Novel CropdocNet Model for Automated Potato Late Blight Disease Detection from Unmanned Aerial Vehicle-Based Hyperspectral Imagery
Abstract
:1. Introduction
- The development of an end-to-end deep learning framework (CropdocNet) for potato disease detection.
- The proposed introduction of multiple capsule layers to handle the hierarchical structure of the spectral–spatial features extracted from HSIs.
- Combination of the spectral–spatial features to represent the part-to-whole relationship between the deep features and the target classes (i.e., healthy potato and the potato infested with late blight disease).
2. Related Work in Crop Disease Detection Based on Hyperspectral Imagery
3. Materials and Methods
3.1. Data Acquisition
3.1.1. Study Site
3.1.2. Ground Truth Disease Investigation
3.1.3. UAV-Based HSI Collection
3.2. The Proposed CropdocNet Model
3.2.1. Spectral Information Encoder
3.2.2. Spectral–Spatial Feature Encoder
3.2.3. Class-Capsule Encoder
3.2.4. The Decoder Layer
3.3. Model Evaluation for the Detection of Potato Late Blight Disease
3.3.1. Experimental Design
- (1)
- Experiment 1: Determining the model’s sensitivity to the depth of the network
- (2)
- Experiment 2: An accuracy comparison study between CropdocNet and the existing machine/deep learning models
- (3)
- Experiment 3: Accuracy evaluation at both pixel and patch scales
3.3.2. Evaluation Metrics
3.3.3. Model Training
4. Results
4.1. The CropdocNet Model’s Sensitivity to the Depth of the Convolutional Filters
4.2. Accuracy Comparison Study between CropdocNet and Existing Machine Learning-Based Approaches for Potato Disease Diagnosis
4.3. The Model’s Performance When Mapping Potato Late Blight Disease from UAV HSI Data
5. Discussion
5.1. The Assessment of the Hierarchical Vector Feature
5.2. The General Comparison of CropdocNet and the Existing Models
5.3. Limitations and Future Works
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Demissie, Y.T. Integrated potato (Solanum tuberosum L.) late blight (Phytophthora infestans) disease management in Ethiopia. Am. J. BioSci. 2019, 7, 123–130. [Google Scholar] [CrossRef]
- Patil, P.; Yaligar, N.; Meena, S. Comparision of performance of classifiers-svm, rf and ann in potato blight disease detection using leaf images. In Proceedings of the 2017 IEEE International Conference on Computational Intelligence and Computing Research (ICCIC), Coimbatore, India, 4–16 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–5. [Google Scholar]
- Hirut, B.G.; Shimelis, H.A.; Melis, R.; Fentahun, M.; De Jong, W. Yield, Yield-related Traits and Response of Potato Clones to Late Blight Disease, in North-Western Highlands of Ethiopia. J. Phytopathol. 2017, 165, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Namugga, P.; Sibiya, J.; Melis, R.; Barekye, A. Yield Response of Potato (Solanum tuberosum L.) Genotypes to late blight caused by Phytophthora infestans in Uganda. Am. J. Potato Res. 2018, 95, 423–434. [Google Scholar] [CrossRef]
- Zhang, X.; Li, X.; Zhang, Y.; Chen, Y.; Tan, X.; Su, P.; Zhang, D.; Liu, Y. Integrated control of potato late blight with a combination of the photosynthetic bacterium Rhodopseudomonas palustris strain GJ-22 and fungicides. BioControl 2020, 65, 635–645. [Google Scholar] [CrossRef]
- Gao, J.; Westergaard, J.C.; Sundmark, E.H.R.; Bagge, M.; Liljeroth, E.; Alexandersson, E. Automatic late blight lesion recognition and severity quantification based on field imagery of diverse potato genotypes by deep learning. Knowl.-Based Syst. 2021, 214, 106723. [Google Scholar] [CrossRef]
- Lehsten, V.; Wiik, L.; Hannukkala, A.; Andreasson, E.; Chen, D.; Ou, T.; Liljeroth, E.; Lankinen, Å.; Grenville-Briggs, L. Earlier occurrence and increased explanatory power of climate for the first incidence of potato late blight caused by Phytophthora infestans in Fennoscandia. PLoS ONE 2017, 12, e0177580. [Google Scholar] [CrossRef] [Green Version]
- Sharma, R.; Singh, A.; Dutta, M.K.; Riha, K.; Kriz, P. Image processing based automated identification of late blight disease from leaf images of potato crops. In Proceedings of the 2017 40th International Conference on Telecommunications and Signal Processing (TSP), Barcelona, Spain, 5–7 July 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 758–762. [Google Scholar]
- Tung, P.X.; Vander Zaag, P.; Li, C.; Tang, W. Combining Ability for Foliar Resistance to Late Blight [Phytophthora infestans (Mont.) de Bary] of Potato Cultivars with Different Levels of Resistance. Am. J. Potato Res. 2018, 95, 670–678. [Google Scholar] [CrossRef]
- Franceschini, M.H.D.; Bartholomeus, H.; Van Apeldoorn, D.F.; Suomalainen, J.; Kooistra, L. Feasibility of unmanned aerial vehicle optical imagery for early detection and severity assessment of late blight in potato. Remote Sens. 2019, 11, 224. [Google Scholar] [CrossRef] [Green Version]
- Islam, M.; Dinh, A.; Wahid, K.; Bhowmik, P. Detection of potato diseases using image segmentation and multiclass support vector machine. In Proceedings of the 2017 IEEE 30th canadian conference on electrical and computer engineering (CCECE), Windsor, ON, Canada, 30 April–3 May 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–4. [Google Scholar]
- Shi, Y.; Huang, W.; González-Moreno, P.; Luke, B.; Dong, Y.; Zheng, Q.; Ma, H.; Liu, L. Wavelet-based rust spectral feature set (WRSFs): A novel spectral feature set based on continuous wavelet transformation for tracking progressive host–pathogen interaction of yellow rust on wheat. Remote Sens. 2018, 10, 525. [Google Scholar] [CrossRef] [Green Version]
- Parra-Boronat, L.; Parra-Boronat, M.; Torices, V.; Marín, J.; Mauri, P.V.; Lloret, J. Comparison of single image processing techniques and their combination for detection of weed in Lawns. Int. J. Adv. Intell. Syst. 2019, 12, 177–190. [Google Scholar]
- Shin, J.; Chang, Y.K.; Heung, B.; Nguyen-Quang, T.; Price, G.W.; Al-Mallahi, A. A deep learning approach for RGB image-based powdery mildew disease detection on strawberry leaves. Comput. Electron. Agric. 2021, 183, 106042. [Google Scholar] [CrossRef]
- Shi, Y.; Huang, W.; Luo, J.; Huang, L.; Zhou, X. Detection and discrimination of pests and diseases in winter wheat based on spectral indices and kernel discriminant analysis. Comput. Electron. Agric. 2017, 141, 171–180. [Google Scholar] [CrossRef]
- Yang, N.; Yuan, M.; Wang, P.; Zhang, R.; Sun, J.; Mao, H. Tea diseases detection based on fast infrared thermal image processing technology. J. Sci. Food Agric. 2019, 99, 3459–3466. [Google Scholar] [CrossRef] [PubMed]
- Høye, T.T.; Ärje, J.; Bjerge, K.; Hansen, O.L.; Iosifidis, A.; Leese, F.; Mann, H.M.; Meissner, K.; Melvad, C.; Raitoharju, J. Deep learning and computer vision will transform entomology. Proc. Natl. Acad. Sci. USA 2021, 118, 2002545117. [Google Scholar] [CrossRef] [PubMed]
- Tang, Y.; Chen, M.; Wang, C.; Luo, L.; Li, J.; Lian, G.; Zou, X. Recognition and localization methods for vision-based fruit picking robots: A review. Front. Plant Sci. 2020, 11, 510. [Google Scholar] [CrossRef]
- Iqbal, U.; Perez, P.; Li, W.; Barthelemy, J. How computer vision can facilitate flood management: A systematic review. Int. J. Disaster Risk Reduct. 2021, 2021, 102030. [Google Scholar] [CrossRef]
- Wu, F.; Duan, J.; Chen, S.; Ye, Y.; Ai, P.; Yang, Z. Multi-target recognition of bananas and automatic positioning for the inflorescence axis cutting point. Front. Plant Sci. 2021, 12, 705021. [Google Scholar] [CrossRef]
- Cao, X.; Yan, H.; Huang, Z.; Ai, S.; Xu, Y.; Fu, R.; Zou, X. A Multi-Objective Particle Swarm Optimization for Trajectory Planning of Fruit Picking Manipulator. Agronomy 2021, 11, 2286. [Google Scholar] [CrossRef]
- Dhingra, G.; Kumar, V.; Joshi, H.D. Study of digital image processing techniques for leaf disease detection and classification. Multimed. Tools Appl. 2018, 77, 19951–20000. [Google Scholar] [CrossRef]
- Zhu, W.; Chen, H.; Ciechanowska, I.; Spaner, D. Application of infrared thermal imaging for the rapid diagnosis of crop disease. IFAC-PapersOnLine 2018, 51, 424–430. [Google Scholar] [CrossRef]
- Li, B.; Xu, X.; Zhang, L.; Han, J.; Bian, C.; Li, G.; Liu, J.; Jin, L. Above-ground biomass estimation and yield prediction in potato by using UAV-based RGB and hyperspectral imaging. ISPRS J. Photogramm. Remote Sens. 2020, 162, 161–172. [Google Scholar] [CrossRef]
- Wan, L.; Cen, H.; Zhu, J.; Zhang, J.; Zhu, Y.; Sun, D.; Du, X.; Zhai, L.; Weng, H.; Li, Y.; et al. Grain yield prediction of rice using multi-temporal UAV-based RGB and multispectral images and model transfer—A case study of small farmlands in the South of China. Agric. For. Meteorol. 2020, 291, 108096. [Google Scholar] [CrossRef]
- Moghadam, P.; Ward, D.; Goan, E.; Jayawardena, S.; Sikka, P.; Hernandez, E. Plant disease detection using hyperspectral imaging. In Proceedings of the 2017 International Conference on Digital Image Computing: Techniques and Applications (DICTA), Sydney, NSW, Australia, 29 November–1 December 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 1–8. [Google Scholar]
- Golhani, K.; Balasundram, S.K.; Vadamalai, G.; Pradhan, B. A review of neural networks in plant disease detection using hyperspectral data. Inf. Process. Agric. 2018, 5, 354–371. [Google Scholar] [CrossRef]
- Zhang, N.; Pan, Y.; Feng, H.; Zhao, X.; Yang, X.; Ding, C.; Yang, G. Development of Fusarium head blight classification index using hyperspectral microscopy images of winter wheat spikelets. Biosyst. Eng. 2019, 186, 83–99. [Google Scholar] [CrossRef]
- Khan, I.H.; Liu, H.; Cheng, T.; Tian, Y.; Cao, Q.; Zhu, Y.; Cao, W.; Yao, X. Detection of wheat powdery mildew based on hyperspectral reflectance through SPA and PLS-LDA. Int. J. Precis. Agric. Aviat. 2020, 3, 13–22. [Google Scholar]
- Abdulridha, J.; Batuman, O.; Ampatzidis, Y. UAV-based remote sensing technique to detect citrus canker disease utilizing hyperspectral imaging and machine learning. Remote Sens. 2019, 11, 1373. [Google Scholar] [CrossRef] [Green Version]
- Gogoi, N.; Deka, B.; Bora, L. Remote sensing and its use in detection and monitoring plant diseases: A review. Agric. Rev. 2018, 39, 307–313. [Google Scholar] [CrossRef]
- Arivazhagan, S.; Shebiah, R.N.; Ananthi, S.; Varthini, S.V. Detection of unhealthy region of plant leaves and classification of plant leaf diseases using texture features. Agric. Eng. Int. CIGR J. 2013, 15, 211–217. [Google Scholar]
- Behmann, J.; Bohnenkamp, D.; Paulus, S.; Mahlein, A.K. Spatial referencing of hyperspectral images for tracing of plant disease symptoms. J. Imaging 2018, 4, 143. [Google Scholar] [CrossRef] [Green Version]
- De Castro, A.I.; Torres-Sánchez, J.; Peña, J.M.; Jiménez-Brenes, F.M.; Csillik, O.; López-Granados, F. An automatic random forest-OBIA algorithm for early weed mapping between and within crop rows using UAV imagery. Remote Sens. 2018, 10, 285. [Google Scholar] [CrossRef] [Green Version]
- Qiao, X.; Jiang, J.; Qi, X.; Guo, H.; Yuan, D. Utilization of spectral-spatial characteristics in shortwave infrared hyperspectral images to classify and identify fungi-contaminated peanuts. Food Chem. 2017, 220, 393–399. [Google Scholar] [CrossRef]
- Shi, Y.; Han, L.; Huang, W.; Chang, S.; Dong, Y.; Dancey, D.; Han, L. A Biologically Interpretable Two-Stage Deep Neural Network (BIT-DNN) for Vegetation Recognition From Hyperspectral Imagery. IEEE Trans. Geosci. Remote Sens. 2021, 60, 4401320. [Google Scholar] [CrossRef]
- Behmann, J.; Mahlein, A.K.; Rumpf, T.; Römer, C.; Plümer, L. A review of advanced machine learning methods for the detection of biotic stress in precision crop protection. Precis. Agric. 2015, 16, 239–260. [Google Scholar] [CrossRef]
- Saleem, M.H.; Potgieter, J.; Arif, K.M. Plant disease detection and classification by deep learning. Plants 2019, 8, 468. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Han, L.; Dong, Y.; Shi, Y.; Huang, W.; Han, L.; González-Moreno, P.; Ma, H.; Ye, H.; Sobeih, T. A deep learning-based approach for automated yellow rust disease detection from high-resolution hyperspectral UAV images. Remote Sens. 2019, 11, 1554. [Google Scholar] [CrossRef] [Green Version]
- Rumpf, T.; Mahlein, A.K.; Steiner, U.; Oerke, E.C.; Dehne, H.W.; Plümer, L. Early detection and classification of plant diseases with support vector machines based on hyperspectral reflectance. Comput. Electron. Agric. 2010, 74, 91–99. [Google Scholar] [CrossRef]
- Li, J.; Tang, Y.; Zou, X.; Lin, G.; Wang, H. Detection of fruit-bearing branches and localization of litchi clusters for vision-based harvesting robots. IEEE Access 2020, 8, 117746–117758. [Google Scholar] [CrossRef]
- Chen, M.; Tang, Y.; Zou, X.; Huang, Z.; Zhou, H.; Chen, S. 3D global mapping of large-scale unstructured orchard integrating eye-in-hand stereo vision and SLAM. Comput. Electron. Agric. 2021, 187, 106237. [Google Scholar] [CrossRef]
- Nagasubramanian, K.; Jones, S.; Sarkar, S.; Singh, A.K.; Singh, A.; Ganapathysubramanian, B. Hyperspectral band selection using genetic algorithm and support vector machines for early identification of charcoal rot disease in soybean stems. Plant Methods 2018, 14, 1–13. [Google Scholar] [CrossRef]
- Huang, L.; Li, T.; Ding, C.; Zhao, J.; Zhang, D.; Yang, G. Diagnosis of the severity of fusarium head blight of wheat ears on the basis of image and spectral feature fusion. Sensors 2020, 20, 2887. [Google Scholar] [CrossRef]
- Mahlein, A.K. Plant disease detection by imaging sensors–parallels and specific demands for precision agriculture and plant phenotyping. Plant Dis. 2016, 100, 241–251. [Google Scholar] [CrossRef] [Green Version]
- Yuan, L.; Pu, R.; Zhang, J.; Wang, J.; Yang, H. Using high spatial resolution satellite imagery for mapping powdery mildew at a regional scale. Precis. Agric. 2016, 17, 332–348. [Google Scholar] [CrossRef]
- Xie, C.; He, Y. Spectrum and image texture features analysis for early blight disease detection on eggplant leaves. Sensors 2016, 16, 676. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, N.; Wang, Y.; Zhang, X. Extraction of tree crowns damaged by Dendrolimus tabulaeformis Tsai et Liu via spectral-spatial classification using UAV-based hyperspectral images. Plant Methods 2020, 16, 1–19. [Google Scholar] [CrossRef]
- Karthik, R.; Hariharan, M.; Anand, S.; Mathikshara, P.; Johnson, A.; Menaka, R. Attention embedded residual CNN for disease detection in tomato leaves. Appl. Soft Comput. 2020, 86, 105933. [Google Scholar]
- Francis, M.; Deisy, C. Disease detection and classification in agricultural plants using convolutional neural networks—A visual understanding. In Proceedings of the 2019 6th International Conference on Signal Processing and Integrated Networks (SPIN), Noida, India, 7–8 March 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1063–1068. [Google Scholar]
- Nguyen, C.; Sagan, V.; Maimaitiyiming, M.; Maimaitijiang, M.; Bhadra, S.; Kwasniewski, M.T. Early Detection of Plant Viral Disease Using Hyperspectral Imaging and Deep Learning. Sensors 2021, 21, 742. [Google Scholar] [CrossRef]
- Suryawati, E.; Sustika, R.; Yuwana, R.S.; Subekti, A.; Pardede, H.F. Deep structured convolutional neural network for tomato diseases detection. In Proceedings of the 2018 International Conference on Advanced Computer Science and Information Systems (ICACSIS), Yogyakarta, India, 27–28 October 2018; IEEE: Piscataway, NJ, USA, 2018; pp. 385–390. [Google Scholar]
- Nagasubramanian, K.; Jones, S.; Singh, A.K.; Sarkar, S.; Singh, A.; Ganapathysubramanian, B. Plant disease identification using explainable 3D deep learning on hyperspectral images. Plant Methods 2019, 15, 98. [Google Scholar] [CrossRef]
- Kumar, K.V.; Jayasankar, T. An identification of crop disease using image segmentation. Int. J. Pharm. Sci. Res. 2019, 10, 1054–1064. [Google Scholar]
- La Rosa, L.E.C.; Sothe, C.; Feitosa, R.Q.; de Almeida, C.M.; Schimalski, M.B.; Oliveira, D.A.B. Multi-task fully convolutional network for tree species mapping in dense forests using small training hyperspectral data. arXiv 2021, arXiv:2106.00799. [Google Scholar] [CrossRef]
- Cai, S.; Shu, Y.; Wang, W. Dynamic Routing Networks. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikola, HI, USA, 5–9 January 2021; pp. 3588–3597. [Google Scholar]
- Zhao, J.; Fang, Y.; Chu, G.; Yan, H.; Hu, L.; Huang, L. Identification of leaf-scale wheat powdery mildew (Blumeria graminis f. sp. Tritici) combining hyperspectral imaging and an SVM classifier. Plants 2020, 9, 936. [Google Scholar] [CrossRef]
- Padol, P.B.; Yadav, A.A. SVM classifier based grape leaf disease detection. In Proceedings of the 2016 Conference on Advances in Signal Processing (CASP), Pune, India, 9–11 June 2016; IEEE: Piscataway, NJ, USA, 2016; pp. 175–179. [Google Scholar]
- Semary, N.A.; Tharwat, A.; Elhariri, E.; Hassanien, A.E. Fruit-based tomato grading system using features fusion and support vector machine. In Intelligent Systems’ 2014; Springer: Berlin/Heidelberg, Germany, 2015; pp. 401–410. [Google Scholar]
- Govardhan, M.; Veena, M. Diagnosis of Tomato Plant Diseases using Random Forest. In Proceedings of the 2019 Global Conference for Advancement in Technology (GCAT), Bangalore, India, 18–20 October 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–5. [Google Scholar]
- Saha, S.; Ahsan, S.M.M. Rice Disease Detection using Intensity Moments and Random Forest. In Proceedings of the 2021 International Conference on Information and Communication Technology for Sustainable Development (ICICT4SD), Dhaka, Bangladesh, 27–28 February 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 166–170. [Google Scholar]
- Hu, G.; Wu, H.; Zhang, Y.; Wan, M. A low shot learning method for tea leafs disease identification. Comput. Electron. Agric. 2019, 163, 104852. [Google Scholar] [CrossRef]
- Elhassouny, A.; Smarandache, F. Smart mobile application to recognize tomato leaf diseases using Convolutional Neural Networks. In Proceedings of the 2019 International Conference of Computer Science and Renewable Energies (ICCSRE), Agadir, Morocco, 22–24 July 2019; IEEE: Piscataway, NJ, USA, 2019; pp. 1–4. [Google Scholar]
Approach Type | Model Name | Classification Accuracy | Observation Scale | Reference |
---|---|---|---|---|
Spectral feature-based | Support vector machine (SVM) | 84% | Leaf | [2] |
Partial least square discriminant analysis (PLSDA) | 82.1% | Leaf | [6] | |
Multiclass support vector machine (MSVM) | 87.5% | Canopy | [11] | |
Spatial feature-based | Random forest (RF) | 79% | Leaf | [2] |
Texture segmentation (TS) | 86% | Leaf | [8] | |
Simplex volume maximization (SiVM) | 88.5% | Canopy | [10] | |
Spectral–spatial feature-based | Full convolutional network (FCN) | 88.9% | Leaf | [6] |
Three-dimensional convolutional network (3D-CNN) | 85.4% | Canopy | [22] |
P | N | UA (%) | |
---|---|---|---|
P | TP | FP | |
N | FN | TN | |
PA (%) |
Models on Test Dataset | Models on Independent Test Dataset | |||||||
---|---|---|---|---|---|---|---|---|
Class | Proposed | SVM | RF | 3D-CNN | Proposed | SVM | RF | 3D-CNN |
Healthy potato | 97.21 | 86.82 | 90.64 | 94.24 | 96.32 | 82.25 | 88.92 | 85.21 |
Late blight disease | 96.14 | 80.15 | 82.31 | 85.51 | 93.36 | 71.76 | 79.01 | 83.48 |
Soil | 99.85 | 89.91 | 92.19 | 93.31 | 98.44 | 87.42 | 83.78 | 85.12 |
Background | 99.14 | 90.31 | 93.52 | 91.16 | 94.88 | 89.85 | 86.35 | 83.85 |
OA(%) | 97.33 | 84.89 | 87.77 | 90.32 | 95.31 | 79.45 | 83.97 | 90.32 |
AA(%) | 98.09 | 86.8 | 89.67 | 91.06 | 95.75 | 82.82 | 84.52 | 91.06 |
Kappa | 0.822 | 0.549 | 0.614 | 0.728 | 0.801 | 0.512 | 0.595 | 0.699 |
Class | Proposed vs. SVM | Proposed vs. RF | Proposed vs. 3D-CNN |
---|---|---|---|
Healthy potato | 31.82 ** | 30.25 ** | 28.82 ** |
Late blight disease | 35.91 ** | 33.24 ** | 32.31 ** |
Soil | 33.25 ** | 32.12 ** | 30.33 ** |
Background | 32.15 ** | 30.14 ** | 27.42 ** |
Overall | 32.92 ** | 31.52 ** | 29.34 ** |
Healthy Potato | Late Blight Disease | Soil | Background | U (%) | OA (%) | Kappa | Computing Time (ms) | ||
---|---|---|---|---|---|---|---|---|---|
Healthy potato | 81 | 1 | 0 | 0 | 98.8 | ||||
Late blight disease | 2 | 82 | 0 | 0 | 97.6 | 98.2 | 0.812 | 721 | |
CropdocNet | Soil | 0 | 2 | 89 | 0 | 97.8 | |||
Background | 0 | 0 | 1 | 72 | 98.6 | ||||
P(%) | 97.6 | 96.5 | 98.9 | 100 | |||||
Healthy potato | 69 | 11 | 2 | 0 | 84.1 | ||||
Late blight disease | 10 | 70 | 3 | 5 | 79.5 | 82.7 | 0.571 | 162 | |
SVM | Soil | 3 | 5 | 75 | 8 | 82.4 | |||
Background | 1 | 0 | 11 | 59 | 83.1 | ||||
P(%) | 83.1 | 81.4 | 82.4 | 81.9 | |||||
Healthy potato | 65 | 11 | 2 | 2 | 81.3 | ||||
Late blight disease | 12 | 66 | 4 | 4 | 76.7 | 78.8 | 0.615 | 117 | |
RF | Soil | 3 | 5 | 73 | 8 | 82 | |||
Background | 3 | 3 | 11 | 56 | 76.7 | ||||
P(%) | 78.3 | 77.6 | 81.1 | 80 | |||||
Healthy potato | 73 | 6 | 0 | 0 | 92.4 | ||||
Late blight disease | 5 | 75 | 2 | 3 | 88.2 | 88.8 | 0.771 | 956 | |
3D-CNN | Soil | 1 | 2 | 80 | 4 | 92 | |||
Background | 1 | 1 | 8 | 65 | 86.7 | ||||
P(%) | 91.3 | 89.3 | 88.9 | 90.3 |
Model Name | Studied Crop and Disease | Classification Accuracy | Number of Training Samples | Number of Parameters | Model Execution Time | Reference |
---|---|---|---|---|---|---|
Potato late blight | 84.01% | 892 | - | - | [2] | |
SVM | Grape leaf disease | 88.89% | 137 | - | 182 ms | [58] |
Tomato leaf disease | 92.01% | 708 | - | - | [59] | |
Tomato leaf disease | 95.20% | 882 | - | - | [60] | |
RF | Rice leaf blight | 69.44% | 423 | - | 104 ms | [61] |
Potato late blight | 79.02% | 892 | - | - | [2] | |
Tea leaf blight | 89.90% | 13,262 | 770 k | - | [62] | |
3D-CNN | Tomato leaf disease | 91.83% | 3852 | 600 k | 687 ms | [49] |
Tomato leaf disease | 90.30% | 7176 | 840 k | 871 ms | [63] | |
Potato late blight | 85.40% | 5142 | 560 k | 564 ms | [22] | |
CropdocNet | Potato late blight | 95.75% | 3200 | 690 k | 721 ms | This study |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, Y.; Han, L.; Kleerekoper, A.; Chang, S.; Hu, T. Novel CropdocNet Model for Automated Potato Late Blight Disease Detection from Unmanned Aerial Vehicle-Based Hyperspectral Imagery. Remote Sens. 2022, 14, 396. https://doi.org/10.3390/rs14020396
Shi Y, Han L, Kleerekoper A, Chang S, Hu T. Novel CropdocNet Model for Automated Potato Late Blight Disease Detection from Unmanned Aerial Vehicle-Based Hyperspectral Imagery. Remote Sensing. 2022; 14(2):396. https://doi.org/10.3390/rs14020396
Chicago/Turabian StyleShi, Yue, Liangxiu Han, Anthony Kleerekoper, Sheng Chang, and Tongle Hu. 2022. "Novel CropdocNet Model for Automated Potato Late Blight Disease Detection from Unmanned Aerial Vehicle-Based Hyperspectral Imagery" Remote Sensing 14, no. 2: 396. https://doi.org/10.3390/rs14020396
APA StyleShi, Y., Han, L., Kleerekoper, A., Chang, S., & Hu, T. (2022). Novel CropdocNet Model for Automated Potato Late Blight Disease Detection from Unmanned Aerial Vehicle-Based Hyperspectral Imagery. Remote Sensing, 14(2), 396. https://doi.org/10.3390/rs14020396