Noised Phase Unwrapping Based on the Adaptive Window of Wigner Distribution
Abstract
1. Introduction
2. Theory of Unwrapping Based on WDF
3. Phase Unwrapping by Imaging Processing
3.1. Spherical Aberration Data
3.2. Turbulence Phase Data
4. Phase Unwrapping by Shack-Hartmann Sensor
4.1. Simulated Situation
4.2. Experimental Situation
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ghiglia, D.C.; Pritt, M. Two-Dimensional Phase Unwrapping: Theory, Algorithms, and Software; A Wiley Interscience Publication: Hoboken, NJ, USA, 1998. [Google Scholar]
- Yu, H.; Lan, Y.; Yuan, Z.; Xu, J.; Lee, H. Phase unwrapping in InSAR: A review. IEEE Geosci. Remote Sens. Mag. 2019, 7, 40–58. [Google Scholar] [CrossRef]
- Zhou, L.; Yu, H.; Lan, Y.; Xing, M. Artificial Intelligence In Interferometric Synthetic Aperture Radar Phase Unwrapping: A Review. IEEE Geosci. Remote Sens. Mag. 2021, 9, 2–20. [Google Scholar] [CrossRef]
- Liu, Z.M.; Zhang, J.F.; Luo, Y.; Yong-Sheng, L.I.; Liu, X.G. Experimental and Comparative Study of InSAR Phase Unwrapping Algorithms. Remote Sens. Inf. 2012, 02, 71–76. [Google Scholar]
- Wei, Z.; Jin, Y. InSAR Phase Unwrapping Algorithm Based on Branch-cut Optimization. Remote Sens. Technol. Appl. 2011, 22, 200–203. [Google Scholar]
- Itoh, K. Analysis of the phase unwrapping algorithm. Appl. Opt. 1982, 21, 2470. [Google Scholar] [CrossRef] [PubMed]
- Fienup, J.R. Phase Retrieval Algorithms: A Comparison. Appl. Opt. 1982, 21, 2758–2769. [Google Scholar] [CrossRef]
- Dardikman, G.; Singh, G.; Shaked, N.T. Four dimensional phase unwrapping of dynamic objects in digital holography. Opt. Express 2018, 26, 3772. [Google Scholar] [CrossRef]
- Li, Y.; Xiao, W.; Pan, F.; Rong, L. Phase unwrapping method based on multiple recording distances for digital holographic microscopy. Opt. Commun.J. Devoted Rapid Publ. Short Contrib. Field Opt. Interact. Light Matter 2015, 346, 38–42. [Google Scholar] [CrossRef]
- Palacios, F.; Gonçalves, E.; Ricardo, J.; Valin, J.L. Adaptive filter to improve the performance of phase-unwrapping in digital holography. Opt. Commun. 2004, 238, 245–251. [Google Scholar] [CrossRef]
- Nguyen, H.; Nguyen, D.; Wang, Z.; Kieu, H.; Le, M. Real-time, high-accuracy 3D imaging and shape measurement. Appl. Opt. 2015, 54, A9–A17. [Google Scholar] [CrossRef]
- Zheng, D.; Da, F. A novel algorithm for branch cut phase unwrapping. Opt. Lasers Eng. 2011, 49, 609–617. [Google Scholar] [CrossRef]
- De Souza, J.C.; Oliveira, M.E.; Dos Santos, P.A.M. Branch-cut algorithm for optical phase unwrapping. Opt. Lett. 2015, 40, 3456–3459. [Google Scholar] [CrossRef] [PubMed]
- Aoki, T.; Sotomaru, T.; Miyamoto, Y.; Takeda, M. Two-dimensional phase unwrapping by direct elimination of rotational vector fields from phase gradients obtained by heterodyne techniques. In Proceedings of the Volume 3478, Laser Interferometry IX: Techniques and Analysis, San Diego, CA, USA, 19–24 July 1998. [Google Scholar] [CrossRef]
- Arevalillo-Herraez, M.; Villatoro, F.R.; Gdeisat, M.A. A robust and simple measure for quality guided 2D phase unwrapping algorithms. IEEE Trans. Image Process. 2016, 25, 2601–2609. [Google Scholar] [CrossRef] [PubMed]
- Herráez, M.; Burton, D.R.; Lalor, M.J.; Gdeisat, M.A. Fast two-dimensional phase-unwrapping algorithm based on sorting by reliability following a noncontinuous path. Appl. Opt. 2002, 41, 7437–7444. [Google Scholar] [CrossRef] [PubMed]
- Volkov, V.V.; Zhu, Y. Deterministic phase unwrapping in the presence of noise. Opt. Lett. 2003, 28, 2156–2158. [Google Scholar] [CrossRef] [PubMed]
- He, W.; Cheng, Y.; Xia, L.; Liu, F. A new particle swarm optimization-based method for phase unwrapping of MRI data. Comput. Math. Methods Med. 2012, 2012, 475745. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Jenkinson, M. Fast, automated, N-dimensional phase-unwrapping algorithm. Magn. Reson. Med. 2003, 49, 193–197. [Google Scholar] [CrossRef] [PubMed]
- Yu, H.; Lan, Y. Robust Two-Dimensional Phase Unwrapping for Multibaseline SAR Interferograms: A Two-Stage Programming Approach. IEEE Trans. Geosci. Remote Sens. 2016, 54, 5217–5225. [Google Scholar] [CrossRef]
- Yu, H.; Li, Z.; Bao, Z. A Cluster-Analysis-Based Efficient Multibaseline Phase-Unwrapping Algorithm. IEEE Trans. Geosci. Remote Sens. 2011, 49, 478–487. [Google Scholar] [CrossRef]
- Xie, X.M.; Ying-Hui, L.I. Discussion on multi-baseline phase unwrapping algorithm for SAR interferometry. Sci. Surv. Mapp. 2015, 40, 43–47. [Google Scholar]
- Martinez-Espla, J.J.; Martinez-Marin, T.; Lopez-Sanchez, J.M. A Particle Filter Approach for InSAR Phase Filtering and Unwrapping. IEEE Trans. Geosci. Remote Sens. 2009, 47, 1197–1211. [Google Scholar] [CrossRef]
- Xie, X. Iterated unscented Kalman filter for phase unwrapping of interferometric fringes. Opt. Express 2016, 24, 18872–18897. [Google Scholar] [CrossRef]
- Lee, J.S.; Papathanassiou, K.P. A new technique for noise filtering of SAR interferometric phase images. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1456–1465. [Google Scholar]
- Cai, B.; Liang, D.; Zhen, D. A New Adaptive Multiresolution Noise-Filtering Approach for SAR Interferometric Phase Images. IEEE Geosci. Remote Sens. Lett. 2008, 5, 266–270. [Google Scholar]
- Hussain, Z.M.; Boashash, B. Adaptive instantaneous frequency estimation of multicomponent FM signals using quadratic time-frequency distributions. Signal Process. IEEE Trans. 2002, 50, 1866–1876. [Google Scholar] [CrossRef]
- Trouvé, E.; Caramma, M.; Maître, H. Fringe detection in noisy complex interferograms. Appl. Opt. 1996, 35, 3799–3806. [Google Scholar] [CrossRef]
- Trouve, E.; Nicolas, J.M.; Maitre, H. Improving phase unwrapping techniques by the use of local frequency estimates. IEEE Trans. Geosci. Remote Sens. 1998, 36, 1963–1972. [Google Scholar] [CrossRef]
- Chen, X.; Xie, W.; Ma, H.; Chu, J.; Chen, F. Wavefront measurement method based on improved light field camera. Results Phys. 2020, 17, 103007. [Google Scholar] [CrossRef]
- Akondi, V.; Falldorf, C.; Marcos, S.; Vohnsen, B. Phase unwrapping with a virtual Hartmann-Shack wavefront sensor. Opt. Express 2015, 23, 25425–25439. [Google Scholar] [CrossRef]
- Dayton, D.; Pierson, B.; Spielbusch, B.; Gonglewski, J. Atmospheric structure function measurements with a Shack–Hartmann wave-front sensor. Opt. Lett. 1992, 17, 1737–1739. [Google Scholar] [CrossRef]
- Zhang, Z.; Levoy, M. Wigner distributions and how they relate to the light field. In Proceedings of the 2009 IEEE International Conference on Computational Photography (ICCP), San Francisco, CA, USA, 16–17 April 2009. [Google Scholar]
- Pritt, M.D.; Shipman, J.S. Least-squares two-dimensional phase unwrapping using FFT’s. IEEE Trans. Geosci. Remote Sens. 1994, 32, 706–708. [Google Scholar] [CrossRef]
- Dai, G.M. Modal wave-front reconstruction with Zernike polynomials and Karhunen–Loève functions. J. Opt. Soc. Am. A 1996, 13, 1218–1225. [Google Scholar] [CrossRef]
- Bastiaans, M.J. Application of the Wigner distribution function in optics. Wigner Distrib.—Theory Appl. Signal Process. 1997, 375, 426. [Google Scholar]
- Claasm, T.; Mecklenbrauker, W. The Wigner distribution-a tool for time-frequency signal analysis, part II: Discrete-time signals. Philips J. Res. 1980, 35, 276–300. [Google Scholar]
- Kazhdan, M. Poisson surface reconstruction. In Proceedings of the Eurographics Symposium on Geometry Processing, Sardinia, Italy, 26–28 June 2006. [Google Scholar]
- Martin, W.; Flandrin, P. Spectral analysis of nonstationary processes. IEEE Trans. Acoust. Speech Signal Process. 1985, 33, 1461–1470. [Google Scholar] [CrossRef]
- Nightingale, A.M.; Gordeyev, S.V. Shack-Hartmann wavefront sensor image analysis: A comparison of centroiding methods and image-processing techniques. Opt. Eng. 2013, 52, 071413. [Google Scholar] [CrossRef]
Range of Noise | Noised Image | Instantaneous Frequency Estimation | Fast Frequency Estimation | Our Method |
---|---|---|---|---|
0.7π | 0.404 | 0.0020 | 0.0020 | 0.0021 |
1.0π | 0.824 | 0.0037 | 0.0064 | 0.0042 |
1.4π | 1.606 | 0.025 | 0.07 | 0.014 |
Range of Noise | Noised Image | Instantaneous Frequency Estimation | Fast Frequency Estimation | Our Method |
---|---|---|---|---|
0.7π | 0.40 | 0.22 | 0.06 | 0.08 |
1.2π | 1.18 | 0.21 | 0.15 | 0.08 |
1.4π | 1.64 | 0.66 | 0.93 | 0.08 |
Zernike Coefficient | Initial Data | Without Denoising | Edge Threshold Denoising | Our Method | ||||
---|---|---|---|---|---|---|---|---|
MSE | STR | MSE | STR | MSE | STR | MSE | STR | |
5th Zernike Order | 0.82 | 0.40 | 2.14 | 0.07 | 0.83 | 0.37 | 0.27 | 0.82 |
7th Zernike Order | 0.82 | 0.40 | 3.22 | 0.16 | 0.60 | 0.48 | 0.30 | 0.73 |
8–10th Zernike Order | 0.82 | 0.40 | 2.43 | 0.11 | 0.34 | 0.67 | 0.17 | 0.83 |
6–10th Zernike Order | 0.82 | 0.40 | 2.61 | 0.04 | 0.29 | 0.74 | 0.16 | 0.82 |
Coefficient | Without Denoising | Edge Threshold Denoising | Our Method | |||
---|---|---|---|---|---|---|
MSE | STR | MSE | STR | MSE | STR | |
5th Order | 2.06 | 0.08 | 0.13 | 0.84 | 0.08 | 0.90 |
7th Order | 2.59 | 0.10 | 0.10 | 0.88 | 0.10 | 0.89 |
8th–10th Order | 2.94 | 0.13 | 0.22 | 0.77 | 0.19 | 0.80 |
6th–10th Order | 2.83 | 0.04 | 0.24 | 0.74 | 0.18 | 0.79 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chu, J.; Liu, X.; Ma, H.; Yu, X.; Ren, G. Noised Phase Unwrapping Based on the Adaptive Window of Wigner Distribution. Remote Sens. 2022, 14, 5603. https://doi.org/10.3390/rs14215603
Chu J, Liu X, Ma H, Yu X, Ren G. Noised Phase Unwrapping Based on the Adaptive Window of Wigner Distribution. Remote Sensing. 2022; 14(21):5603. https://doi.org/10.3390/rs14215603
Chicago/Turabian StyleChu, Junqiu, Xingling Liu, Haotong Ma, Xuegang Yu, and Ge Ren. 2022. "Noised Phase Unwrapping Based on the Adaptive Window of Wigner Distribution" Remote Sensing 14, no. 21: 5603. https://doi.org/10.3390/rs14215603
APA StyleChu, J., Liu, X., Ma, H., Yu, X., & Ren, G. (2022). Noised Phase Unwrapping Based on the Adaptive Window of Wigner Distribution. Remote Sensing, 14(21), 5603. https://doi.org/10.3390/rs14215603