (Table 2).

Table 2. Mean values of the spectral indices for the different slope aspects in the studied years.

Aspect 2016 2017 2018 2019 2020 2021

NDVI

E 0.63 0.37 0.47 0.54 0.54 0.59
NE 0.64 0.37 0.47 0.52 0.59 0.63
S 0.61 0.36 0.44 0.51 0.46 0.53

SE 0.61 0.40 0.46 0.53 0.45 0.52
SW 0.63 0.41 0.50 0.56 0.50 0.56

MCARI2

E 0.77 0.46 0.61 0.67 0.68 0.73
NE 0.78 0.45 0.62 0.64 0.75 0.77
S 0.76 0.46 0.57 0.64 0.58 0.65

SE 0.74 0.50 0.59 0.65 0.57 0.63
SW 0.77 0.52 0.64 0.69 0.64 0.69

MSI

E 0.64 1.20 0.99 0.93 0.85 0.75
NE 0.61 1.21 0.92 0.92 0.70 0.65
S 0.69 1.22 1.07 0.96 1.06 0.93

SE 0.72 1.15 1.02 0.93 1.07 0.93
SW 0.62 1.10 0.92 0.85 0.94 0.83

DI

E −0.48 1.94 0.98 1.30 −0.05 −0.05
NE −0.74 1.66 0.46 1.19 −0.18 −0.15
S −0.09 1.85 1.63 1.39 0.11 0.09

SE 0.58 1.53 0.14 1.27 0.12 0.10
SW −0.80 0.86 0.36 0.48 0.00 0.01

2015–2016 2016–2017 2017–2018 2018–2019 2019–2020 2020–2021

NDWNI

E −0.46 −0.29 0.09 −0.16 0.07 −0.05
NE −0.70 −0.27 0.27 −0.39 0.18 −0.12
S −0.23 −0.25 −0.10 −0.02 −0.10 0.00

SE −0.18 0.02 −0.09 −0.03 −0.03 −0.01
SW −0.37 −0.31 0.04 −0.17 −0.06 −0.11

NDGI

E −0.05 −0.81 0.38 0.10 0.26 0.18
NE −0.16 −0.76 0.38 −0.16 0.34 0.01
S −0.02 −0.77 0.16 0.26 0.10 0.30

SE 0.00 −0.57 0.13 0.21 0.09 0.29
SW −0.13 −0.65 0.29 0.14 0.19 0.17

In the pre-fire year, only the vegetation on southeast-facing slopes had positive DI
values (Table 2). Moreover, territories most affected by the fire were situated on slopes with
such exposure in the northern part of the area. The entire forest vegetation was destroyed in
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those territories (Figure 1). The fire most likely started there (Figure 3). The mean DI values
were positive for all slopes in the following three post-fire years. The total DI values for the
individual slope exposers for 2017, 2018, and 2019 decreased in the following sequence:
south-facing, east-facing, northeast-facing, southeast-facing, and southwest-facing slopes
(Table 2). Despite the higher DI values recorded for the east and northeast-facing slopes in
the first three post-fire years, only these slopes had negative values in the last two years of
observation (Table 2). On slopes with a southern component, the DI remained positive. In
contrast to the trend observed in the NDVI, MCARI2, and MSI for the entire period, the
lowest DI values and the optimal vegetation state were not recorded for the northeastern
but for the southwestern slopes. However, as recorded by the listed indices, the vegetation
had the worst condition on south-facing slopes (Table 2).

The other two indices based on TCT (NDWNI and NDGI) can measure small changes
in moisture content and green mass. A slight positive increase in moisture content in the
first post-fire year was recorded only for the southeast-facing slopes. In 2018 and 2019, the
northeast-facing slopes had the highest positive NDWNI dynamics. The eastern slopes also
showed positive dynamics in the moisture content in these years (Table 2).

The NDGI, or green mass, showed positive dynamics after the second post-fire year
(2017–2018). In the period between 2017 and 2018, the vegetation on east- and northeast-
facing slopes had the highest increase in NDGI values. These were the highest NDGI
mean values in the entire period of observation and for all of the slope exposures (Table 2).
Moreover, during the drought in 2020, the vegetation on the northeastern and eastern slopes
again showed better condition compared to those on the slopes with different exposure
(Table 2). The NDWNI dynamics were also positive for the northeast- and east-facing slopes
in 2020. However, for the entire period of observation, the vegetation on southeast-facing
slopes had the highest total increase in NDGI values (Table 2).

3.3. Linear Regression Analyses for the Apectral Indices

The statistical regression analyses were representative for the correlation and depen-
dency between some of the key post-fire characteristics of the affected territories in the
vegetation recovery process.

The correlation between the areas affected by disturbance increased with the develop-
ment of ecosystem restoration processes and improving vegetation condition. The weaker
correlation between 2017 and 2018 indicated a higher difference in the state of the forest
vegetation in the first and second post-fire years (Figure 4c). This trend confirmed the rapid
development of the post-fire succession process between the first and second years after the
wildfire. The correlation was also lower between 2019 and 2020 when the severe drought
in the summer of 2020 influenced the vegetation state and increased the intra-territorial
differences. The increase in correlation for the periods between 2018 and 2019 and between
2020 and 2021, in turn, showed greater similarity in the state of the vegetation. In the
second post-fire year (the period between 2018 and 2019), the higher correlation indicated
delaying of the ecosystem restoration process, and in the 2020–2021 period, it indicated
restoring balance in the ecosystems disturbed by the severe drought. The character of the
territorial spread of vegetation throughout the individual categories divided by the DI val-
ues confirmed these observations (Figure 3, Table A2). In the first post-fire year, which was
distinguished by weaker correlation, the vegetation was divided between eight categories.
In 2021, as vegetation recovery progressed and the highest correlation was recorded, the
number of these categories decreased to five. In 2021, 67.4% of the area was concentrated
in two categories. 30% of this share consisted of the territories with DI between 1 and 2.
That was the greatest share of the area falling into this category of disturbance for the entire
period of observation. The area in this category gradually increased between 2016 and 2021,
starting at 16.4% in 2016 and reaching up to 30% in 2021 (Figure 3, Table A2).
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The correlation between MSI and DI values, in turn, showed a decreasing trend with
the progression of the ecosystem restoration process (Figure 4b). In 2017 (the first post-fire
year), the correlation between the disturbed ecosystems and moisture stress was highest
for the entire period of observation. That indicated that for most of the forest ecosystems,
higher MSI values were connected with higher DI values. In other words, the lack of
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moisture was connected with a higher degree of disturbance of the ecosystems (Figure 4b).
The progression of ecosystem restoration processes decreased this dependency.

The correlation and the dependency between MCARI2 and DI (i.e., between leaf
area and intensification of photosynthesis and the degree of disturbance of the ecosystem)
showed a decreasing trend with the progression of ecosystem restoration processes for the
first three post-fire years. Figure 4a shows that the areas characterized by high MCARI2
values were distinguished by lack of disturbance of the ecosystem and vice versa; areas
with lower MCARI2 values (e.g., 0.2) (i.e., areas with underdeveloped vegetation and
small leaf area) were distinguished by a higher degree of disturbance of the ecosystems.
The progression of ecosystem restoration processes led to an increase in leaf mass and
intensification of photosynthesis. The lowest MCARI2 values reached 0.4 in 2019. In
these areas, the DI had decreased to below 4. The decline in the dependency between the
vegetation state and the degree of disturbance of ecosystems confirmed the progression of
ecosystem restoration processes. The decreasing trend in the correlation was interrupted
by drought stress in 2020. In 2021, the correlations between both indices started to decline
again. However, the forest recovery trend still could be observed. Starting from 2020,
vegetation with DI values above 4 was not observed (Figure 4a).

3.4. Validation through HRLs

Statistical regression analyses involving the forest HRLs acquired in 2012, 2015, and
2018 as independent reference data were performed to validate the obtained results.

Generally, between 2012 and 2018, an increase in tree cover density of both broad-
leaved forests and coniferous forests was observed. The largest share of the area had forests
with tree cover density between 40% and 80% (Table 3). In the post-fire year of 2018, the
non-forested areas, as expected, had the highest disturbance (Table 4). They had positive
DI values. The DI for the forested areas in the same year was negative. The non-forested
area recorded the highest moisture stress (MSI > 1) (Table 4) but also the highest increase
in NDGI values. That was related to the development of vegetation succession processes
in the deforested territories. The vegetation indices NDVI and MCARI2 recorded their
highest values in broad-leaved forests. However, coniferous forests had the highest positive
dynamics in moisture content (NDWNI) (Table 4).

Table 3. Tree-cover density (TCD) classes (%) and area of their distribution (%) within broad-leaved
and coniferous forests in 2012, 2015, and 2018.

TCD (%)
Broad-Leaved Forests Coniferous Forests

2012 (%) 2015 (%) 2018 (%) 2012 (%) 2015 (%) 2018 (%)

0–20 6.66 0.8 0.72 0.63 non non
20–40 14.53 9.41 25.51 3.83 0.75 9.39
40–60 37.61 72.47 39.02 19.15 43.85 54.26
60–80 38.97 15.92 28.47 73.96 55.35 34.96
>80 2.22 1.4 6.29 2.43 0.06 1.39

Mean 43.86 52.21 56.19 47.37 55.67 60.28

The DI and MSI were the indices that showed the highest correlation with forest
density (Table 5). The correlation between the DI and forest density was the highest in the
coniferous forests. In the broad-leaved forests, the correlation between these two variables
was slightly lower. Regarding the moisture content, both deciduous and coniferous forests
showed a similar correlation. Generally, the coniferous forests were distinguished by
higher dependence on the spectral indices. The difference in correlation between the forest
density and NDVI was significant when comparing deciduous and coniferous forests. In
deciduous forests, R was barely 0.162, whereas in coniferous forests, it was 0.529 (Table 5).
The observations for the NDGI were similar. The difference between both forest types
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was greater than four times. The correlation between forest density and MCARI2 was also
slightly higher in the coniferous compared with broad-leaved forests (Table 5).

Table 4. Mean values of the spectral indices in broad-leaved forests, coniferous forests, and in
non-forested areas in 2018.

Index Broad-Leaved
Forests Coniferous Forests Non-Forested Areas

DI −7.57 −18.54 15.97
MCARI2 0.79 0.76 0.57

MSI 0.71 0.68 1.06
NDGI 0.08 −0.08 0.23
NDVI 0.65 0.59 0.44

NDWNI −0.05 0.12 −0.06

Table 5. Linear regression between forest density (independent) and spectral indices (dependent) for
each of the forest types.

Broad-Leaved Forests Coniferous Forests Non-Forested Areas

Index R Rsqr R Rsqr R Rsqr

NDVI 0.16 0.03 0.53 0.28 0.18 0.03
MCARI2 0.46 0.21 0.51 0.26 0.18 0.03

NDGI 0.03 0 0.15 0.02 0 0
DI 0.61 0.37 0.65 0.43 0.2 0.04

MSI 0.64 0.4 0.64 0.4 0.18 0.03
NDWNI 0.06 0 0.02 0 0.09 0.01

3.5. Validation through Field Observation

Interactive three-dimensional panoramas of eight-point locations from Google Street
View were also used in the validation process. The eight locations were linked to the ob-
tained results as a means for field observation. The indices values clearly showed the trends
in the manifestation of the indices in relation to the observed ecosystems’ components
(i.e., soil and vegetation). The lowest indices values were observed in the post-fire karst
territories in point one and point eight, and the highest values were observed in the forest
territories unaffected by the fire (Figure A1, Table A3).

4. Discussion

The deteriorated vegetation state and the landscape-ecological conditions (karst terrain,
dry and hot summers, and warm slope exposures) caused the fire. Dry vegetation and steep
terrain made the fire more intense, devastating, and hard to control. The consequences
in the area of occurrence were almost complete destruction of the forest vegetation, litter
cover, and soil organic layer.

The soil type and slope exposures are the main landscape-forming factors that deter-
mine differences in the processes of vegetation recovery in the study area. Unfavorable
characteristics of the soils in this area, such as shallow profile, low organic matter content,
acidic soil reaction, and low exchange capacity, worsened after the fire and further inhibited
the recovery of vegetation, including forest. These processes manifested more significantly
on the southern slopes. The removal of vegetation and litter cover as a result of a fire
reduces rainfall interception, which enhances runoff and erosion rates [66]. Moreover, the
burn severity of the soil surface on the south-facing slopes decreases soil carbon content
and changes soil acidity [31].

The neighboring territories were also affected to a great extent. Forest management
practices include a sanitary logging of burnt forest stands after a fire. For this reason, in
2018 (two years after the fire), actions to remove the burnt forest vegetation were taken. As
a result, a large part of the territory was completely cut down. The recovery processes of
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the forest vegetation were interrupted. The manifestation of TCT-based indices (NDGI and
NDWNI), which represent the dynamics in greenness and wetness after 2017–2018, was
also an indication for this interruption of the recovery process (Figure 3). It was evident
from a sharp decline of the areas with values that ranged between −1 and −0.8, which
is typical for forested territories, and from a significant increase of the areas in the NDGI
category of 0.8–1 (Figure 3, Table A2), which indicates the rapid development of grass
vegetation.

The negative values of the TCT-based DI were also indicative of the landscapes’
dynamic conditions in the territories affected by the fire. This index showed stable presence
of areas “undisturbed” by the fire. Their share was most significant (52% of the studied
area) before the fire (10 July 2016). In the years after the fire, their share remained relatively
stable at about 1/3 of the territory (Figure 3, Table A2). The analysis showed that these
were forest areas that remained undamaged by the fire as well as local patches of meadows
in the southern zone unaffected by the fire. This category also included areas with exposed
bedrock formed due to the nature of lithological type (karst) in the northern part of the
study area [54]. In these areas, the fire was not a destabilizing factor for the ecosystems’
condition (Figure 1).

The maximum spread of the areas in the NDWNI category (−0.2–+0.2), which had a
percentage distribution similar to that observed for the negative values of DI (approximately
30%) of the studied area (Figure 3, Table A2), also confirmed the observations made in
the analysis of the DI. The territories unaffected by the fire, were distinguished by the
lowest dynamics in moisture content. The first post-fire year was distinguished by the
highest NDWNI dynamics. It was related to rapid post-fire succession processes in a
large part of the study area. However, the NDGI values, which were representative of
greenness dynamics, did not indicate high dynamics in the same year, but they did indicate
high dynamics in the following year after sanitary logging (Figure 3, Table A2). The
increase in moisture content in the first year after the fire was not induced primarily by
the better state of vegetation but was mainly a result of the meteorological condition in
the summer of 2017 when the precipitation was 226% more than what it typical for the
region (Figure 2b). It should be noted that in the first post-fire years, vegetation primarily
comprises herbaceous species. The state of this type of vegetation is closely dependent on
environmental conditions. Grasslands are less resistant to anomalies related to temperature
and humidity [67,68]. Moreover, they are strongly dependent on their fluctuations [69].

The indices that were not based on orthogonalization showed the general dynamics
in the vegetation state. Generally, the areas with comparatively high values of NDVI and
MCARI2 (taking into consideration the character of vegetation), which corresponds with
lower MSI values, had the greatest territorial spread in the pre-fire year (Figure 3, Table A2).
In the first post-fire year, the areas were distributed among a large number of categories, i.e.,
the vegetation in the fire-affected territories was characterized by great diversity in terms
of its state. There were both unaffected areas and areas with varying degrees of post-fire
damage. With an increasing temporal distance from the fire event, an increasing share of
the territories were concentrated in fewer and fewer categories, with a slight shift towards
the categories representing a better state of vegetation. In the different post-fire years, there
was a slight growth or contraction of the individual categories within the general trend of
vegetation recovery (Figure 3, Table A2). However, this dynamic was the result of climatic
elements in the relevant year of observation (Figure 2a,b).

Some trends stand out regarding the influence of slope exposures on the vegetation
recovery process. Vegetation recovery was faster on warmer slopes in the first post-fire
years (2017–2019) (Table 2). However, it should be noted that during those years, the lack
of moisture was not a limiting factor for the recovery processes (Figure 2b). In all three
years, the summer precipitation exceeded the norm (Figure 2b). These results are consistent
with those of Wilson at al. [70], who found that vegetation had a higher recovery rate when
the temperature and precipitation were higher. A rapid, “catch-up” development on the
northeastern slopes was observed (Table 2) in the last two years of observation (2020 and
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2021). These were dry years (the precipitation sum for the three summer months was below
the norm), and the drought delayed vegetation recovery on the warmer slopes (Figure 2b).
The recovery processes on the northeastern slopes for the last two years of observation
were so rapid that they influenced the values indicating the total recovery for the entire
period (Table 2). This rapid vegetation recovery was also recorded by the DI. The tendency
of positive values (i.e., values indicating disturbance in ecosystems) was interrupted only
for the slopes with northeast and east exposure (Table 2). The DI showed a significant
relationship with post-fire vegetation recovery processes and that its dynamics, when
assessing such a process, were correlated with various climatic and topographic factors [42].
Chen et al. [42] confirmed that the role of slope exposures in the dynamics of post-fire
vegetation recovery was essential. Our results are consistent with those of Chen et al. [42].
They found that vegetation recovery on sunny sides was greater than on shady sides and
that it closely related to elevation and its influence on the heat–moisture ratio [42].

The NDWNI and NDGI showed the highest positive dynamics for the north- and
northeast-facing slopes. These slopes are in the western part of the study area, where due
to the lower degree of slope inclinations, the forest vegetation was largely preserved from
the fire (Figure 1). After the post-fire sanitary logging in 2018, small patches of these slopes
were deforested. These patches remained between separate groups of trees (Figure 1).
Regarding the landscape-forming factors (soil type [54], slope aspects, and inclinations),
these territories had more favorable conditions for vegetation recovery.

The results of the statistical and validation analyses indicated the reliability of the
methodology used to monitor and assess post-fire vegetation recovery processes. The
linear regression analyses showed stronger correlations between the objects of the Earth’s
surface that were under favorable conditions for vegetation recovery for two consecutive
years (higher R values between DI) and vice versa (weaker correlations when the territory
was under post-fire or drought stress in one of two consecutive years (lower R value
between DI)) (Figure 4c). The dependency between the severity of disturbance and moisture
content decreased with increasing time from the fire event and with the development
of the vegetation recovery process (Figure 4b). The correlation between the leaf area
(indirectly represented by MCARI2) and the disturbance of the ecosystems decreased
with the development of vegetation recovery. This trend of decreasing correlation was
interrupted by the drought in 2020 that impacted the general state of the vegetation and
resulted in withering and shrinking of tree leaves (Figure 4a).

The validation through high-resolution forest layers showed higher dependency
between the forest density and the indices values for the coniferous forests (Table 5).
This tendency is induced by the fact that coniferous vegetation, in contrast to deciduous
vegetation, stays green during the entire year. Satellite images acquired in August or
early September for each of the years were used. At the end of summer, deciduous forests
undergo senescence. The process leads to reduced greenness and moisture in the tree
leaves, disrupting the process of photosynthesis. In coniferous vegetation, these processes
are significantly less noticeable. For that reason, the correlation between the forest density
and the indices values representing the general state and functioning of vegetation were
higher in the coniferous forests compared with the deciduous forests.

5. Conclusions

This study traced post-fire vegetation recovery dynamics using two groups of spectral
vegetation indices and taking into consideration the local landscape factors in an area
affected by a fire in southeast Bulgaria. Consistent with other studies [42,70], it was con-
firmed that vegetation recovery was dependent on climatic factors [70] and topography
features [42]. Regarding the effectiveness of spectral vegetation indices for monitoring
the post-fire vegetation state, it can be summarized that the statistical analysis and valida-
tion procedures confirmed their reliability for the assessment of restoration processes of
vegetation after a fire. The NDVI, MCARI2, and MSI indicated general trends in post-fire
vegetation dynamics, and the TCT-based indices (DI, NDGI, and NDWNI) were found to be
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suitable for more precise analyses of intra-territorial differences. The DI was advantageous
for the differentiation of post-fire severity in ecosystems. The obtained results clearly
showed the intra-territorial heterogeneity of post-fire vegetation recovery and the influence
of local environmental factors on the dynamics of the process. The study demonstrated the
need of multi-factor analysis in post-fire monitoring and could serve as a basis for further
post-fire-related studies. Estimations of the impact of soil erosion would be particularly
valuable. In such a study, the changes in the soil characteristics and in-depth analysis of
slope steepness must be taken into account.
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Appendix A

Table A1. Spectral (in microns) and spatial (in meters) resolution of Sentinel-2 sensor.

Band Spectral Resolution Spatial Resolution

B1 0.443 60
B2 0.49 10
B3 0.56 10
B4 0.665 10
B5 0.705 20
B6 0.74 20
B7 0.783 20
B8 0.842 10

B8a 0.865 20
B9 0.94 60

B10 1.375 60
B11 1.61 20
B12 2.19 20

Appendix B

Table A2. Territorial spread (in %) of the individual categories divided for each of the spectral indices
within the study area. This table represents the values behind the output rasters from Figure 3.

NDVI

Category 2016 2017 2018 2019 2020 2021

0–0.1 0.0 0.0 0.0 0.0 0.0 0.0
0.1–0.2 0.0 4.7 0.8 0.3 0.5 0.1
0.2–0.3 0.1 20.2 6.9 3.3 6.3 2.2
0.3–0.4 1.7 21.0 18.1 10.7 18.5 9.3
0.4–0.5 6.8 18.0 24.3 19.1 26.7 20.6
0.5–0.6 28.2 18.3 26.1 25.5 28.3 28.9
0.6–0.7 48.1 13.5 18.1 27.1 17.5 29.7
0.7–0.8 14.1 3.8 5.3 12.1 2.2 8.9
0.8–0.9 1.0 0.1 0.0 1.7 0.0 0.2
0.9–1 0.0 0.3 0.3 0.3 0.0 0.0
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Table A2. Cont.

MCARI2

Category 2016 2017 2018 2019 2020 2021

0–0.1 0.3 0.7 0.4 0.4 0.1 0.0
0.1–0.2 0.0 3.3 0.6 0.2 0.3 0.1
0.2–0.3 0.0 10.3 2.1 1.1 2.1 0.9
0.3–0.4 0.2 13.7 6.0 3.1 6.0 3.0
0.4–0.5 1.4 14.5 11.8 7.2 13.5 7.8
0.5–0.6 3.9 14.3 18.0 13.2 20.5 15.9
0.6–0.7 11.3 15.3 20.8 20.2 21.4 22.6
0.7–0.8 47.5 19.4 25.1 29.0 26.7 29.7
0.8–0.9 35.2 8.6 15.2 25.5 9.5 20.0
0.9–1 0.1 0.0 0.0 0.3 0.0 0.0

MSI

Category 2016 2017 2018 2019 2020 2021

0.3–0.5 3.3 1.7 2.0 3.4 1.8 3.8
0.5–0.7 60.5 16.3 19.0 23.3 17.3 23.9
0.7–0.9 29.7 17.0 23.5 29.3 20.6 28.7
0.9–1.1 5.1 17.3 25.2 25.7 24.0 27.9
1.1–1.3 1.2 19.3 22.7 15.9 26.0 14.2
1.3–1.5 0.1 18.8 7.4 2.4 9.6 1.5
1.5–1.7 0.0 8.3 0.3 0.0 0.8 0.0
1.7–1.9 0.0 1.2 0.0 0.0 0.0 0.0
1.9–2.1 0.0 0.1 0.0 0.0 0.0 0.0
2.1–2.3 0.0 0.0 0.0 0.0 0.0 0.0

DI

Category 2016 2017 2018 2019 2020 2021

<0 52.1 36.4 36.6 34.9 35.9 35.9
0–1 28.8 12.3 16.2 20.6 16.9 21.8
1–2 12.1 16.2 19.4 21.9 25.4 30.0
2–3 4.0 16.9 17.7 15.9 19.4 11.7
3–4 2.0 12.3 8.6 6.0 2.4 0.6
4–5 0.7 4.9 1.5 0.6 0.0 0.0
5–6 0.2 0.9 0.0 0.0 0.0 0.0

6–6.5 0.0 0.0 0.0 0.0 0.0 0.0
>6.5 0.0 0.0 0.0 0.0 0.0 0.0

NDGI

Category 2015–2016 2016–2017 2017–2018 2018–2019 2019–2020 2020–2021

−1–−0.8 7.9 49.9 5.5 2.8 6.1 1.9
−0.8–−0.6 2.0 4.9 1.3 0.8 2.0 0.7
−0.6–−0.4 4.4 5.3 2.7 1.7 3.1 1.3
−0.4–−0.2 12.7 6.3 6.6 6.7 5.7 4.1
−0.2–0 29.7 8.3 24.8 23.5 12.5 20.5
0–0.2 26.6 10.8 22.2 32.3 26.1 29.2

0.2–0.4 8.8 7.8 11.0 13.1 18.3 14.1
0.4–0.6 4.2 3.9 6.3 5.7 9.1 7.8
0.6–0.8 2.4 2.0 4.1 3.2 4.4 4.5
0.8–1 1.2 0.8 15.5 10.2 12.6 15.8

NDWNI

Category 2015–2016 2016–2017 2017–2018 2018–2019 2019–2020 2020–2021

−1–−0.8 20.4 14.8 5.8 7.8 3.9 6.3
−0.8–−0.6 5.6 6.3 2.1 2.3 1.7 2.0
−0.6–−0.4 8.4 7.2 4.8 4.4 3.8 3.2
−0.4–−0.2 13.7 8.4 12.1 10.5 12.3 7.9
−0.2–0 22.6 10.5 22.9 34.1 32.8 28.5
0–0.2 23.2 9.5 32.8 34.8 27.0 36.2

0.2–0.4 4.9 8.7 11.6 4.4 7.7 8.8
0.4–0.6 0.6 8.2 2.8 0.6 3.4 2.4
0.6–0.8 0.2 5.7 1.2 0.3 1.9 1.3
0.8–1 0.5 20.7 4.0 0.7 5.5 3.5
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Table A3. Spectral indices values for each location. Interactive three-dimensional panoramas from
Google Street view were used to generate photographs.

Index Value Point Location of Field
Observation Photography

NDVI 0.47

Point 1
Karst area

Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 25 
 

 

-0.8–-0.6 5.6 6.3 2.1 2.3 1.7 2.0 
-0.6–-0.4 8.4 7.2 4.8 4.4 3.8 3.2 
-0.4–-0.2 13.7 8.4 12.1 10.5 12.3 7.9 

-0.2–0 22.6 10.5 22.9 34.1 32.8 28.5 
0–0.2 23.2 9.5 32.8 34.8 27.0 36.2 

0.2–0.4 4.9 8.7 11.6 4.4 7.7 8.8 
0.4–0.6 0.6 8.2 2.8 0.6 3.4 2.4 
0.6–0.8 0.2 5.7 1.2 0.3 1.9 1.3 
0.8–1 0.5 20.7 4.0 0.7 5.5 3.5 

Appendix C 

 
Figure A1. Point locations of field observations. 

Table A3. Spectral indices values for each location. Interactive three-dimensional panoramas from 
Google Street view were used to generate photographs. 

Index Value Point location of 
field observation 

Photography 

NDVI 0.47 

Point 1 
Karst area 

 

MCARI2 0.57 
MSI 0.98 
DI 1.27 

NDGI -0.53 
NDWNI -0.09 

NDVI 0.61 

Point 1 
Meadows amongst  
coniferous forests 

 

MCARI2 0.74 
MSI 0.8 
DI 1.75 

NDGI 1 
NDWNI 0.02 

NDVI 0.46 

Point 2 

 

MCARI2 0.58 
MSI 1 
DI 0.75 

NDGI 0.29 
NDWNI -0.01 

NDVI 0.61 
Point 4 

Mixed forests 
MCARI2 0.75 

MSI 0.61 

MCARI2 0.57
MSI 0.98
DI 1.27

NDGI −0.53
NDWNI −0.09

NDVI 0.61

Point 1
Meadows amongst coniferous

forests

Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 25 
 

 

-0.8–-0.6 5.6 6.3 2.1 2.3 1.7 2.0 
-0.6–-0.4 8.4 7.2 4.8 4.4 3.8 3.2 
-0.4–-0.2 13.7 8.4 12.1 10.5 12.3 7.9 

-0.2–0 22.6 10.5 22.9 34.1 32.8 28.5 
0–0.2 23.2 9.5 32.8 34.8 27.0 36.2 

0.2–0.4 4.9 8.7 11.6 4.4 7.7 8.8 
0.4–0.6 0.6 8.2 2.8 0.6 3.4 2.4 
0.6–0.8 0.2 5.7 1.2 0.3 1.9 1.3 
0.8–1 0.5 20.7 4.0 0.7 5.5 3.5 

Appendix C 

 
Figure A1. Point locations of field observations. 

Table A3. Spectral indices values for each location. Interactive three-dimensional panoramas from 
Google Street view were used to generate photographs. 

Index Value Point location of 
field observation 

Photography 

NDVI 0.47 

Point 1 
Karst area 

 

MCARI2 0.57 
MSI 0.98 
DI 1.27 

NDGI -0.53 
NDWNI -0.09 

NDVI 0.61 

Point 1 
Meadows amongst  
coniferous forests 

 

MCARI2 0.74 
MSI 0.8 
DI 1.75 

NDGI 1 
NDWNI 0.02 

NDVI 0.46 

Point 2 

 

MCARI2 0.58 
MSI 1 
DI 0.75 

NDGI 0.29 
NDWNI -0.01 

NDVI 0.61 
Point 4 

Mixed forests 
MCARI2 0.75 

MSI 0.61 

MCARI2 0.74
MSI 0.8
DI 1.75

NDGI 1
NDWNI 0.02

NDVI 0.46

Point 2

Remote Sens. 2022, 14, x FOR PEER REVIEW 21 of 25 
 

 

-0.8–-0.6 5.6 6.3 2.1 2.3 1.7 2.0 
-0.6–-0.4 8.4 7.2 4.8 4.4 3.8 3.2 
-0.4–-0.2 13.7 8.4 12.1 10.5 12.3 7.9 

-0.2–0 22.6 10.5 22.9 34.1 32.8 28.5 
0–0.2 23.2 9.5 32.8 34.8 27.0 36.2 

0.2–0.4 4.9 8.7 11.6 4.4 7.7 8.8 
0.4–0.6 0.6 8.2 2.8 0.6 3.4 2.4 
0.6–0.8 0.2 5.7 1.2 0.3 1.9 1.3 
0.8–1 0.5 20.7 4.0 0.7 5.5 3.5 

Appendix C 

 
Figure A1. Point locations of field observations. 

Table A3. Spectral indices values for each location. Interactive three-dimensional panoramas from 
Google Street view were used to generate photographs. 

Index Value Point location of 
field observation 

Photography 

NDVI 0.47 

Point 1 
Karst area 

 

MCARI2 0.57 
MSI 0.98 
DI 1.27 

NDGI -0.53 
NDWNI -0.09 

NDVI 0.61 

Point 1 
Meadows amongst  
coniferous forests 

 

MCARI2 0.74 
MSI 0.8 
DI 1.75 

NDGI 1 
NDWNI 0.02 

NDVI 0.46 

Point 2 

 

MCARI2 0.58 
MSI 1 
DI 0.75 

NDGI 0.29 
NDWNI -0.01 

NDVI 0.61 
Point 4 

Mixed forests 
MCARI2 0.75 

MSI 0.61 

MCARI2 0.58
MSI 1
DI 0.75

NDGI 0.29
NDWNI −0.01

NDVI 0.61

Point 4
Mixed forests

1 
 

 

MCARI2 0.75
MSI 0.61
DI −2.52

NDGI −0.17
NDWNI 0.16

NDVI 0.64

Point 5
Mixed forests

Remote Sens. 2022, 14, x FOR PEER REVIEW 22 of 25 
 

 

DI -2.52 
NDGI -0.17 

NDWNI 0.16 
NDVI 0.64 

Point 5 
Mixed forests 

 

MCARI2 0.79 
MSI 0.84 
DI 1.06 

NDGI 1 
NDWNI 0 

NDVI 0.44 
Point 5 

Transitional 
woodlands and 

shrubs 
 

MCARI2 0.57 
MSI 1.11 
DI 1.05 

NDGI 0.33 
NDWNI 0.17 

NDVI 0.53 

Point 6 
Coniferous forests 

 

MCARI2 0.67 
MSI 1.05 
DI 0.64 

NDGI 0.5 
NDWNI 0.47 

NDVI 0.6 

Point 7 
 

 

MCARI2 0.74 
MSI 0.71 
DI -0.46 

NDGI 0.5 
NDWNI 0.47 

NDVI 0.32 

Point 8 
Karst area 

 

MCARI2 0.41 
MSI 1.41 
DI 2.91 

NDGI 0.07 
NDWNI 0.03 

References 
1. Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; 

et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. 
2. Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, 

G.; et al. Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science 
Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., 
Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge Uni-
versity Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1029–1136. 

3. Wu, Z.; Li, M.; Wang, B.; Tian, Y.; Quan, Y.; Liu, J. Analysis of Factors Related to Forest Fires in Different Forest Ecosystems in 
China. Forests 2022, 13, 1021. https://doi.org/10.3390/f13071021. 

4. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Inter-
governmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., 
Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. 

MCARI2 0.79
MSI 0.84
DI 1.06

NDGI 1
NDWNI 0

NDVI 0.44

Point 5
Transitional woodlands and

shrubs

Remote Sens. 2022, 14, x FOR PEER REVIEW 22 of 25 
 

 

DI -2.52 
NDGI -0.17 

NDWNI 0.16 
NDVI 0.64 

Point 5 
Mixed forests 

 

MCARI2 0.79 
MSI 0.84 
DI 1.06 

NDGI 1 
NDWNI 0 

NDVI 0.44 
Point 5 

Transitional 
woodlands and 

shrubs 
 

MCARI2 0.57 
MSI 1.11 
DI 1.05 

NDGI 0.33 
NDWNI 0.17 

NDVI 0.53 

Point 6 
Coniferous forests 

 

MCARI2 0.67 
MSI 1.05 
DI 0.64 

NDGI 0.5 
NDWNI 0.47 

NDVI 0.6 

Point 7 
 

 

MCARI2 0.74 
MSI 0.71 
DI -0.46 

NDGI 0.5 
NDWNI 0.47 

NDVI 0.32 

Point 8 
Karst area 

 

MCARI2 0.41 
MSI 1.41 
DI 2.91 

NDGI 0.07 
NDWNI 0.03 

References 
1. Seidl, R.; Thom, D.; Kautz, M.; Martin-Benito, D.; Peltoniemi, M.; Vacchiano, G.; Wild, J.; Ascoli, D.; Petr, M.; Honkaniemi, J.; 

et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017, 7, 395–402. 
2. Collins, M.; Knutti, R.; Arblaster, J.; Dufresne, J.-L.; Fichefet, T.; Friedlingstein, P.; Gao, X.; Gutowski, W.J.; Johns, T.; Krinner, 

G.; et al. Long-term Climate Change: Projections, Commitments and Irreversibility. In Climate Change 2013: The Physical Science 
Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., 
Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge Uni-
versity Press: Cambridge, UK; New York, NY, USA, 2013; pp. 1029–1136. 

3. Wu, Z.; Li, M.; Wang, B.; Tian, Y.; Quan, Y.; Liu, J. Analysis of Factors Related to Forest Fires in Different Forest Ecosystems in 
China. Forests 2022, 13, 1021. https://doi.org/10.3390/f13071021. 

4. IPCC. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Inter-
governmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., 
Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; p. 1535. 

MCARI2 0.57
MSI 1.11
DI 1.05

NDGI 0.33
NDWNI 0.17



Remote Sens. 2022, 14, 6266 21 of 24

Table A3. Cont.

Index Value Point Location of Field
Observation Photography
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