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Abstract: Understanding the progression of host–pathogen interaction through time by hyperspectral
features is vital for tracking yellow rust (Puccinia striiformis) development, one of the major diseases
of wheat. However, well-designed features are still open issues that impact the performance of
relevant models to nondestructively detect pathological progress of wheat rust. The aim of this
paper is (1) to propose a novel wavelet-based rust spectral feature set (WRSFs) to uncover wheat
rust-related processes; and (2) to evaluate the performance and robustness of the proposed WRSFs and
models for retrieving the progression of host–pathogen interaction and tracking rust development.
A hyperspectral dataset was collected by analytical spectral devices (ASD) spectroradiometer and
Headwall spectrograph, along with corresponding physiological measurements of chlorophyll index
(CHL), nitrogen balance index (NBI), anthocyanin index (ANTH), and percentile dry matter (PDM)
from the 7th to 41st day after inoculation (dai) under controlled conditions. The resultant findings
suggest that the progression of yellow rust on wheat is better characterized by the proposed WRSFs
(R2 > 0.7). The WRSFs-based PLSR model provides insight into specific leaf biophysical variations
in the rust pathological progress. To evaluate the efficiency of the proposed WRSFs on yellow rust
discrimination during different infestation stages, the identified WRSFs and vegetation indices (VIs)
were fed into linear discriminant analysis (LDA) and support vector machine (SVM) classification
frames. The WRSFs in conjunction with a SVM classifier can obtain better performance than
that of LDA method and the VIs-based models. Overall, synthesizing the biophysical analysis,
retrieving accuracy, and classification performance, we recommend the proposed WRSFs for
monitoring the progression of the host–pathogen interaction of yellow rust on wheat cross various
hyperspectral sensors.

Keywords: feature extraction; hyperspectral analysis; continuous wavelet transformation; support
vector machines; disease detection; yellow rust; wheat
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1. Introduction

Yellow rust (Puccinia striiformis) is one of the most severe epidemic diseases for winter wheat
in China, affecting more than 6.7 million ha during 2000–2016 (http://cb.natesc.gov.cn/sites/cb/).
Under prolonged stress, crop growth and productivity are impaired [1]. Due to the high costs of
chemical control, a real-time nondestructive detection of the pathological progression of rust on leaves
is vital for effective management using precision agriculture. Currently, hyperspectral analyses are
the main approach for detecting foliar biophysical variations, and provide the basis for tracking rust
development in hyperspectral language [2].

The interaction of electromagnetic radiation with plant leaves is governed by their biophysical
constituents and response to infestations [3–5]. Numerous researches have been undertaken in order
to understand these host–pathogen interactions from the hyperspectral perspective [3,6], Most of them
attempted to link vegetation indices (VIs), which employ algebraic combination on specific spectral
bands with specific foliar constituent [7,8]. For instance, Mahlein, et al. [9] analyzed the hyperspectral
signatures of cercospora leaf spot, sugar beet rust and powdery mildew on sugar beet plants, and
developed specific vegetation indices to detect and identify various diseases with an overall accuracy
of 88.3%. Shi, et al. [10] tested a total of 18 typical spectral features for the classification of yellow
rust, powdery mildew, and aphid on wheat. The results showed the potential of VIs-based kernel
discriminant analysis (KDA) for detecting various diseases under complicated farmland circumstances.

Pathologically, the development of yellow rust comprises five spore stages, uredospores,
appressorium, basidiospores, spermatia, and aeciospores. The foliar biophysical variations are critical
indicators for tracking the progression of host–pathogen interactions through the different stages. In the
initial two stages, uredospores and appressorium develop on the upper side of leaves with random
scatter distribution of pustules that are invisible to the naked eye [11]. Subsequently, basidiospores,
spermatia and aeciospores grow hyphae and haustorium inside the cellular tissue of leaves, and
induce a series of biophysical lesions [12]. Currently, the majority of studies on agricultural diseases
monitoring, using earth observation, have focused on a given infestation stage, usually late in the
progression of the disease [6,13–17]. Although focusing on late stages of the infestations might
maximize the discriminant power of the methods, the outcomes will be less relevant for crop protection
as the damage will be detected too late for any efficient actions. Thus, further effort is required to
develop techniques that could track the early development of a host–pathogen interaction such as
yellow rust on wheat.

The development of rust infestation is a complicated process, which is hard to characterize
using the preexisting spectral features and methods. The availability of hyperspectral continuum
observations may facilitate the detection of the host–pathogen processes within entire epidemic stages
of yellow rust on wheat. Nevertheless, tracking the progress of the infestation well still be affected
by the following aspects: (1) the pre-existing VIs are not disease-specific; (2) these VIs might vary
non-linearly in relation to the increase of pathogen incidence representing poorly the variation in
the spectral signature of the disease process; (3) spatial and spectral redundancy have to be taken
into account. The continuous wavelet transformation (CWT) has been proven to be a promising
tool to capture subtle spectral absorption characteristics in detection of foliar constituents [18–20].
The CWT-derived wavelet features are capable of decomposing raw spectral data into different
amplitudes and scales (frequencies) in order to facilitate the recognition of subtle variation (or signals)
and the potential on retrieving foliar constituents [21–25].

While the wavelet-based technique has been used in hyperspectral analysis, the mechanism of the
CWT-derived spectral features for tracking yellow rust development still remains unclear. Furthermore,
the ideal spectral features and models for tracking progressive host–pathogen interaction of yellow rust
are expected to have not only high sensitive to the foliar biophysical parameters, but also robustness
for different infestation stages and various sensors. Therefore, this study aimed: (1) to identify a
wavelet-based rust sensitive feature set (WRSFs) for characterizing the spectral changes caused by
yellow rust infestation at different stages; (2) to provide insight of the proposed WRSFs into specific
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leaf biophysical variations in the yellow rust development progress; (3) to evaluate the performance
of the proposed WRSFs as input feature space for tracking yellow rust progress and retrieving rust
severities using continuous multitemporal hyperspectral observation covering the entire circle of
yellow rust infestation.

2. Materials and Methods

2.1. Data Acquisition

2.1.1. Study Site

A series of in-situ observations were conducted at the Scientific Research and Experimental Station
of Chinese Academy of Agricultural Science (39◦30′40”N, 116◦36′20”E) in Langfang, Hebei province,
China, from 20 April to 25 May 2017. The observation schedule and characteristics are listed in Table 1.
The wheat cultivar, ‘Mingxian 169’, was selected due to its susceptibility to yellow rust infestation.
There was control group and two infected groups of yellow rust (two replicates of inoculated treatment)
were applied. Each field group occupied 220 m2 of field campaigns. For the control group, a total of
12 plots with an area of 1 m2 were symmetrically selected in the field for sampling leaves, hyperspectral
observations and foliar biophysical measurements. Similarly, for the stress groups, a total of 21 and
18 plots were applied for sampling leaves in each replicate, respectively. Seedlings of this cultivar
(i.e., Mingxian 169) were inoculated with yellow rust by spore spraying a water suspension on the 13th
April. The concentration levels of 9 mg 100−1 mL−1 spores solution was implemented to naturally
generate infestation levels. All treatments applied 200 kg ha−1 nitrogen and 450 m3 ha−1 water at
the beginning of planting. The makeup of topsoil nutrients (0–30 cm deep) in the experiment sites
were as follows: soil organic matter 1.41–1.47%, nitrogen 0.07–0.11%, available phosphorus content
20.5–55.8 mg kg−1, and rapidly available potassium 116.6–128.1 mg kg−1.

Table 1. Observation schedule and measurement characteristics of the dataset.

Date

20 April 27 April 4 May 11 May 15 May 18 May 25 May

Days after inoculation (dai) 7 14 21 28 31 34 41

Numbers of ASD FieldSpec
hyperspectral measurements 330 330 510 510 510 510 510

Numbers of Headwall VNIR
hyperspectral images 15 15 20 20 20 20 20

Numbers of leaves sampled for
biophysical measurements 264 264 408 408 408 408 408

2.1.2. Collection of Leaf Biophysical Parameters

The Dualex Scientific sensor (FORCE-A, Inc., Orsay, France), a hand-held leaf-clip sensor designed
to non-destructively evaluate the content of chlorophyll and epidermal flavonols, was employed
for the leaf biophysical measurements. The principle of Dualex Scientific sensor in measuring the
chlorophyll and polyphenols in the epidermis is described in Cerovic, et al. [26]. Chlorophyll index
(CHL), nitrogen balance index (NBI), anthocyanin index (ANTH) that is based on the ratio between
the mesophyll chlorophyll and epidermal flavone were collected with the default units, which was
used preferentially because of the strong relationship between their digital readings and real foliar
chlorophyll, nutrition-stress level, and anthocyanin content [27]. For each sampling plot, the first,
second and third wheat leaves, from the top of three randomly selected plants (8–10 leaves for
each plot), were chosen for detail leaf measurements. In total, approximately 450–470 leaves from
51 sampling plots were sampled for measurements at each observation date. Afterward, the sampled
leaves were weighed on an electronic balance (Haozhuang, Inc., Shanghai, China) and dried in an
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electric blowing drying oven (DGG-9240A, Senxin, Inc., Shanghai, China) over 10 h. After drying,
the percentile dry matter (PDM) of the leaves was calculated by the ratio of dry and fresh weight
as follow:

PDM =
Wdry

W f resh
× 100%, (1)

where the Wdry is the dry weight of sampled leaves, Wfresh is the fresh weight of sampled leaves,

2.1.3. Hyperspectral Measurements at the Leaf Scale

A visible and near-infrared (VNIR) hyperspectral imager (Headwall VNIR imagining sensor,
Headwall Photonics, Inc., Bolton, MA, USA) was used to collect the hyperspectral images of diseased
leaves. The sensor was configured in the spectral resolution of approximately 1.48 nm with 406 effective
bands in the range of 400–1000 nm. The hyperspectral imager was equipped with the matched
Pan & Tilt (Headwall Photonics, Inc., Bolton, MA, USA) that allows the sensor to move in the full
horizontal range and in 90 degrees vertically, the constitution of the Headwall system is revealed in
Figure 1a. Data acquisition and storage module achieved a 50-frames per second (fps) with 25 ms
integration time. The 12-mm optical focal length lens yielded an instantaneous field of view (IFOV) of
0.93 mrad and an angular field of view (FOV) of 39◦. The official software, Headwall HyperspecTM,
was used to control the equipment. For each plot, the first and second wheat leaves, from the top of
three randomly selected plants (6–8 leaves for each plot), were manual clipped from stalks. For each
hyperspectral imaging, 12–16 sampled leaves were fixed at even distances on a pure black panel of
100 × 100 cm in order to avoid noise from the complicated background, and then were scanned for
acquiring the whole upper surface. All images were radiometrically calibrated by subtracting the dark
frame and calculating the absolute reflectance using the ratio to a white reference panel as description
in the research by Behmann et al. [14].

Figure 1. (a) The setup of the Headwall system: 1©. Headwall visible to near infrared (VNIR) imagining
sensor; 2©. Pan & Tilt; 3©. The tripod. (b) The true color composite image of the leave composited by
raw hyperspectral images. The second row shows the comparison of spectral reflectance between the
healthy area and diseased area of the leaves.

The reflectance and transmittance of the upper surfaces of the sampled leaves for leaf biophysical
measurements were collected with an ASD FieldSpec spectroradiometer (Analytical Spectral Devices,
Inc., Boulder, CO, USA). The spectroradiometer was fitted with a 25◦ field-of-view bare fiber-optic
cable, and operated in the 350–2500 nm spectral region. The sampling interval was 1.4 nm between 350
and 1050 nm, and 2 nm between 1050 and 2500 nm. A white spectral reference panel (99% reflectance)
was acquired once every 10 measurements to minimize the effect of possible difference in illumination.
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In order to match the wavelength range of Headwall spectrograph, only the bands in the range of
400–1000 nm were adopted in this study. In order to keep radiance consistence and future replicability,
leaf sampling, VNIR hyperspectral images and spectroradiometer measurements were conducted at
the same period of time between 11:00 and 13:30 local time under a cloud-free sky (Table 1).

2.1.4. Assessment of Disease Severity

The disease ratio (DR) was used, which denote the percentile portion of leaves covered in disease
pustules, to describe the severity of diseased leaves. All sampled leaves were inspected according to
the National Rules for the Investigation and Forecasting of Crop Diseases (GB/T 15795-1995). Due to
the difficulty of accuracy assessment, sampling leaves with a lesion coverage ratio less than 3% were
classified as healthy.

2.2. Data Preprocessing

2.2.1. Data Preparation

It is already known that disease epidemiology and symptoms development result in several
changes in spectral reflectance [3,28–30]. The rust inoculation created considerable spectral differences
between the healthy and infected leaves in terms of both ASD spectroradiometer and Headwall VNIR
measurements (Figures 1b and 2). These differences became significant as the yellow rust developed
and the senescence of leaves changed. Specifically, as the development of host–pathogen interaction
progresses, the spectral differences between the healthy and diseased group are expressed in three
parts: (1) the green “peak” near 550 nm; (2) the red “valley” near 680 nm; and (3) the near-infrared
“platform” (770–1000 nm), which peaked as the rust infestation reached the late stage by the 34th and
41th dai. The true color (RGB) images of leaves at each observation date (Figure 2) composited by the
original hyperspectral bands indicated that inoculated plants were first colonized without symptoms
(e.g., 7–14 dai). After a latency period of 15–20 days, small chloroses were the first symptoms of
yellow rust that appeared in the upper surface of wheat leaves. During 20th–30th dai, a layer of the
typical yellow stripe of rust spores became visible. At the later stages (over 30th dai), rust spores
ruptured the epidermis and amber uredinium become visible on the upper and lower side of leaves.
In the present study, a total of 321 average spectra curves (ASD) per sampling plot and date were
used for hyperspectral analysis, 70% of them were randomly utilized for training while 30% were
used for testing. One-hundred and thirty hyperspectral (Headwall) images from 7-times observations
were used for further modeling extension and application. The labeled dataset was identified by
visual discrimination.

Figure 2. Averaged leaf spectra for (a) healthy- and (b) rust infected-leaves at different days after
infestation (dai).
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2.2.2. Background Elimination

For the hyperspectral images, the plant pixels can be separated from the background pixels from
the hyperspectral data cube due to the uniform background. In this study, a NDVI threshold of 0.32
had been proven applicable for this step [14]. Hence, in the further analysis for hyperspectral images,
only the plant pixels were considered.

2.3. Analysis Methods

2.3.1. Wavelet-Based Rust Sensitive Feature Set (WRSFs) Extraction

A wavelet-based technique for extracting the shape-based reflectance spectral feature from both
the VNIR and spectroradiometer data was proposed based on the implementation of continuous
wavelet transform (CWT), which provides a powerful method for detecting and analyzing weak
signals at various scales and resolutions [19], and for analyzing multidimensional hyperspectral
signals across a continuum of scales [21]. Therefore, a set of wavelet-based yellow rust sensitive
features can be characterized by the wavelet coefficients expressed mathematically as: a,b

W f (a, b) =
∫ +∞

−∞
f (λ)ψa,b(λ)dλ, (2)

where f (λ) is the original spectrum, λ = 1, 2, . . . , n, n is the number of bands. Wf(a,b) is the wavelet
coefficients which will constitute a scalogram, and ψ a,b(λ) is a mother wavelet function:

ψa,b(λ) =
1√
a

ψ(
λ− b

a
), (3)

where a is the scaling factor indicating the width of the wavelet, and b is the shifting factor representing
the position of the wavelet. As the shapes of the absorption features were similar to a Gaussian or
quasi-Gaussian function, the Mexican Hat was selected as the mother wavelet basis [31]. To reduce
the calculated load, only the wavelet power at dyadic scales (21, 22, . . . , 210) were used. In this study,
the CWT algorithm was processed with the wavelet packets in MATLAB 2017a.

2.3.2. Vegetation Indices

A total of 9 hyperspectral VIs, that were reported as the diseases-related proxies in relevant
research (Table 2) were selected to compare with the extracted WRSFs for disease detection. These
adopted VIs have proved to (1) sensitive to crop growth: modified simple ratio (MSR); (2) pigment
variation: structural independent pigment index (SIPI), normalized pigment chlorophyll index
(NPCI), anthocyanin reflectance index (ARI), and modified chlorophyll absorption reflectance index
(MCARI); (3) water and nitrogen content: ratio vegetation structure index (RVSI); (4) photosynthetic
activity: photosynthetic radiation index (PRI), physiological reflectance index (PHRI); and (5) crop
disease: yellow rust index (YRI), The definitions, descriptions, and reference sources for these VIs are
summarized in Table 2.

Table 2. Vegetation indices used as features for classifications in this study.

Definition Related Bands and Equations Related To Reference

Modified simple ratio, MSR (R800/R670 − 1)/(R800/R670 + 1)1/2 Leaf area [32]
Photosynthetic radiation index, PRI (R570 − R531)/(R570 + R531) Photosynthetic radiation [33]
Structural independent pigment index, SIPI (R800 − R445)/(R800 − R680) Pigment content [34]
Physiological reflectance index, PhRI (R550 − R531)/(R550 + R531) Light use efficiency [33]
Normalized pigment chlorophyll index, NPCI (R680 − R430)/(R680 + R430) Chlorophyll ratio [34]
Anthocyanin reflectance index, ARI (R550) − 1 − (R700) − 1 Anthocyanin content [35]
Ratio vegetation structure index, RVSI [(R712 + R752)/2] − R732 Biomass [36]
Modified chlorophyll absorption reflectance
index, mcari

(R701 − R671) − 0.2(R701 −
549)]/(R701/R671) Chlorophyll Absorption [37]

Yellow rust index, YRI (R515 − R698)/(R515 + R698) − 0.5R738 Wheat disease [38]
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2.3.3. Partial Least Square Regression (PLSR) Analysis and Variable Importance

To understand the capability of the selected spectral features to detect yellow rust development,
and to assess the usefulness of such feature sets on spectral and chemical analysis, we implemented
partial least squares regression (PLSR) models explaining disease severity (DR) at each sampling date
separately and pooled dates for optimal WRSFs and VI indices. PLSR is an efficient tool to deal with
the data consisting of many independent variables and is used to reduce collinearity within the data to
noncorrelated latent variables [39]. The sensitivity of selected WRSFs and VIs to the development of the
host–pathogen interaction was quantified according to the model accuracy and variables importance in
projection (VIP). Detail information about PLSR and the VIP method is described in Peerbhay, et al. [40].
All of the models were trained with the calibration spectroradiometer dataset and assessed with the
validation spectroradiometer datasets mentioned in Section 2.2.1. The coefficient of determination
(R2) and RMSE were used as accuracy measurements of rust severities estimation. For each spectral
feature, the sensitivity to progressive host–pathogen interaction were quantified by the VIP scores at
each dai [41]. Based on the comparison of VIP scores of each dai, the relative importance of spectral
features for rust incidence estimation at different stages could be identified well, providing evidence
for the best combination of spectral features that could be used to trace the progression of yellow rust
on wheat.

Prior to establishing the PLSR models for rust estimation, the input features should meet the
three tenets: sensitivity, independence, and significance. Therefore, the first criterion is that the
feature requires a strong correlation with the rust-related biophysical parameters. The coefficients of
determination (R2) between the identified spectral features and measured leaf constituents (CHL, NBI,
ANTH, and PDM) were calculated from an univariate correlation analyses to quantify the sensitivity of
each feature in WRSFs to specific biophysical attributes. This analysis was not carried out for VIs as the
explicit biophysical responses had been reported in previous researches (Table 2) The second criterion
was to test the independence between variables. For this purpose, a pair-wise analysis of variance
(ANOVA) was conducted to identify the impacts of information redundancy and multicollinearity.
Here, a strict rule on the ANOVA with confidence level of 95% (p-value < 0.05) was used to ensure
that the identified spectral features to be used in the PLSR models had sufficient independence [42].
The third criterion is that the importance of the identified input variables should be checked. Here
the strict threshold of VIP scores of greater than 1 was used to quantify the variable importance in the
PLSR model [41,43].

2.3.4. Testing the Performance of WRSFs in Typical Classification Frames

In the past, various supervised classification frames have been developed to detect plant stresses
from remotely sensed observation, such as artificial neural network (ANN), decision trees (DT), and
support vector machines (SVM) [44–46]. In this section, a linear discrimination analysis (LDA) model
and a SVM model were used as example frames for testing and comparison of the performance of
ASD spectroradiometer-derived WRSFs and VIs on detecting the progression of rust development
under linear and nonlinear conditions, respectively. For this purpose, the hyperspectral measurements
and actual measured foliar disease ratio (DR) were used as the samples and labels for training and
evaluating the models of each dai. Considering the foliar disease ratio (DR) surveyed in each dai are
homogeneous, only two classes, healthy (0) and diseased (1), were predefined and labeled for modeling.
In the LDA classification frame, entropy reduction is achieved by clustering the samples, and the
maximum entropy reduction is calculated by the canonical discriminant functions that were decided
by the information hidden in the input feature set [47]. In the SVM classification frame, the optimal
margin would be outputted by maximizing the distance between the hyperplane and the nearest
points of both classes. This achieves the best prediction for unlabeled points [48]. The separation
decided by a kernel function reflects the merits of the components and structure of input feature space,
because the kernel function comprises an implicit mapping of samples in order to characterizing the
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input feature space. In this study, the radial basis function (RBF) kernel was used as the kernel of the
SVM classification frame [49]. The RBF kernel is defined as:

k(
→
x ,
→
xi) = exp

−
∣∣∣→x −→xi

∣∣∣2
2σ2

, (4)

where the parameter σ controls the smoothness of the decision boundary in the feature space. In this
case, this kernel was used to differentiate rust pathogen from the healthy portion of leaves. In order to
specify the best parameters of RBF kernel and to find an appropriate factor for penalizing classification
errors, the parameter C and σ need to be optimized. In this respect, a grid-based approach was utilized
as proposed by Rumpf, et al. [50].

To further investigate the potential of WRSFs and VIs extracted from various sensors on
progression of rust detection, the optimal classifier based on Headwall spectrograph-derived WRSFs
and VIs were implemented to assess the classification efficiency of each feature set on the hyperspectral
images. To conduct an optimal utilization of all information from the actual measured hyperspectral
data, a tenfold cross-validation strategy was employed, which splits data into 10 groups, where nine
groups are applied to calibrate the model and the remaining one is used for evaluation. This approach
was replicated 200 times, providing accuracy values from the average of all cross-validation iterations.
A confusion matrix was used to describe these assessments.

3. Results

3.1. Physiological and Hyperspectral Responses for Progressive Rust Infestation

The foliar physiological differences (CHL, NBI, ANTH, PDM) in the yellow rust development
are shown in Figure 3. In terms of CHL, an evident decline was observed from 21th dai, after the
34th dai, the digital reading of CHL reach to a minimum level, with 35.7% on average lower than that
of the healthy samples. Similarly, the changes of NBI between the healthy and diseased leaves are
synchronous in the early stage of infestation (7–21 dai), while the diversities become noticeable from
28th dai. The maximum discrepancy of 32.3%, on average, was at 34th dai. In terms of PDM, although
healthy and disease samples had a similar increasing trend, the increment of PDM of infestation
group was clearly below that of the healthy group. At the moderate–severe diseases level after the
31th dai. The dry matter accumulation of the rust infected leaves was lower than that of healthy
leaves approximately 9.8%. Finally, the most significant physiological difference was found in ANTH,
the increase of anthocyanin content of rust infestation group became noticeable from the second week
after inoculation (14th dai), and peaked at 34th dai with almost 8 times higher anthocyanin content
than that of healthy leaves.
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Figure 3. Comparisons of (a) chlorophyll index; (b) nitrogen balance index (NBI); (c) anthocyanin
index; (d) percentile dry matter (PDM) between healthy leaves and leaves inoculated with yellow
rust. The default units for chlorophyll, nitrogen balance index and anthocyanin are from the
Duelax instrument.

3.2. Response of Wavelet Features to Progression of Host–Pathogen Interactions

Based on the CWT, the correlation scalogram was generated in Figure 4. It is noteworthy that,
although the noise interferences and the designed spectral resolution between different sensors (1 nm
for ASD spectroradiometer and 1.4 nm for Headwall spectrograph), the positions and scales of
the sensitive regions are similar (orange sections in Figure 4). The intersection of wavelet features
selected from the top 5% of the correlation scalograms from the ASD and Headwall dataset is
summarized, a total of 5 feature regions sensitive to development of yellow rust are extracted in
blue edge (470–485 nm), green peak (520–600 nm), and red edge (630–760 nm) regions at scales of
2 to 5. Here, the WRSFs are represented as a set of individual wavelet features: WF01, WF02, WF03,
WF04, and WF05, and the positions and scales of each feature are listed in detail in Table 3.

Figure 4. Correlation scalogram of continuous wavelet analysis for WRSFs extraction from (a) ASD
and (b) Headwall dataset. This scalogram indicates the determination coefficients (R2) between
wavelet power and disease ration (DR). The highest 5% were highlighted in orange identifying wavelet
feature regions.
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Table 3. Summary of central bands of wavelet features for rust infestation from the intersection of
correlation scalograms of ASD and Headwall data.

Wavelet Features Wavelength (nm) Scale R2

WF01 486 5 0.93
WF02 545 2 0.94
WF03 571 2 0.9
WF04 685 4 0.92
WF05 746 4 0.94

Figure 5 shows a series of univariate correlation analysis, conducted between the individual
wavelet feature and the foliar components parameters (i.e., NBI, CHL, ANTH, PDM to show the
biophysical attributes of the selected WRSFs). For WF01, a significant linear correlation is observed
with PDM (R2 = 0.82, p < 0.05). The biophysical attributes for WF02 and WF03 are similar partially
because of their similar central wavelengths (i.e., 545 nm and 571 nm) and scales (i.e., 2), with R2 values
of 0.77 and 0.79 for CHL, 0.68 and 0.74 for ANTH, respectively. For WF04, a high linear correlation with
the variations of NBI and PDM were identified, with R2 value of 0.71 and 0.72, respectively. Fianlly,
the correlation between NBI and WF05 is regarded as statistically significant (R2 = 0.76).

Figure 5. Correlation analysis (in coefficient of determination R2) of individual wavelet features with
foliar components parameters (NBI, CHL, ANTH, PDM).

3.3. Evaluation and Comparison of WRSFs and VIs in DR Estimation

The ANOVA results between the pairs of wavelet features within WRSFs clearly indicate that
the differences between different WRSFs are significant (p < 0.005) (Table 4). Thus, collinearity
phenomenon between different WRSFs can be neglected in the further modeling process. Similarly,
an ANOVA-based procedure was conducted to optimize the selection of VIs. The results indicate that
the differences of PhRI, RVSI, and MCARI are not significant (p > 0.005) (Table 5), which would impact
the interpretability of the independent variables on the regression model. Therefore, only MSR, PRI,
SIPI, NPCI, ARI and YRI were selected for the further analysis.
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Table 4. Results of ANOVA between extracted WRSFs.

WF01 WF02 WF03 WF04 WF05

WF01 -
WF02 0.0021 * -
WF03 0.0014 * 0.0045 * -
WF04 0.0005 ** 0.0011 * 0.0017 * -
WF05 0.0001 ** 0.0035 * 0.0015 * 0.0021 * -

Note: * indicate the different significant at 0.95 confidence level; ** indicate the different significant at 0.99
confidence level.

Table 5. Results of ANOVA between selected VIs.

MSR PRI SIPI PhRI NPCI ARI RVSI MCARI YRI

MSR -
PRI 0.0703 * -
SIPI 0.0493 * 0.0219 ** -
PhRI 0.2073 0.0348 * 0.0912 * -
NPCI 0.0192 * 0.0277 ** 0.0144 ** 0.0885 * -
ARI 0.0787 * 0.0506 * 0.0248 ** 0.249 0.12705 -
RVSI 0.0912 0.1735 0.3052 0.1103 0.10672 0.1427 -

MCARI 0.1329 0.1864 0.0456 * 0.2013 0.08639 * 0.1005 0.2147 -
YRI 0.0218 ** 0.0993 * 0.056 * 0.1509 0.06606 * 0.0501 * 0.1324 0.1569 -

Note: * indicate the different significant at 0.95 confidence level; ** indicate the different significant at 0.99
confidence level.

Using the identified WRSFs and VIs as the input variables, the PLSR-based models were
established for the DR estimations at each dai. Based on the features’ sensitivity analysis and
the multi-collinearity checking, 5 wavelet spectral features and 6 VIs were used to establish the
corresponding WRSFs-PLSR and VIs-PLSR models. For each model and dai, VIP scores were then
calculated. Resultant model estimations of rust severities corresponded well with actual measurements
of DR (R2 > 0.78 for WRSFs, and R2 > 0.65 for VIs) (Table 6). Between the two types of spectral
features, the significance of the WRSFs models was for fitting the PLSR models greater than that of the
VIs (the VIP scores of all the WRSFs were greater than the threshold of 1), and WRSFs-based PLSR
model produced a remarkably higher accuracy (average R2 = 0.87) than the VIs-PLSR model (average
R2 = 0.78). Comparing with the VIP scores variations plotted in Figure 6, the WRSFs-PLSR model had
a better representation of the host–pathogen interaction than VIs-PLSR during the progression of rust
infection. Thus, the sensitivity of WRSFs to foliar constituents (CHL, NBI, ANTH, and PDM) reflected
more pathological and biophysical evidences in the rust estimations. Specifically, for the early stage
of inoculation (before 14th dai), WF02 and WF03, responding to the fluctuations of chlorophyll and
anthocyanin had greater contributions for the early estimation of rust, and then, as the first symptoms
appeared at 21st dai, the importance of WF01 and WF04 in fitting the models had an obvious increase.
Finally, for the mid–late stage (after 31th dai), the contribution of WF05 became significant in the rust
estimation models. By contrast, the contributions of the identified VIs, apart from YRI, were almost
constant in the progressive rust estimation.

In order to evaluate the feasibility of the WRSFs in tracking the DR during different yellow rust
development stage, we also developed the PLSR models using the pooled data of all measurement
dates and employed the “dai” as a variable into the models to improve the generalization for practical
applications. Resultant models presented in Table 6 illustrated that the WRSFs-based estimations of
rust severities corresponded better with actual measurements of DR than the VIs-based (R2 = 0.77 for
WRSFs, and R2 = 0.68 for VIs).
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Table 6. Retrieving PLSR models and validation accuracies for DR estimation disease ratio (DR)
estimation separately for each spectral index group (WRSFs and VI) and date after inoculation (dai).

Dai Feature PLS-Based Model Equations R2 RMSE

7th
WRSFs DR = 0.035 − 159.45WF01 − 384.74WF02 − 60.58WF03 − 27.95WF04 − 65.6WF05 0.78 0.052

VIs DR = −0.054 − 0.06MSR + 0.023PRI + 0.136SIPI + 0.026NPCI − 0.004ARI − 0.023YRI 0.65 0.065

14th
WRSFs DR = 0.16 + 48.13WF01 + 220.41WF02 − 69.34WF03 − 103.6WF04 − 39.68WF05 0.81 0.045

VIs DR = −1.06 − 0.04MSR + 0.56PRI + 0.91SIPI + 0.2NPCI + 0.04ARI − 0.49YRI 0.69 0.068

21st
WRSFs DR = −0.57 − 102.29WF01 − 47.77WF02 + 25.85WF03 − 21.65WF04 − 8.6WF05 0.84 0.052

VIs DR = −0.937 − 0.012MSR + 0.096PRI + 0.38SIPI + 0.078NPCI − 0.126ARI − 0.049YRI 0.75 0.075

28th
WRSFs DR = −0.12 − 23.29WF01 + 32.98WF02 + 48.28WF03 + 33.42WF04 − 9.27WF05 0.86 0.028

VIs DR = −0.089 − 0.018MSR + 0.037PRI + 0.45SIPI + 0.073NPCI − 0.015ARI + 0.014YRI 0.73 0.037

31st
WRSFs DR = −0.07 − 17.3WF01 + 82.49WF02 − 5.02WF03 − 44.28WF04 − 12.39WF05 0.91 0.019

VIs DR = −0.091 − 0.027MSR + 0.125PRI + 0.41SIPI + 0.102NPCI − 0.071ARI − 0.085YRI 0.81 0.025

34th
WRSFs DR = −0.43 − 21.4WF01 + 20.1WF02 + 50.57WF03 + 35.54WF04 − 14.12WF05 0.93 0.019

VIs DR = −0.125 − 0.029MSR + 0.19PRI + 0.646SIPI + 0.131NPCI − 0.12ARI − 0.047YRI 0.85 0.028

41st
WRSFs DR = −0.26 − 18.46WF01 − 5.26WF02 + 10.84WF03 − 24.4WF04 − 15.31WF05 0.89 0.029

VIs Drdisease = −0.2 − 0.037MSR + 0.085PRI + 0.938SIPI + 0.152NPCI − 0.24ARI − 0.016YRI 0.82 0.031

Pooled
WRSFs DR = −0.09 − 2.71WF01 − 0.152WF02 + 0.018WF03 − 0.56WF04 − 1.38WF05 + 0.009dai 0.77 0.043

VIs DR = 2.42 − 0.61MSR − 1.09PRI + 9.54SIPI + 2.23NPCI − 3.38ARI − 3.06YRI − 3.06dai 0.68 0.061

Figure 6. Variable importance in projection (VIP) scores of (a) wavelet-based rust spectral feature sets
(WRSFs) and (b) vegetation indices (VIs) spectral features explaining yellow rust disease ratio (DR) in
separate partial least square regression (PLSR) models for each date after inoculation sampled (dai).

3.4. Comparison and Assessment of the Performance of WRSFs on Monitoring Rust Development

Using the identified WRSFs and VIs features as the input feature space into the LDA and SVM
classification framework, the differentiations between the two classes, healthy leaves and leaves
inoculated with rust pathogen were used to assess and compare effectiveness of both models in the
rust detection. The overall classification by using the pooled samples of all ASD spectroradiometer
observations showed that the overall accuracies of the WRSFs-based LDA and SVM classifiers were
10.4% and 7.8% greater than that of the VIs-based (Table 7).

Figure 7 further illustrated the comparison of progressive rust classification results between
WRSFs- and VIs-based models. These results showed that the classifications of WRSFs-based models
were always higher than that of VIs-based models. Furthermore, in comparison with the LDA
classification frames, the classification accuracy of kernel trick-based SVM model was also always
higher. Specifically, for the early observations (7–21 dai), with almost 4% to 19% diseased leaf area,
the averaged classification accuracies of WRSFs-based LDA and SVM were about 67.6% and 72.6%
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respectively, which were 14.2% and 12.9% greater than that of VIs-based models. As the development of
rust infestation (21st–41st dai), the visible symptoms in the diseased leaves gave additional information
on the reliability of classification results. The averaged accuracy of WRSFs-based LDA and SVM
classifier rapidly increased with rust pathogens cover of 20% to 40%. When more than 40% (after 31st
dai), the classification accuracy of WRSFs- based LDA and SVM classifiers reached highest 83.3% and
89.3%, respectively.

Table 7. Comparison of the overall results of disease discrimination (healthy versus leaves infected
with yellow rust) based on the pooled ASD spectroradiometer observations of all dates.

Frame Input Yellow Rust Health U (%) OAA (%) Kappa

LDA

VIs

Yellow rust 106 28 79.1%

71.4 0.79Health 41 66 61.7%

P(%) 72.1% 70.2%

WFYs

Yellow rust 122 17 87.8%

81.8 0.84Health 25 67 72.8%

P(%) 83.0% 79.8%

SVM Yellow Rust Health U (%) OAA (%) Kappa

SVM

VIs

Yellow rust 116 18 86.6

78.8 0.81Health 31 66 68.0

P(%) 78.9 78.6

WFYs

Yellow rust 126 10 92.6

86.6 0.86Health 21 74 77.9

P(%) 85.7% 88.1%

Note: P = producer’s accuracy, U = user’s accuracy, OAA = overall accuracy.

Considering the higher efficiency of SVM classification frame, the detection of rust lesion on
the hyperspectral images produced by the WRSFs- and VIs-based SVM classifiers are also compared
(Figure 8), and the accuracies are indicated in Table 8. These results show that, before the evident
strip-shaped amber uredinium become visible on the upper side of leaves (7th–21st dai), the diseased
portions of yellow rust were correctly classified by WRSFs-based SVM with an accuracy range from
84.2% to 95.2%, higher than that of VIs-based SVM with accuracy range of 79.8% to 84.8%. After
the first symptoms occurred at 21st dai, the classification accuracy steadily increased owing to the
high spatial resolution obtained by the hyperspectral images. Throughout the 20-day experiment,
the classification accuracy of the automatic procedure was almost consistent to or higher than the
visual identification on rust infected leaves. The highest accuracy of WRSFs- and VIs-based SVM for
the detection of rust infection were 100% and 98.5%, respectively.

Table 8. Classification accuracy of healthy and diseased area of leaves based on Headwall
hyperspectral images.

Feature State
Classification Accuracy/%

7 dai 14 dai 21 dai 28 dai 31 dai 34 dai 41 dai

WRSFs
Health 88.7 92.4 97.5 99.2 98.8 96.7 98.9
Disease 84.2 90.1 95.3 97.9 100 100 98.2

VIs
Health 73.5 81.2 88.6 95.4 96.9 95.2 96.1
Disease 80.5 84.8 79.8 92.7 98.2 98.4 98.5
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Figure 7. Effect of time since inoculation on the classification accuracy results of ASD
spectroradiometer-derived (a) linear discriminant analysis (LDA) and (b) support vector machine
(SVM) model for the identification of diseased leaves inoculated with yellow rust versus healthy
leaves. The box-plot of the classification accuracies are produced by the cross-validation. The dash line
represents the averaged rust severity (DR) measured per sampling date.

Figure 8. Extraction of rust diseased area produced by (a) WRSFs-based SVM and (b) VIs-based SVM
from hyperspectral images of leaves at different dai.

4. Discussion

To our knowledge, this work may be the first attempt to track progressive host–pathogen
interaction in the continuous hyperspectral observations. By using the wavelet-based feature extraction
approach, a series of independent wavelet spectral features were extracted to characterize foliar
biophysical dynamics caused by yellow rust infestation. In the process of CWT, the Mexican Hat
mother wavelet fitted well with the absorption features of the original spectral responses of rust
infestation, and the best capturing of changes on shape of spectral signals caused by the infestation
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development could be achieved by changing scale factors. In this study, CWT was implemented for
10 scales. The wavelet signatures at the scales of 2–5 retained a large amount of basic information of
the original spectral reflectance and were useful at providing reliable responses pertaining to disease
detection. These findings are also in agreement with the research by Zhang et al. [18].

The identified WRSFs performed well in characterizing these progressive spectral responses of
foliar biophysical changes caused by rust infestation (Figure 5). The ANOVA and univariate correlation
analysis suggest that variations in foliar biophysical parameters induced by rust, such as chlorophyll
content, anthocyanin content, nutrients, and dry matter accumulation, are best described by combining
the extracted WRSFs from the hyperspectral perspective. Specifically, anthocyanin is the first detectable
pigment induced by foliar stresses, and the increase of anthocyanin content can be detected by the
WF03 between 573–584 nm. Additionally, the pathogens that attack various organs and tissues on
leaves produce effects on plant structure and dry matter accumulation. The wavelet coefficients
at the region of 478–496 nm, 683–697 nm, and 739–761 nm in the process of rust infestation prove
that the impact of rust infestation on dry matter content and the upward movement of nitrogen
could be detected by combining the WF01, WF04, and WF05. Meanwhile, pathogens do interfere
with photosynthesis by affecting the chloroplasts and cause their degeneration, which are presented
by the wavelet coefficient decrease of WF02 at 535–548 nm. This finding is also consistent with
Sawut et al. [41]’s study, which reported the yellow bands near 550 nm are sensitive to photosynthetic
pigments and have great potential in early plant stress detection.

The PLSR models have been successfully used for DR estimations in the progression of yellow
rust infestation. The results show that the WRSFs-PLSR model outperformed the VIs-PLSR on rust
retrieving. More importantly, compared with VIs-PLSR, the WRSFs-PLSR provides apt pathological
and biophysical information in the DR estimation procedure based on the VIP method. The analysis of
importance in WRSFs measured by VIP scores has shown that the highest score structures for the early
inoculation stage (before 14th dai) were contributed by WF02 and WF03 which are sensitive to CHL
and ANTH. Additionally, as the symptoms became visible (after 21st dai), WF01 and WF04 which
respond to PDM and NBI, showed higher importance in the model fitness. Finally, in the mid–late
stage (28th–34th dai), because the rust spores rolled and ruptured the foliar epidermis, the importance
of WF05, which is sensitive to the foliar structure rapidly increased. These importance dynamics in VIP
scores during the PLSR analysis are consistent with the pathological progress of rust reported in related
researches [7,12,51,52]. Furthermore, it was noteworthy that, in many cases, the shape-based wavelet
features had been proven have greater robustness than VIs features. For example, Zhang, et al.’s study
reported that, compared with traditional VIs or other spectral features, such as first-order derivative
spectral and continuum removal features, no normalization procedure is needed for the application
of the wavelet features, which makes them more robust in dealing with noises interferences [53].
This finding also partially supports our new proposed WRSFs that was more notable robust and
sensitive to the foliar biophysical dynamics caused by the progressive infestation of yellow rust
comparing with traditional VIs.

The efficiency of each kind of feature space in tracking rust lesions was evaluated using the
identified WRSFs and VIs as input feature space in LDA and SVM classification methods. Compared to
the LDA with empirical risk minimization, structural risk minimization-based SVMs proved to be the
most instrumental strategy for automatic differentiation between healthy leaves and leaves infested
with yellow rust, especially in the pre-symptomatic stages. In addition, compared with the LDA
frame, the kernel-based SVM classifier performed better in limited the effect of high entropy on the
sample set, especially before the visible symptoms occurred on the leaves, which achieved accuracies
3.5–6.4% higher than the LDA classification in yellow rust detection in different measurement dai
(Figure 7). These conclusions are also in agreement with previous studies [42,47]. More importantly,
compared with the VIs-based feature space, the greater orthogonality of the feature space produced by
the WRSFs resulted in a more stable margin hyperplane for separation. This enhanced the information
content and increased the generalization ability of SVM in tracking rust development at different
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stages. Unlike the VIs which use ratios of two or three bands of the visible- and near infrared
region to normalize variations in the magnitude of reflectance, the shape-based wavelet spectral
features produced by CWT with optimal combinations of positions and scales are able to capture the
comprehensive biophysical variations and spectral responses caused by disease, such as the chlorophyll
concentration variations and corresponding “blue shifting” phenomenon in spectral domain [20,54].
This characteristic explains why the WRSFs-based model outperform the VIs for rust detection and
differentiation. Our findings also suggest that, by using the WRSFs-based SVM model, the earliest
detection of yellow rust infestation can be achieved in 7th dai, with the acceptable accuracies of 67.4%
and 86.5% for ASD and Headwall measurements.

Comparing the spectral datasets of yellow rust collected in this study, there is much more noise
in the detection of foliar symptoms in the non-imaging data obtained by the ASD spectroradiometer
in comparison to the pixel-based spectral images collected by the Headwall spectrograph. The main
explanation to this finding is that the spectral signatures measured by the spectroradiometer are the
mean of the reflectance of both healthy and diseased plant tissues in single leaves. With imaging sensor
systems, such as the Headwall spectrograph, a pixel-wise attribution of rust lesions and tissue is used.
Therefore, the comparison of classification accuracy between the non-imaging and imaging datasets
proven that the hyperspectral imaging system enabled detection of the small size of rust colonies,
especially for the improvement of early disease monitoring. Meanwhile, because the proposed WRSFs
include only the most relevant information of the infestation of yellow rust, the WRSFs-based models
have better capacity of reducing the computational burden and achieving a near-real time diseases
detection. These findings will lead to a better understanding of the pathogen–host interactions of
yellow rust in field from the perspective of spectrum. However, although the inclusion of our findings
can be carried out to indicate the pathologically related foliar lesion, the yellow rust-specific canopy
structure characteristics were not explored in current study. Future work will evaluate the canopy
structure effect on the contextual findings in order to conduct an operational application on UVA or
space platform. Therefore, in this study, there were no additional nondestructive measurements in the
field used for operational application.

5. Conclusions

This study proposed a new shape-based WRSFs from the wavelet transformed reflectance spectra
of winter wheat leaves inoculated with yellow rust. The identified wavelet features in WRSFs are
capable of capturing and tracking rust related biophysical indices (CHL, ANTH, NBI, and PDM)
during development of the host–pathogen interaction. The performance of WRSFs as input feature
space for disease severity estimation and lesions detection of rust was evaluated and compared with
traditional VIs that sensitive to disease infestation. Our findings suggest that the WRSFs-PLSR model
provide insight into specific host–pathogen interaction during rust development progress, which
is more effective than VIs-PLSR model in DR estimation (R2 > 0.78). For the rust lesion detection,
the WRSFs-based feature space performed best for both LDA and SVM classification frame with
overall accuracies of 81.8% and 86.6%, respectively. Unlike the traditional techniques, the CWT-based
technique for WRSFs extraction is simple and straightforward to reflect spectral signals. As no
predetermination of wavelength delimitation or other parameterization is required. The practical
WRSFs have greater robustness for better understanding the pathological progress in tracking the
rust development with hyperspectral data from various sensors. This method has the potential to be
applicable to others plan–pathogen systems at the leaf scale. Nonetheless, its applicability from air- or
space-borne remote sensing platforms requires proof and should be examined in future studies.
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